1
|
Luo Y, Sun Y, Wang H, He Y, Zhang Y, Lei H, Yang H, Wei J, Xu D. An electrochemical aptasensor based on C-ZIF-67@PAN nanofibers for detection of ampicillin in milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:460-468. [PMID: 39651638 DOI: 10.1039/d4ay02001d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
C-ZIF-67@PAN nanofibers are prepared as an active material for ampicillin (AMP) detection. Metal organic frameworks (MOFs) can provide larger specific surface area and more binding sites. The PAN fiber in the further carbonization process can make ZIF-67 orderly arranged, enhance the conductivity of the material, and make the response more sensitive. Gold nanoparticles are incorporated into the material, and the aptamer is closely combined with the material by using the Au-S bond to further enhance the conductivity of the material. Under optimized conditions, the sensor has a wide detection range (0.001-100 μM) and a low detection limit (0.67 nM). In addition, the C-ZIF-67@PAN@Au@Apta sensor is successfully applied to AMP residues in milk samples with a recovery rate of 92.77-101.95%.
Collapse
Affiliation(s)
- Yuting Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Yiwei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Haoxiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Yuyang He
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Yuxun Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Hailu Lei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Hong Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jinhao Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Hou L, Wei J, Xiang C, Yang D, Yang Y. A colorimetric sensor for the sensitive and rapid detection of ampicillin based on CS-Cu,Fe/HS nanozyme. Mikrochim Acta 2024; 192:36. [PMID: 39729133 DOI: 10.1007/s00604-024-06895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2 to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe2+/Fe3+ and Cu2+/Cu+. Interestingly, the POD-like activity of CS-Cu,Fe/HS is inhibited with the introduction of ampicillin (AMP), which may be because the Cu and Fe ions in CS-Cu,Fe/HS form complexes with AMP, leading to changes in the structure or surface properties of the nanozyme, thereby reducing the number of active sites on the nanozyme. Drawing from this, a straightforward and reliable colorimetric sensor was constructed for AMP detection, featuring a linear range of 0.033 to 110 μg/mL and a detection limit as low as 11.6 ng/mL. The proposed detection method for AMP performed well in real samples, with recoveries ranging from 94.8% to 110.2%.
Collapse
Affiliation(s)
- Linqian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Jinya Wei
- Yunnan High-Tech Enterprise Development Promotion Association, Kunming, 650021, People's Republic of China
| | - Chen Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
3
|
Zhang C, Tian T, Yin N, Zhao J. Click chemistry-based fluorescence polarization sensor for sensitive detection of ampicillin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124872. [PMID: 39067359 DOI: 10.1016/j.saa.2024.124872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Ampicillin (AMP) is a β-lactam antibiotic that can inhibit bacterial wall synthesis. The overuse and misuse of AMP makes it micropollutant that commonly found in food and various environmental media. In this work, a fluorescence polarization sensor was designed to sensitive detection of trace ampicillin based on click chemistry, using graphene oxide (GO) as a fluorescence polarization (FP) signal enhancement element. First, when ampicillin binds to its aptamer (apt), the adjacent alkyne and azide groups are separated, hindering the click-linking reaction. When Carboxyfluorescein (FAM) fluorophore-labeled probe (C-FAM) is added, its protruding 3-terminal FAM is recognized and cleaved by exonuclease I (EXO I), releasing fluorophores free that could not be adsorbed on GO, resulting in a lo0wer polarization signal. If there is no AMP in the system, aptamer probe is connected to its complementary chain ends by a click reaction. After C-FAM hybridizes with apt, the apt/P duplex is opened and the prominent single-stranded ends adsorb on the GO, leading a significantly enhanced FP signal. According to the relationship between the difference in FP values and the concentrations of AMP, the limit of detection of proposed method is as low as 80 pg/mL. This assay has a wide linear range plus excellent selectivity, and has been applied to detect AMP in milk and river water samples with satisfactory results, which demonstrates that the FP sensor has great potential for practical applications in food safety and environmental protection fields.
Collapse
Affiliation(s)
- Chao Zhang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Tian Tian
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Nanzhu Yin
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China
| | - Jingjin Zhao
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, PR China.
| |
Collapse
|
4
|
Huang Y, Fan X, Xu Y, Chen X. Sensitive and rapid fluorescent detection of metronidazole based on stable light-emitting vinylene-linked covalent organic framework. Food Chem 2024; 467:142284. [PMID: 39642419 DOI: 10.1016/j.foodchem.2024.142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Development of ultra-sensitive and rapid fluorescent nanoprobe for quantitative and targeted monitoring of metronidazole is of crucial practical significance, but is of great challenge. Herein, a vinyl-linked covalent organic frameworks (sp2-BNTP-COF) was fabricated via integrating the 1,3,5-tris-(4-formylphenyl) triazine with 5,5'-bis(cyanomethyl)-2,2'-bipyridine into the skeleton. As-obtained sp2-BNTP-COF exhibited excellent luminescence characteristics with an absolute fluorescence quantum yield of 8 %. However, fluorescent emission of sp2-BNTP-COF could be sharply quenched via metronidazole based on internal filtration effect. A sensitive fluorescent strategy was built for targeted monitoring of metronidazole. Furthermore, the analysis operation could be accomplished within 20 s, which was desirable for point-of-care monitoring of metronidazole. Therefore, this work not only provides a reliable method for the sensitive, rapid, and quantitative detection of metronidazole residues based on the sp2-BNTP-COF, but also paves the way for exploring stable luminescent vinyl-linked COFs materials as promising fluorescent nanoprobes for targeted monitoring of antibiotic residues.
Collapse
Affiliation(s)
- Yong Huang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiaobing Fan
- Department of Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Yulong Xu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
5
|
Hou W, Li J, Tuo K, Liu G, Li Z, Pu S, Fan C. A europium (III) functionalized hydrogen-bonded organic framework for sensitively ratiometric fluorescent sensing of tetracycline. Anal Bioanal Chem 2024; 416:5753-5762. [PMID: 39261331 DOI: 10.1007/s00216-024-05494-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
As a kind of antibiotic, tetracycline (TC) might remain in animal blood and milk products during use, which poses a risk to humans after consumption. Therefore, a ratiometric fluorescence probe was proposed for the detection of TC, which was based on an Eu3+ functionalized hydrogen-bonded organic framework (HOF). Since there are a large number of N and O atoms in the skeleton of HOF, more Eu3+ could be loaded onto HOF by forming coordinate bonds, while preserving the fluorescence of luminol monomer in HOF. In the presence of TC, the fluorescence of luminol monomer was attenuated at 425 nm due to inner filter effect (IFE), while TC selectively enhanced the fluorescence peak at 617 nm of Eu3+ under the influence of antenna effect (AE). This highly sensitive probe could detect TC in the range of 0.1-60 μM and had a low limit of detection of 8.51 nM. Besides, the HOF@Eu probe was able to detect TC in actual samples (milk and tap water) with good recoveries (95.09%-111.51%) and precision (R < 4.78%), indicating this probe has great application potential for the detection of TC in food.
Collapse
Affiliation(s)
- Weifeng Hou
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jin Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kai Tuo
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Gang Liu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhijian Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Shouzhi Pu
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
- YuZhang Normal University, Nanchang, 330013, PR China.
| | - Congbin Fan
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
6
|
Jiang R, Yang F, Kang X, Li X, Jia W, Pan L, Yang L. Background-Free Imaging of Food Freshness Using Curcumin-Functionalized Upconversion Reversible Hydrogel Patch. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405812. [PMID: 39428814 DOI: 10.1002/smll.202405812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Functionalized upconversion nanomaterials can overcome the drawbacks faced of strong background interference, photodamage, and spectral overlap by conventional optical labeling. Here, curcumin-functionalized upconversion hydrogel patch is designed with background-free and reversible for food freshness monitoring by ultra-sensitive response to biogenic amines. By loading the probes onto hydrogel patch, utilizing the good ductility to solve the problem of non-smooth surface coverage, thus accurately capturing biogenic amines. The presence of biogenic amines leads to the conversion of the diketone group on the probe to enolate ions, which triggers fluorescence resonance energy transfer (FRET) and ultimately causes the upconverted fluorescence to gradually change from green to red. The probe exhibits good detection capability for biogenic amines with a low limit of detection (LOD) of 2.73 µm. Interestingly, the patch can be restored to its initial state after water rinsing, realizing reversible detection of biogenic amines. Additionally, combining the color recognition system of smartphone can convert the imaging signal into a data signal to achieve quantitative analysis and show a reliable assessment comparable to the results of high performance liquid chromatography (HPLC). This study demonstrates the practical applicability in real-time monitoring of freshness, suggests great potential in developing optical nano-sensing strategy to ensure food safety.
Collapse
Affiliation(s)
- Ruoxuan Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Fan Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xiaohui Kang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xingzhen Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Wei Jia
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Lei Pan
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
7
|
Zhu G, Liao D, Li J, Yi Y. Innovative fluorescence sensing platform for β-lactams based on acidity/basicity-sensitive graphdiyne quantum dots. Chem Commun (Camb) 2024; 60:12229-12232. [PMID: 39359175 DOI: 10.1039/d4cc03927k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Residues of β-lactam antibiotics (β-LA) in the environment have posed a great threat to human health, while lacking a simple, effective, and universal sensing method. Herein, basic fuchsin and graphdiyne (GDY) were used as precursors to prepare the first reported acidity/basicity-sensitive GDY quantum dots (S-GDY QDs). We propose a novel fluorescence-sensing strategy for β-LA detection based on the ability of β-lactamases to catalyze β-LA to form carboxylic acid, which further induces a change in the acidity/basicity of the solution and causes a decrease in the fluorescence intensity of S-GDY QDs. Furthermore, a fluorescence test strip sensing platform integrated with a smartphone was established to achieve rapid, portable, and visual monitoring of β-LA. Using penicillin G as a model, a detection limit as low as 15.7 nM was achieved, showing important implications for β-LA detection.
Collapse
Affiliation(s)
- Gangbing Zhu
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, P. R. China
| | - Diyan Liao
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Jing Li
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Yinhui Yi
- School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
- Fujian Key Laboratory of Agro-products Quality & Safety, Fuzhou, 350003, P. R. China
- Key Laboratory of Agricultural Monitoring and Early Warning Technology, Ministry of Agriculture and Rural Affairs, P. R. China
| |
Collapse
|
8
|
Wu W, Ahmad W, Hassan MM, Wu J, Ouyang Q, Chen Q. An upconversion biosensor based on inner filter effect for dual-role recognition of sulfadimethoxine in aquatic samples. Food Chem 2023; 437:137832. [PMID: 39491291 DOI: 10.1016/j.foodchem.2023.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Sulfadimethoxine (SDM) as an extensively employed veterinary drug causes potential threats to human health. Herein, a dual recognition mode novel upconversion fluorescence biosensor was designed based on inner filter effect (IFE) to sensitively and rapidly detect SDM in aquatic samples. Aldehyde-functionalized magnetic nanoparticles (MNPs) were applied to recognize and capture SDM, followed by specifically bond with biotin-labeled aptamers. The upconversion nanoparticles and the colored products resulting from the enzyme-catalyzed oxidation of 3,3,5,5-tetramethylbenzidine exhibited an IFE quenching process. Under the optimal condition, the results displayed the fluorescence intensity was correlated with the concentration of SDM within the range of 0.5-1000 ng⋅mL-1 achieving a low limit of detection of 0.13 ng⋅mL-1. The SDM detection system was further employed in the spiked aquatic samples with good recoveries (88.41-96.78 %). Consequently, the constructed fluorescence biosensor provided broad prospects for accuracy and rapid detection of SDM.
Collapse
Affiliation(s)
- Wenwen Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
9
|
Zhang R, Zhang L, Yu R, Wang C. Rapid and sensitive detection of methyl parathion in rice based on carbon quantum dots nano-fluorescence probe and inner filter effect. Food Chem 2023; 413:135679. [PMID: 36796262 DOI: 10.1016/j.foodchem.2023.135679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
A highly sensitive fluorescent sensing system of novel carbon quantum dots nano-fluorescent probe based on corn stalks was established for the determination of methyl parathion by alkaline catalytic hydrolysis and inner filter effect mechanism. The carbon quantum dots nano-fluorescent probe was prepared from corn stalks using an optimized one-step hydrothermal method. The detection mechanism of methyl parathion was revealed. The reaction conditions were optimized. The linear range, sensitivity and selectivity of the method were evaluated. Under the optimal conditions, the carbon quantum dots nano-fluorescent probe exhibited high selectivity and sensitivity to methyl parathion, achieving a linear range of 0.005-14 µg/mL. The fluorescence sensing platform was applied to the detection of methyl parathion in rice samples, and the results showed that the recoveries range from 91.64 to 104.28 %, and the relative standard deviations were less than 4.17 %. The detection limit for methyl parathion in rice samples was 1.22 µg/kg, and the limit of quantitation (LOQ) was 4.07 µg/kg, which was very satisfactory.
Collapse
Affiliation(s)
- Ruiting Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China
| | - Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China.
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China.
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
10
|
Chen M, Yan Z, Han L, Zhou D, Wang Y, Pan L, Tu K. Upconversion Fluorescence Nanoprobe-Based FRET for the Sensitive Determination of Shigella. BIOSENSORS 2022; 12:bios12100795. [PMID: 36290932 PMCID: PMC9599926 DOI: 10.3390/bios12100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022]
Abstract
Shigella as a typical foodborne pathogen has strong survivability in the environment or food, leading to infectious diseases, yet its rapid detection technology with high selectivity and sensitivity remains challenging. In this study, complementary strand modified upconversion nanoparticles (UCNPs) can offer stable yellow-green fluorescence at 500–700 nm excited by a 980 nm laser. Importantly, Shigella aptamer modified gold nanoparticles (GNPs) formed by “Au−S” bond act as a fluorescence resonance energy transfer (FRET) donor and recognition element that can bind specifically to Shigella and significantly quench the fluorescence of complementary strand modified UCNPs. As a result, the fluorescence of our developed nanoprobe increased linearly with the increase in Shigella in a wide range from 1.2 × 102 to 1.2 × 108 CFU/mL and the detection limit was as low as 30 CFU/mL. Moreover, the fabricated upconversion fluorescence nanoprobe can achieve Shigella detection in contaminated chicken without enrichment in 1 h.
Collapse
Affiliation(s)
- Min Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongyu Yan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-8439-9016
| |
Collapse
|