1
|
Hao Y, Yang M, Li N, Zhao Y, Wang Y, Chen X, Zhang F. Hydrophilic molecularly imprinted thermal-responsive polymers based sorbent for ambient ionization mass spectrometric analysis of sulfonamide antibiotics from food samples. Food Chem 2024; 461:140857. [PMID: 39151346 DOI: 10.1016/j.foodchem.2024.140857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The thermal-responsive magnetic molecularly imprinted polymer (TrMMIP) sorbent was synthesized by surface imprinting method, and then used for magnetic solid-phase extraction (MSPE) and subsequent integrated into the ion source for elution and ionization. The shrinking-strength states change of the thermal-responsive polymer chain on TrMMIP alters the wettability of the sorbent when the working temperature crosses the lower critical solution temperature (LCST) of the polymer, and thus affects its behavior of in the extraction and clean-up process. The targeted analytes could be effectively extracted due to the high selectivity of MIPs and well dispersibility of polymer chain under the open state. Additionally, a hydrophilic polymer chain wrapped on the sorbent surface further protected target substances from co-elution during cleanup. Analytical methods for sulfonamide antibiotics (SAs) detection in complex food samples (milk, honey, fish) were developed, demonstrating potential for rapid and sensitive SAs analysis in diverse food and biological samples.
Collapse
Affiliation(s)
- Yaxin Hao
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China; Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Na Li
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China
| | - Yanfang Zhao
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China
| | - Yunshan Wang
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Centre, Jinan, Shandong, 250014, China.
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
2
|
Wang Z, Ren X, Zhang A, Sun M, Ding Z, Fan J. A fungal hyphae-derived biomass carbon for magnetic solid-phase extraction of the organochlorine pesticides in water samples, tea beverages, and Chinese traditional medicines before gas chromatography-tandem mass spectrometry determination. Food Chem 2024; 457:140123. [PMID: 38917562 DOI: 10.1016/j.foodchem.2024.140123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/17/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
A magnetic biochar nanomaterial derived from fungal hyphae was introduced into the sample preparation field. The magnetic fungal hyphae-derived biomass carbon (MFHBC) could be produced by a controllable hydrothermal method. In order to obtain the best sorbent for magnetic solid-phase extraction (MSPE), the reaction conditions containing temperature, time and the consumption of fungal hyphae were investigated. A series of MFHBC materials were characterized by vibrating sample magnetometers, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. A material with a satisfactory saturation magnetization (21.58 emu g-1) and largest surface area (88.06 m2 g-1) was selected as the sorbent to extract ten typical organochlorine pesticides (OCPs). The extraction conditions were optimized as 20 mL of sample solution with 70 mg of sorbent and 2.0 g of NaCl oscillated at 50 °C for 5.0 min. And the optimum desorption was performed by oscillating sorbent in 1.0 mL acetonitrile for 5.0 min. Then, the MFHBC-based MSPE-GC-MS/MS methods were established for different samples including water samples, tea beverages, and Chinese traditional medicines. The linearities were 10-2500 ng L-1 or 100-25,000 ng kg-1, and the limits of detection were 0.3-13.9 ng L-1 for water sample, 0.1-9.7 ng L-1 for tea beverage samples, 0.1-21.4 ng L-1 for Shenqi Fuzheng injection samples, and 7.2-278.3 ng kg-1 for Astragali Radix decoction pieces. Except for satisfactory repeatability (RSDs ≤13.8%) in intra-day and inter-day tests (n = 3), the reproducibility (RSDs ≤13.5%, n = 3) of MFHBC was acceptable. The methods were applied in the determination of OCPs from above real samples, with the recoveries of 80.5-117.2% and the RSDs (n = 3) <8.9%. The methods were suitable in the sensitive determination of OCPs from simple to complex matrix samples.
Collapse
Affiliation(s)
- Zhenzhong Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiaoyan Ren
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China
| | - Ainv Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Zongqing Ding
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, PR China
| | - Jing Fan
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, PR China.
| |
Collapse
|
3
|
Duan LH, Wang J, Liu HB. Luminol-Eu 3+-Gd 3+-functionalized mesoporous silica for ultrasensitive detection of tetracycline antibiotics and smartphone-assisted sensing analysis. Food Chem 2024; 455:139706. [PMID: 38824723 DOI: 10.1016/j.foodchem.2024.139706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
An organic-inorganic hybrid nanoprobe, namely LML-D-SBA@Eu3+-Gd3+, was constructed, with SBA-15 acting as the carrier material, and luminol and Eu3+ acting as fluorescence channels to achieve ratiometric signals that eliminate external interference (accurate detection). Gd3+ was used as a sensitizer to amplify the red emission of Eu3+ (ultrasensitive detection). In TCs detection, the luminol emission at 428 nm was quenched due to the photoinduced electron transfer mechanism, and the Eu3+ emission at 617 nm was sensitized due to the synergistic energy transfer from TCs and Gd3+ to Eu3+. The fluorescence intensity at 617 and 428 nm showed ratiometric changes as indicated by notable color changes from blue to red. The detection limits for TC and OTC were 0.21 and 0.08 ng/mL, respectively. To realize a facile, rapid, and cost-effective detection, we constructed a portable intelligent sensing platform based on smartphones, and it demonstrated great potential for on-site detection of TCs.
Collapse
Affiliation(s)
- Long-Hui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
4
|
Nilnit T, Supharoek SA, Siriangkhawut W, Vichapong J, Ponhong K. Ultrasound-assisted continuous flow synthesis of natural phenolic-coated Fe 3O 4 for magnetic solid phase extraction of tetracycline residues in honey. Food Chem 2024; 464:141642. [PMID: 39427613 DOI: 10.1016/j.foodchem.2024.141642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Waste rubber bark abundant in phenolics can be used to produce an adsorbent for the enrichment and determination of tetracycline. Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) coated with naturally extracted phenolics from waste rubber bark were synthesized for the first time by ultrasound combined with a continuous flow approach. The production of Fe3O4 MNPs with effective contact surface areas (45.3 m2 g-1) was employed as a novel attractive sorbent in magnetic solid phase extraction (MSPE) to selectively preconcentrate oxytetracycline, tetracycline, chlortetracycline, and doxycycline before HPLC-UV analysis. This MSPE-HPLC exhibited wide linear ranges (14.0-260.0 μg kg-1), with low limits of detection (10.0 μg kg-1) and quantitation (14.0-20.0 μg kg-1), and was successfully applied to quantify tetracycline residues in honey samples, with recoveries ranging from 81.3 % to 117.9 %. This method offers a potential alternative for determining tetracycline in food with a high enrichment factor, high precision, and more effective accuracy, selectivity, and sensitivity.
Collapse
Affiliation(s)
- Tammanoon Nilnit
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Sam-Ang Supharoek
- Department of Medical Science, Amnatcharoen Campus, Mahidol University, Amnat Charoen, Thailand; Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Watsaka Siriangkhawut
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Jitlada Vichapong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand; Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| | - Kraingkrai Ponhong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand; Multidisciplinary Research Unit of Pure and Applied Chemistry, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand.
| |
Collapse
|
5
|
Ge C, Yang Z, Fan X, Huang Y, Shi Z, Zhang X, Han L. A new spectral simulating method based on near-infrared hyperspectral imaging for evaluation of antibiotic mycelia residues in protein feeds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124536. [PMID: 38815312 DOI: 10.1016/j.saa.2024.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Antibiotic mycelia residues (AMRs) contain antibiotic residues. If AMRs are ingested in excess by livestock, it may cause health problems. To address the current problem of unknown pixel-scale adulteration concentration in NIR-HSI, this paper innovatively proposes a new spectral simulation method for the evaluation of AMRs in protein feeds. Four common protein feeds (soybean meal (SM), distillers dried grains with solubles (DDGS), cottonseed meal (CM), and nucleotide residue (NR)) and oxytetracycline residue (OR) were selected as study materials. The first step of the method is to simulate the spectra of pixels with different adulteration concentrations using a linear mixing model (LMM). Then, a pixel-scale OR quantitative model was developed based on the simulated pixel spectra combined with local PLS based on global PLS scores (LPLS-S) (which solves the problem of nonlinear distribution of the prediction results due to the 0%-100% content of the correction set). Finally, the model was used to quantitatively predict the OR content of each pixel in hyperspectral image. The average value of each pixel was calculated as the OR content of that sample. The implementation of this method can effectively overcome the inability of PLS-DA to achieve qualitative identification of OR in 2%-20% adulterated samples. In compared to the PLS model built by averaging the spectra over the region of interest, this method utilizes the precise information of each pixel, thereby enhancing the accuracy of the detection of adulterated samples. The results demonstrate that the combination of the method of simulated spectroscopy and LPLS-S provides a novel method for the detection and analysis of illegal feed additives by NIR-HSI.
Collapse
Affiliation(s)
- Chenjun Ge
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Zengling Yang
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-products of CAAS, Beijing 100081, PR China.
| | - Yuanping Huang
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Zhuolin Shi
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Xintong Zhang
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lujia Han
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Guo Y, Li L, Xu S, Zhang M, Jiang C. Ion coordination and chelation in Eu-MOFs matrices: Ultrafast fluorescence visual quantification monitoring of antibiotic residues. Talanta 2024; 278:126549. [PMID: 39018758 DOI: 10.1016/j.talanta.2024.126549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Rapid monitoring of trace antibiotics in the field in real time is essential for environment forewarning and human health. High sensitivity and real-time on-site quantitative monitoring of antibiotic residues can be accomplished by integrating portable sensors alongside fluorescent optics to construct an intelligent sensing platform that smoothly eliminates the instability of conventional detection methods. In this study, a ratiometric fluorescence sensor for the ultrasensitive detection of pefloxacin was built employing the photoinduced electron transfer (PET) mechanism from red Eu-MOFs to Mn2+-PEF complex. A visual color change results from the photoinduced electron transfer process from manganese ions to pefloxacin weakening the ligand metal charge transfer (LMCT) process in Eu-MOFs. This enables the ultrafast visible detection of pefloxacin and produces a transient shift in visual color with a detection limit as low as 15.4 nM. For the detection of pefloxacin in water, tomato, and raw pork samples, various sensing devices based on the developed fluorescent probes exhibit good practicability and accuracy. With the development of the ratiometric fluorescence sensing probe, it is now possible to quickly and quantitatively identify pefloxacin residues in the environment, offering a new method for ensuring the safety of food and people's health.
Collapse
Affiliation(s)
- Yujie Guo
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Maofeng Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
7
|
Zaytsev V, Tutukina MN, Chetyrkina MR, Shelyakin PV, Ovchinnikov G, Satybaldina D, Kondrashov VA, Bandurist MS, Seilov S, Gorin DA, Fedorov FS, Gelfand MS, Nasibulin AG. Monitoring of meat quality and change-point detection by a sensor array and profiling of bacterial communities. Anal Chim Acta 2024; 1320:343022. [PMID: 39142773 DOI: 10.1016/j.aca.2024.343022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Real-time monitoring of food consumer quality remains challenging due to diverse bio-chemical processes taking place in the food matrices, and hence it requires accurate analytical methods. Thresholds to determine spoiled food are often difficult to set. The existing analytical methods are too complicated for rapid in situ screening of foodstuff. RESULTS We have studied the dynamics of meat spoilage by electronic nose (e-nose) for digitizing the smell associated with volatile spoilage markers of meat, comparing the results with changes in the microbiome composition of the spoiling meat samples. We apply the time series analysis to follow dynamic changes in the gas profile extracted from the e-nose responses and to identify the change-point window of the meat state. The obtained e-nose features correlate with changes in the microbiome composition such as increase in the proportion of Brochothrix and Pseudomonas spp. and disappearance of Mycoplasma spp., and with representative gas sensors towards hydrogen, ammonia, and alcohol vapors with R2 values of 0.98, 0.93, and 0.91, respectively. Integration of e-nose and computer vision into a single analytical panel improved the meat state identification accuracy up to 0.85, allowing for more reliable meat state assessment. SIGNIFICANCE Accurate identification of the change-point in the meat state achieved by digitalizing volatile spoilage markers from the e-nose unit holds promises for application of smart miniaturized devices in food industry.
Collapse
Affiliation(s)
- Valeriy Zaytsev
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Maria N Tutukina
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia; A. A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 19 Bld. 1 Bolshoy Karetny per., 127051, Moscow, Russia; Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya st., 142290, Pushchino, Russia
| | - Margarita R Chetyrkina
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Pavel V Shelyakin
- A. A. Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 19 Bld. 1 Bolshoy Karetny per., 127051, Moscow, Russia
| | - George Ovchinnikov
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Dina Satybaldina
- L.N. Gumilyov Eurasian National University, 2 Satpayev str., 010008, Astana, Kazakhstan
| | - Vladislav A Kondrashov
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Maria S Bandurist
- Institut Lumière Matière, Université Claude Bernard Lyon 1 - CNRS Bât Kastler, 10 rue Ada Byron, 69622, Villeurbanne cedex, France
| | - Shakhmaran Seilov
- L.N. Gumilyov Eurasian National University, 2 Satpayev str., 010008, Astana, Kazakhstan
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia.
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia.
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology, 30 Bld. 1 Bolshoy Boulevard, 121205, Moscow, Russia.
| |
Collapse
|
8
|
Jian L, Han J, Wen H, Shen Y, Zhang K, Yu L, Zheng R, Peng X, Zhao L, Sun C. Rapid determination of 111 anti-infective drugs possibly added in cosmetics using high-performance liquid chromatography-tandem mass spectrometry with scheduled multiple reaction monitoring. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9778. [PMID: 38782744 DOI: 10.1002/rcm.9778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
RATIONALE Illegal addition of anti-infective drugs to cosmetics at low concentrations has been found. The illicit addition of anti-infective drugs encompasses a wide variety of medications. The current sample purification methods are inadequate to detect all these compounds. A sensitive, wide-coverage, and weak-matrix-effect measurement method needs to be established to address this issue. METHODS Samples were extracted using acetonitrile, diluted 25 times, and then analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect 111 anti-infective drugs. The method was validated and assessed for matrix effect before being applied to cosmetic products. RESULTS The calibration curves for the analytes exhibited a strong correlation coefficient (r > 0.995). The limit of detection ranged from 0.006 to 0.6 mg/kg. Matrix effects were significantly improved after a 25-fold dilution. The method was successfully applied to various cosmetics. Two of 82 samples tested contained lincomycin and miconazole, respectively. CONCLUSIONS The developed method is quick and reliable to analyze anti-infective drugs in cosmetics, with potential for both qualitative and quantitative analyses. It is a valuable tool for cosmetic research and development, contributing to safer and more effective cosmetic products.
Collapse
Affiliation(s)
- Longhai Jian
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Jing Han
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Hongliang Wen
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Yiting Shen
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Kai Zhang
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Ling Yu
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Rong Zheng
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Xingsheng Peng
- Cosmetics Department, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Liuqing Zhao
- SCIEX Analytical Instrument Trading Co., Ltd., Shanghai, China
| | - Chunye Sun
- Agilent Technologies (China) Co., Ltd., Shanghai, China
| |
Collapse
|
9
|
Yu F, Fan B, Chai Y, Liu Y, Wang J, Liao Y, Yu S, Wang J, Wu Y, Wang Y. Antibiotic-Fe 3O 4 nanoparticles with highly efficient catalytic activity for enhanced chemiluminescence detection of tetracyclines residues in foods. Food Chem X 2024; 22:101485. [PMID: 38817980 PMCID: PMC11137521 DOI: 10.1016/j.fochx.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Tetracyclines (TCs) are the most commonly antimicrobial agents that used in livestock production worldwide. It is important to supervise tetracyclines residues in food for environmental monitoring and food safety. In this study, a novel, label-free chemiluminescence (CL) assay without antibody was established. Fe3O4 NPs could facilitate the CL interaction between luminol and H2O2. Interestingly, TCs could enhance the catalytic ability of Fe3O4 NPs and result in a further amplification of the CL intensity. The CL intensity varied linearly with the concentration of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC), and ranging from 10-2400, 10-2800, and 5-2100 nmol/L, respectively; The limits of detection were 4 nmol/L for TC, 6 nmol/L for OTC, and 2 nmol/L for CTC. This CL strategy was applied successfully in testing three TCs residues in milk, eggs and honey samples with more sensitive results, which provided an alternative strategy for monitoring the correct use of TCs.
Collapse
Affiliation(s)
- Fei Yu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Binghua Fan
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yilin Chai
- College of Chemistry, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yue Liu
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan, Zhengzhou 450001, China
| | - Jiaxiang Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yueqi Liao
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Henan, Zhengzhou 450001, China
| |
Collapse
|
10
|
Yang G, Zhang J, Tang Y, Kong C, Li S, Wang S, Ding S, Gu L, Shen X, Martin AA, Chi H. Development and validation of rapid screening of 192 veterinary drug residues in aquatic products using HPLC-HRMS coupled with QuEChERS. Food Chem X 2024; 22:101504. [PMID: 38855097 PMCID: PMC11157224 DOI: 10.1016/j.fochx.2024.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
The presence of veterinary drug residues in aquatic products represents a significant challenge to food safety. The current detection methods, limited in both scope and sensitivity, underscore the urgent need for more advanced techniques. This research introduces a swift and potent screening technique using high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and a refined QuEChERS protocol, allowing simultaneous qualitative and semi-quantitative analysis of 192 residues. A comprehensive database, employing full scan mode and data-dependent secondary mass spectroscopy, enhances screening accuracy. The method involves efficient extraction using 90% acetonitrile, dehydration with Na2SO4, and acetic acid, followed by cleanup using dispersive solid-phase extract sorbent primary secondary amine. It is suitable for samples with varying fat content, offering detection limits ranging from 0.5 to 10 μg/kg, high recovery rates (60-120%), and low relative standard deviations (<20%). Practical application has validated its effectiveness for multi-residue screening, marking a significant advancement in food safety evaluation.
Collapse
Affiliation(s)
- Guangxin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200090, PR China
| | - Junyu Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200090, PR China
| | - Yunyu Tang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Cong Kong
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Siman Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Shouying Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Shuhai Ding
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200090, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200090, PR China
| | - Xiaosheng Shen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Aka Alla Martin
- Laboratory of Constitution and Reaction of Matter (Physical Chemistry), Université Felix Houphouet-Boigny, Abidjan 22 BP 582, Cote d'Ivoire
| | - Hai Chi
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| |
Collapse
|
11
|
Pan Y, Liu J, Wang J, Gao Y, Ma N. Application of Biosensors and Biomimetic Sensors in Dairy Products Testing. J Dairy Sci 2024:S0022-0302(24)00894-4. [PMID: 38851568 DOI: 10.3168/jds.2024-24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
This article summarizes the applications of biosensors and biomimetic sensors in the detection of residues in dairy products. Biosensors utilize biological molecules such as enzymes or antibodies to detect residual substances in dairy products, demonstrating high specificity and sensitivity. Biomimetic sensors, inspired by biosensors, use synthetic materials to mimic biological sensing mechanisms, enhancing stability and reproducibility. Both sensor types have achieved significant success in detecting pesticide residues, veterinary drugs, bacteria, and other contaminants in dairy products. The applications of biological and biomimetic sensors not only improve the efficiency of residue detection in dairy products but also have the potential to reduce the time and cost of traditional methods. Their specificity and high sensitivity make them powerful tools in the dairy industry, thus contributing to ensuring the quality and safety of dairy products and meeting the growing consumer demands for health and food safety.
Collapse
Affiliation(s)
- Yinchuan Pan
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China
| | - Jing Liu
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Jianping Wang
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| | - Ning Ma
- College of Veterinary Medicine, Veterinary Biological Technology Innovation Center of Hebei Province, Hebei Agricultural University, Baoding 071001, Hebei, P.R. China.; Key Laboratory of Healthy Breeding in Dairy Cattle (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Baoding 071001, Hebei, P.R. China.
| |
Collapse
|
12
|
Sun R, Liu P, Yang Q, Ma Y. Smartphone-integrated ratiometric sensing strategy for on-line quantitation of tetracycline based on functionalized g-C 3N 4/Eu electrospun film. Food Chem 2024; 437:137912. [PMID: 37931452 DOI: 10.1016/j.foodchem.2023.137912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
On-line quantitation of tetracycline (TC) is significant to ensure environmental health and food security. Hence, a novel smartphone-integrated ratiometric sensing platform for on-line quantitative analysis of TC was designed. A CitNa-functionalized g-C3N4/Eu3+ (g-C3N4/CitNa/Eu) composites with blue and red dual-emissive feature were fabricated as dual indicators for shielding background interference, enhancing anti-interference capability. The fluorescent response (F620/F450) ratio and TC concentration demonstrated good linear relationship ranged from 0.0 to 100.0 μM with a detection limit of 1.96 nM. Furthermore, the combination of g-C3N4/CitNa/Eu and polyacrylonitrile polymers forming electrospun film was achieved via electrospinning method. Smartphone-integrated ratiometric sensing platform was developed based on the fluorescent color of electrospun film from blue to light red with TC. This solid sensing platform achieved excellent sensitivity with a detection limit of 7.42 nM. Combining the solid ratiometric fluorescent film with smartphone reader provides a potential way for on-line quantitation of TC in food and other fields.
Collapse
Affiliation(s)
- Ruiqing Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ping Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
13
|
Dennis NM, Braun AJ, Gan J. A high-throughput analytical method for complex contaminant mixtures in biosolids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123517. [PMID: 38346636 DOI: 10.1016/j.envpol.2024.123517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Biosolids are rich in organic matter and other nutrients that contribute to environmental and agricultural sustainability by improving soil textural and biological properties and enhancing plant growth when applied to agricultural crops. Land application of biosolids encourages resource recovery and circumvents drawbacks associated with landfilling or incineration. However, biosolids contain numerous chemicals at trace levels, and quantitative analysis of such mixtures in this complex matrix is crucial for understanding and managing application risks. There are currently few analytical methods available that are capable of extracting and quantifying a large range of the emerging contaminants found in biosolids. In this study, a simplified, rapid, and robust method of analysis was developed and validated for a high-priority organic contaminant mixture of 44 endocrine disrupting compounds known to occur in biosolids. Analytes consisted of chemicals from many classes with a wide range of physiochemical properties (e.g., log Kow values from -1.4 to 8.9). The biosolids extraction and cleanup protocol was validated for 42 of the targeted compounds. The UPLC-MS2 parameters were validated for all 44 organic contaminants targeted for study. From the two batches of biosolids tested using this analytical method, most of the targeted contaminants (86%) were detected with 100% frequency at concentrations ranging from 0.036 to 10,226 μg/kg dw. Performance results highlighted that internal standards alone could not negate biosolids matrix effects; thus, internal standards and the standard addition method were used for residue quantification. This was the first study to detect and quantify 6PPD-q in biosolids, and the first to quantify lidocaine and 11 other chemicals in biosolids using a single analytical method. This method may be expanded for analysis of additional chemicals in biosolids and comparable matrices.
Collapse
Affiliation(s)
- Nicole M Dennis
- Department of Environmental Sciences, University of California - Riverside, 2460B Geology Building, Riverside, CA, 92521, USA.
| | - Audrey J Braun
- Department of Environmental Sciences, University of California - Riverside, 2460B Geology Building, Riverside, CA, 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California - Riverside, 2460B Geology Building, Riverside, CA, 92521, USA
| |
Collapse
|
14
|
Liang M, Li N, Zhang H, Ma L, Wang K. Developing a novel magnetic organic polymer for selective extraction and determination of 16 macrolides in water and honey samples. RSC Adv 2024; 14:8726-8734. [PMID: 38500629 PMCID: PMC10945740 DOI: 10.1039/d4ra00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
A novel magnetic organic polymer Fe3O4@SiO2@Tb-PDAN was designed and synthesized, which was used as an adsorbent for magnetic solid-phase extraction (MSPE) of 16 macrolides (MALs) in water and honey. The synthesized adsorbent was characterized using techniques including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Then several parameters of the extraction process were further optimized. Under the optimized conditions, an MSPE-LC-MS/MS method was established for extraction and determination of 16 MALs, which showed good linearity (r ≥ 0.999), low limits of detection (0.001-0.012 μg L-1 for water and 0.001-0.367 μg kg-1 for honey) and satisfactory recoveries (70.02-118.91%) with the relative standard deviations (RSDs) lower than 10.0%. This established method was then successfully applied to detect MALs in real samples, which suggested that Fe3O4@SiO2@Tb-PDAN was a potential magnetic adsorbent for efficient extraction and analysis of MALs.
Collapse
Affiliation(s)
- Mengnan Liang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Na Li
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Hao Zhang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Ling Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Ke Wang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| |
Collapse
|
15
|
Li N, Liang M, Zhang H, Hua Z, Ma L, Qi Y, Wang K. Effective extraction and determination of 24 quinolones in water and egg samples using a novel magnetic covalent organic framework combined with UPLC-MS/MS. RSC Adv 2024; 14:8303-8312. [PMID: 38487520 PMCID: PMC10938296 DOI: 10.1039/d4ra00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
The excessive use of quinolones (QNs) has seriously threatened human health. In this study, a novel functionalized magnetic covalent organic framework Fe3O4@SiO2@Ah-COF was fabricated with biphenyl-3,3',5,5'-tetracarbaldehyde and hydrazine hydrate (85%) as monomers and was used as a magnetic solid-phase extraction (MSPE) absorbent for the determination of 24 QNs in water and egg samples through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The extraction parameters of MSPE were optimized, including pH, adsorbent dosage, adsorption time, and eluent type. An effective and rapid detection method was then established, which showed good linearity (R2 ≥ 0.9990), low limits of detection (0.003-0.036 μg L-1) and low limits of quantitation (0.008-0.110 μg L-1) for QNs. The good recoveries of 24 QNs in water and egg samples were in the range of 70.3-106.1% and 70.4-119.7%, respectively, with relative standard deviations lower than 10% (n = 5). As a result, Fe3O4@SiO2@Ah-COF is a promising magnetic adsorbent, and the established method was successfully applied for the determination of 24 QNs in water and egg samples.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Mengnan Liang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Hao Zhang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Zhongxia Hua
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Ling Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Yanyu Qi
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Ke Wang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| |
Collapse
|
16
|
Qi J, Li J, Wan Y, Li Y, Pi F. A fluorescence and SERS dual-mode sensing on tetracycline antibiotics based on Ag@NH 2-MIL-101(Al) nanoprobe. Food Chem 2024; 435:137586. [PMID: 37774622 DOI: 10.1016/j.foodchem.2023.137586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Antibiotic residues are becoming more and more concern due to the increasingly serious resistance from bacteria to organism. On-site and accurate evaluation on antibiotics is necessary and urgent to effectively solve such public issue. To provide point-of-care-test (POCT) ideas for antibiotic accurate evaluation, a fluorescence (FL)-surface-enhanced Raman scattering (SERS) dual-mode detection of tetracycline antibiotic (TCs) was realized for the first time. Based on the inner filter effect in Ag@NH2-MIL-101(Al) nanoprobe, the fluorescence quenching was induced and the SERS signal was swiftly turn on through π-π interaction and hydrogen bonding in the presence of TCs. This FL-SERS dual mode sensor displayed excellent detection limits (FL in ∼10-3 ppm, SERS in ∼10-5 ppm), and achieved a reliable detection of TCs in honey with a recovery rate of 84.45%-112.08%. This method combines the advantages of FL and SERS detection, meanwhile, two techniques verified against each other to achieve highly sensitive and specific FL-SERS dual-mode sensor for TCs. We believe that such antibody-or aptamer-independent FL and SERS complementary nanoprobe can be applied to fast, direct and multiple sensing in environment and food hazards.
Collapse
Affiliation(s)
- Junjie Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
17
|
Huang Y, Zhang Y, Yu Y, Song X, Huang X. One-pot preparation of magnetic molecularly imprinted adsorbent with dual template molecules for simultaneously specific capture of sulfonamides and quinolones in water and milk samples. Food Chem 2024; 434:137412. [PMID: 37696153 DOI: 10.1016/j.foodchem.2023.137412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Specific capture is a beneficial tactic in simultaneous monitoring of sulfonamides (SAs) and quinolones (QLs). For this purpose, a new magnetic molecularly imprinted adsorbent based on double-template molecules (DT-MIP@MNA) was facilely prepared by "one-pot" hydrothermal technique and utilized as the adsorbent of magnetic solid-phase extraction (MSPE). Molecular simulation technique was employed to quickly screen functional monomer. The recognition factors of prepared adsorbent towards templates sulfamethazine and nalidixic acid were 5.89 and 2.90, respectively, and the corresponding adsorption capacities were as high as 8.85 mg/g and 8.97 mg/g, respectively. Under the optimized parameters, the proposed DT-MIP@MNA/MSPE was combined with HPLC to simultaneously and selectively monitor trace SAs and QLs residuals in water and milk samples. The achieved limits of detection were 0.012-0.028 μg/L and 0.015-0.032 μg/kg for water and milk samples, respectively. The current supplied a sensitive, reliable and anti-interference method for simultaneously monitoring trace SAs and QLs in food.
Collapse
Affiliation(s)
- Youfang Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yueyue Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yilin Yu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaochong Song
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
18
|
Jia T, Ouyang S, Chen W, Zhang T, Lu M, Zhou X, Lei H, Wei X. Develop an external standard method for high-flux determination of veterinary drug residues liquid milk without solid phase extraction. Food Chem 2024; 433:137269. [PMID: 37690137 DOI: 10.1016/j.foodchem.2023.137269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
To get rid of the singularity of the detection of veterinary drug residues in liquid milk, a high-throughput determination was developed for 126 VDRs in 17 categories in liquid milk based on the one-step extraction coupled with LC-HRMS (UPLC-Q-Exactive-Orbitrap-MS). The results showed that adding 2.5 mL of 0.1 mol/L Na2EDTA-McIlvaine in acetonitrile-methanol extractant (50:50, V/V) could effectively improve the response intensity of veterinary drug residues in liquid milk, reduce the matrix effect and eliminate the need for expensive SPE purification. The established external standard quantitative method has a LOD of 0.01-0.30 μg/L for all categories of veterinary drug residues, good linearity in the concentration range of LOQ of 0.03-1.00 μg/L, and correlation coefficients (r2) were all greater than 0.995. The spike recoveries at all three levels were between 80.30% and 119.95%. The positive detection rate of this method in 128 actual samples was 8.59%.
Collapse
Affiliation(s)
- Tongtong Jia
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shaolun Ouyang
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Wenrui Chen
- Guangzhou Customs Technology Center, Guangzhou 510623, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Mengqi Lu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiuying Zhou
- Zhongshan Agricultural Product Quality and Safety Inspection Institute, Zhongshan 528403, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Melekhin AO, Tolmacheva VV, Goncharov NO, Apyari VV, Parfenov MY, Bulkatov DP, Dmitrienko SG, Zolotov YA. Rapid multi-residue LC-MS/MS determination of nitrofuran metabolites, nitroimidazoles, amphenicols, and quinolones in honey with ultrasonic-assisted derivatization - magnetic solid-phase extraction. J Pharm Biomed Anal 2024; 237:115764. [PMID: 37804641 DOI: 10.1016/j.jpba.2023.115764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
A rapid multi-residue LC-MS/MS method for the identification and determination of banned veterinary drugs in honey was developed. A total of 31 investigated veterinary drugs belonging to 4 classes including nitrofurans metabolites, nitroimidazoles, amphenicols, and quinolones were quantified by LC-MS/MS with ESI using one single injection. The sample preparation included treatment with 5-nitro-2-furaldehyde (5-NFA) in a thermostated ultrasonic bath (80 °C, 0.5М НСl, 20 min) to liberate matrix-bound residues of nitrofurans. Magnetic hypercrosslinked polystyrene (HCP/Fe3O4) was proposed for the solid-phase extraction and clean-up of target analytes prior to LC-MS/MS analysis. To evaluate and validate the performance of method, the criteria of the Decision (EC) no 2002/657 were applied. The LOQs of the examined analytes range from 0.3 to 1 μg kg-1, which indicates good sensitivity to quantify the target compounds in honey. The recoveries of veterinary drugs from 1 g of honey with 50 mg of the sorbent are 97-109% for nitrofuran metabolites, 84-115% for nitroimidazoles, 86-103% for amphenicols, and 97-118% for quinolones. The relative standard deviations of intra-day and inter-day precision analyses (RSD) are less than 16%. This methodology was applied to real honey samples and trace levels of some veterinary drugs were detected.
Collapse
Affiliation(s)
- A O Melekhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia; Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - V V Tolmacheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - N O Goncharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - V V Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia.
| | - M Yu Parfenov
- Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - D P Bulkatov
- Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - S G Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - Yu A Zolotov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia
| |
Collapse
|
20
|
Liu Y, Luo Y, Li W, Xu X, Wang B, Xu X, Hussain D, Chen D. Current analytical strategies for the determination of quinolone residues in milk. Food Chem 2024; 430:137072. [PMID: 37549624 DOI: 10.1016/j.foodchem.2023.137072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/09/2023]
Abstract
Quinolones are potent antibacterial drugs extensively utilized for treating bacterial infections in poultry. However, the presence of quinolone antibiotic residues in milk is a matter of concern due to potential health risks and adverse effects on milk quality. This review provides an overview of current analytical strategies for the determination of quinolone residues in milk. Various sample preparation techniques, such as liquid-phase extraction, solid-phase extraction and QuEChERS, are discussed, along with detection methods including instrument-based detection, immune-based detection, and microbial detection. The advantages and limitations of each method are highlighted, as well as their applicability in different stages of milk production. Additionally, recent advancements in sample preparation and detection methods are presented. This comprehensive review aims to contribute to the development of accurate and reliable methods for the detection of quinolone residues in milk, ensuring the safety and quality of dairy products.
Collapse
Affiliation(s)
- Yuwei Liu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanbo Luo
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, Henan, China
| | - Wenxuan Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinli Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Wang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
21
|
Sun Y, Deng X, Luo C, Ma W, Liu W, Wang J, Li Q, Bu T, Zhang X. Time-resolved fluorescence microspheres-antibody-penicillin-binding protein assisted construction of immunochromatographic assay for sensitive detection of 22 β-lactams in milk. Mikrochim Acta 2023; 191:50. [PMID: 38141100 DOI: 10.1007/s00604-023-06106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A sensitive immunochromatographic assay (ICA) using time-resolved fluorescence microspheres (TRFMs) coupled with an indirect-labeling mode was developed for simultaneously determining 22 kinds of β-lactams in milk samples. The TRFMs labeled anti-receptor monoclonal antibodies (mAbs) conjugated to penicillin-binding proteins (PBPs) as ternary TRFMs-mAb-PBPs (TMP) nanoscaffolds provide excellent solubility, brightness, and stability. Thanks to the fact that they not only fully expose the binding sites of PBPs, thereby enhancing the biological affinity of PBPs towards the target, but also generated superb fluorescence signals, the versatile TMP manifested unique possibilities as efficient probes for ICA with remarkable enhancement in sensitivity in β-lactams screening. The results showed that the standard curves of the 22 varying β-lactams displayed linearity in their respective concentration ranges (R2 > 0.98), with the cutoff values of 1-100 ng/mL. The constructed TMP-ICA was successfully applied to the analysis of real milk, with consistent results compared with liquid chromatography-tandem mass spectrometry (LC-MS), providing an effective method for sensing β-lactams in food matrices.
Collapse
Affiliation(s)
- Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, People's Republic of China
| | - Xiangjie Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, People's Republic of China
| | - Changwei Luo
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Wentao Ma
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Wanjing Liu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Jinkui Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Qingyue Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Tong Bu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China.
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
22
|
Garcinuño RM, Collado EJ, Paniagua G, Bravo JC, Fernández Hernando P. Assessment of Molecularly Imprinted Polymers as Selective Solid-Phase Extraction Sorbents for the Detection of Cloxacillin in Drinking and River Water. Polymers (Basel) 2023; 15:4314. [PMID: 37959993 PMCID: PMC10648835 DOI: 10.3390/polym15214314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
This paper describes a new methodology for carrying out quantitative extraction of cloxacillin from drinking and river water samples using a molecularly imprinted polymer (MIP) as a selective sorbent for solid-phase extraction (MISPE). Several polymers were synthesized via thermal polymerization using cloxacillin as a template, methacrylic acid (MAA) as a functional monomer, ethyleneglycoldimethacrylate (EGDMA) as a cross-linker and different solvents as porogens. Binding characteristics of the adequate molecularly imprinted and non-imprinted (NIP) polymers were evaluated via batch adsorption assays following the Langmuir and Freundlich isotherms and Scatchard assays. The parameters related to the extraction approach were studied to select the most appropriate polymer for cloxacillin determination. Using the optimized MIP as the SPE sorbent, a simple sample treatment methodology was combined with high-performance liquid chromatography (HPLC) to analyze cloxacillin residues in drinking and river water. Under the optimum experimental conditions, the MISPE methodology was validated using spiked samples. The linearity for cloxacillin was assessed within the limits of 0.05-1.5 µg L-1 and the recovery percentage was higher than 98% (RSD < 4%). The limits of detection and limits of quantification were 0.29 and 0.37 µg L-1 and 0.8 and 0.98 µg L-1 for drinking and river water, respectively. The selectivity of MIP against other ß-lactam antibiotics with similar structures (oxacillin, cefazoline, amoxicillin and penicillin V) was studied, obtaining a good recovery higher than 85% for all except cefazoline. The proposed MISPE-HPLC methodology was successfully applied for the detection of cloxacillin in drinking water from Canal de Isabel II (Madrid) and river water from the Manzanares River (Madrid).
Collapse
Affiliation(s)
- Rosa Mª Garcinuño
- Department of Analytical Science, Faculty of Science, Universidad Nacional de Educación a Distancia, Las Rozas, 28232 Madrid, Spain; (E.J.C.); (G.P.); (J.C.B.); (P.F.H.)
| | | | | | | | | |
Collapse
|
23
|
Wei XW, Zhang Y, Zhou Y, Li M, Liu ZF, Feng XS, Tan Y. A Review on Pretreatment and Analysis Methods of Polyether Antibiotics in Complex Samples. Crit Rev Anal Chem 2023:1-25. [PMID: 37647335 DOI: 10.1080/10408347.2023.2251156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Polyether antibiotics (PAs) are the anti-coccidiosis drugs used for treating and preventing coccidiosis. Studies show the residues of these antibiotics in food cause adversities and threaten human health. PAs thus need robust, rugged, and accurate methods for their analysis. This review encompasses pretreatment and detection methods of PAs in diverse matrices since 2010. Both conventional and developed methods are part of the pretreatments, such as dispersive liquid-liquid microextraction, solid-phase extraction, solid-phase microextraction, solvent front position extraction, QuEChERS (Quick Easy Cheap Effective Rugged and Safe), supercritical fluid extraction, and others. The analysis methods involve liquid chromatography coupled with detectors, sensors, etc. The pros and cons of various techniques for PAs have been discussed and future tendencies are proposed.
Collapse
Affiliation(s)
- Xin-Wei Wei
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Sun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 2023; 10:1244459. [PMID: 37593680 PMCID: PMC10428016 DOI: 10.3389/fnut.2023.1244459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Food safety is a widespread global concern with the emergence of foodborne diseases. Thus, establishing accurate and sensitive detection methods of harmful contaminants in different food matrices is essential to address and prevent the associated health risks. Among various analytical tools, mass spectrometry (MS) can quantify multiple impurities simultaneously due to high resolution and accuracy and can achieve non-target profiling of unknown pollutants in food. Therefore, MS has been widely used for determination of hazardous contaminants [e.g., mycotoxin, pesticide and veterinary drug residues, polychlorinated biphenyls (PCBs), dioxins, acrylamide, perfluorinated compounds (PFCs) and p-Phenylenediamine compounds (PPDs) in food samples]. This work summarizes MS applications in detecting harmful contaminants in food matrices, discusses advantages of MS for food safety study, and provides a perspective on future directions of MS development in food research. With the persistent occurrence of novel contaminants, MS will play a more and more critical role in food analysis.
Collapse
Affiliation(s)
- Qiannan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, Henan, China
| | - Yide Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| | - Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Zhu Y, Jiang X, Shen D, Mao J, Cao Y, Zhang K, Peng J, Dong F, Wang N, He K. A one-step solid-phase extraction with UHPLC-MS/MS for fast and accurate determination of multi-class veterinary drugs in animal muscles. Food Chem 2023; 428:136712. [PMID: 37441938 DOI: 10.1016/j.foodchem.2023.136712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Excessive use of veterinary drugs in livestock growth poses a threat to food safety. It is, however, challenging to quantify these multi-class veterinary drugs within animal muscles, because of their varied physicochemical properties. In this work, we presented a simple, efficient and sensitive method for the simultaneous determination of multi-class veterinary drugs with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The method involves a highly efficient extraction using a EDTA (pH 7)-ACN (30:70, v/v) solvent system, followed by a one-step solid-phase extraction cleanup approach with PRiME HLB sorbent (Reversed-phase N-vinylpyrrolidone and divinylbenzene copolymer). For all the analytes, over a wide range of polarity, satisfactory recoveries were obtained between 70% and 120%, with relative standard deviations <15%. Excellent sensitivities were achieved with the limits of quantification ranging from 0.2 μg/kg to 3.0 μg/kg. This developed method provides a new targeted strategy for the analysis of multi-class veterinary drugs in muscle matrices.
Collapse
Affiliation(s)
- Yingjie Zhu
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Xin Jiang
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Danning Shen
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Jie Mao
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Yanqing Cao
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Kang Zhang
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Jing Peng
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Fangting Dong
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Na Wang
- National Center of Biomedical Analysis, Beijing 100850, China.
| | - Kun He
- National Center of Biomedical Analysis, Beijing 100850, China.
| |
Collapse
|
26
|
Determination of trimethoprim in milk, water and plasma using protein precipitation combined with liquid phase microextraction method. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
27
|
Akyol E, Ulusoy Hİ, Yilmaz E, Polat Ü, Soylak M. Application of magnetic solid-phase extraction for sensitive determination of anticancer drugs in urine by means of diamino benzidine tetrachlorohydrate modified magnetic nanoparticles. Pharmacol Rep 2023; 75:456-464. [PMID: 36840823 DOI: 10.1007/s43440-023-00465-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND The analysis of drug active molecules and residues in the treatment of cancer is important for the sustainability of human life and therapeutic effects. For this purpose, a new magnetic sorbent was developed to use in solid phase extraction prior to conventional high-performance liquid chromatography (HPLC) analysis of Paclitaxel (PAC) and Gemcitabine (GEM) molecules. METHODS In this study, a separation and pre-concentration approach based on magnetic solid phase extraction (MSPE) was proposed for PAC and GEM by means of using a newly synthesized magnetic sorbent. After the MSPE procedure, an HPLC system with a diode array detector (DAD) was used to analyze trace amounts of PAC and GEM anticarcinogenic drugs in urine samples. Surface modification of magnetic Fe3O4 nanoparticles was carried out by diaminobenzidinetetrachloro hydrate (DABTC) for the first time and a useful sorbent was obtained for MSPE experiments. RESULTS In the proposed method, PAC and GEM molecules were retained on the c in the presence of a pH 5.0 medium and desorbed to 300 μL of acetonitrile: methyl alcohol (1:1) eluent phase before HPLC-DAD analysis. Under the optimized conditions, the limit of detection (LOD) values for PAC and GEM were 1.38 and 1.44 ng mL-1 while the enhancement factor for PAC and GEM were 139.5 and 145.3, respectively. The relative standard deviations (RSD %) for PAC and GEM were below 3.50% in inter-day repeated experiments by means of model solutions containing 100 ng mL-1 drug active ingredients. CONCLUSIONS Synthesis and characterization of DABTC-Fe3O4 nanoparticles were performed using suitable methodologies. Optimization of MSPE was done step by step. And finally, the developed method was successfully applied to urine samples with quantitative recoveries in the range of 99.0% and 105.0%.
Collapse
Affiliation(s)
- Emin Akyol
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Halil İbrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Application and Research Center, Ernam Erciyes University, Kayseri, Turkey
| | - Ümmügülsüm Polat
- Department of Analytical Chemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| |
Collapse
|
28
|
Melekhin AO, Tolmacheva VV, Apyari VV, Dmitrienko SG. Current trends in analytical strategies for the chromatographic determination of nitrofuran metabolites in food samples. An update since 2012. J Chromatogr A 2022; 1685:463620. [DOI: 10.1016/j.chroma.2022.463620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
29
|
Extended coverage of veterinary drug residues in food by LC-HRMS to ensure food compliance and prevent the spread of antimicrobial resistance. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Yu X, Wu X, Xie Y, Tong K, Wang M, Li J, Fan C, Chen H. Development and Validation of a Method for Determination of 43 Antimicrobial Drugs in Western-Style Pork Products by UPLC-MS/MS with the Aid of Experimental Design. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238283. [PMID: 36500374 PMCID: PMC9739473 DOI: 10.3390/molecules27238283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Western-style pork products have attracted many modern urban consumers, and these products have rapidly entered the Chinese market. The current hazard analysis of processed meat products mainly focuses on processing hazards (PAHs, microorganisms, and food additives), with less attention to veterinary drug residues. According to the survey results, the residues of antimicrobial drugs (sulfonamides and quinolones) in pork and its products in China are a severe problem, which may cause metabolic reactions, toxic effects, or enhance drug resistance. This study applied a modified QuEChERS method combined with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MSMS) to develop a rapid and sensitive method for determining antimicrobial drugs in bacon and ham was successfully evaluated methodologically by EU 2002/657/EC. This study used a three-level, three-factor Box-Behnken design (BBD) to optimize the QuEChERS method by response surface methodology. The excellent linearity of the calibration curve was shown in the corresponding concentration range with a coefficient of determination greater than 0.99. The values of decision limit (CCα) and detection capability (CCβ) were in the range of 10.9-31.3 μg/kg and 11.8-52.5 μg/kg, respectively. The method successfully detected two trace levels of antimicrobial drugs in commercially available samples, including sulfadiazine and moxifloxacin.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Chinese Academy of Inspection & Quarantine, No. 11, Ronghua South Road, Beijing 100176, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xingqiang Wu
- Chinese Academy of Inspection & Quarantine, No. 11, Ronghua South Road, Beijing 100176, China
| | - Yujie Xie
- Chinese Academy of Inspection & Quarantine, No. 11, Ronghua South Road, Beijing 100176, China
| | - Kaixuan Tong
- Chinese Academy of Inspection & Quarantine, No. 11, Ronghua South Road, Beijing 100176, China
| | - Minglin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (M.W.); (H.C.)
| | - Jianhui Li
- Waters Technology (Shanghai) Co., Ltd., Beijing 101102, China
| | - Chunlin Fan
- Chinese Academy of Inspection & Quarantine, No. 11, Ronghua South Road, Beijing 100176, China
| | - Hui Chen
- Chinese Academy of Inspection & Quarantine, No. 11, Ronghua South Road, Beijing 100176, China
- Correspondence: (M.W.); (H.C.)
| |
Collapse
|
31
|
Pan J, Deng F, Zeng L, Liu Z, Chen J. Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis. Anal Bioanal Chem 2022; 414:8255-8261. [PMID: 36178489 DOI: 10.1007/s00216-022-04354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Based on aptamer recognition and target-mediated competitive hybridization of hairpin probes, we developed a fluorescence sensor for kanamycin (KAN) detection. The aptamer and KAN binding will open hairpin H1 to release the trigger DNA fragment, which can initiate the competitive hybridization between hairpins H2 and H3. Then, exonuclease III (Exo III) can cleave H2 and H3 to produce numerous DNA3 and DNA4. Through the synergetic hybridization among DNA1, DNA2, DNA3, and DNA4, an active Mg2+-DNAzyme can be formed. The cleavage reaction toward FAM-BHQ-modified DNA2 will produce a high fluorescence signal for KAN assay. Through Exo III-guided cleavage and Mg2+-DNAzyme-based catalysis, the sensor exhibits high sensitivity, with a detection limit of 3.1 fM. This method is robust and has been applied to the detection of KAN in milk and water samples with good accuracy and reliability. Our developed fluorescence sensor exhibits the advantages of simple operation, high sensitivity, and good robustness, which are beneficial for KAN detection in food samples.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
32
|
Barbayanov K, Timofeeva I, Bulatov A. An effervescence-assisted dispersive liquid-liquid microextraction based on three-component deep eutectic solvent for the determination of fluoroquinolones in foods. Talanta 2022; 250:123709. [PMID: 35763953 DOI: 10.1016/j.talanta.2022.123709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
An effervescence-assisted dispersive liquid-liquid microextraction approach using three-component deep eutectic solvent based on short-chain and medium-chain carboxylic acids and terpenoid was developed for the first time. The microextraction procedure was applied to the determination of fluoroquinolone antibiotics in foods (milk and shrimp samples) by high-performance liquid chromatography with fluorometric detection. In this microextraction procedure three-component deep eutectic solvent acted as a proton donor agent and an extractant. The carbon dioxide bubbles caused by the fast reaction between precursor of deep eutectic solvent (short-chain carboxylic acid) and effervescent agent (sodium carbonate) promoted the dispersion of the extractant in an aqueous sample phase. Various carboxylic acids were studied as hydrogen bond donors for the formation of deep eutectic solvents and proton donor agents for the generation of CO2 bubbles. Two natural terpenoids (menthol and thymol) were studied as the hydrogen bond acceptors for the formation of three-component solvent. The extraction system based on heptanoic acid and thymol (1:2, mol/mol) containing formic acid (proton donor for generating CO2 bubbles) provided maximum extraction recovery (86-99%) and a higher extraction efficiency of analytes compared to their extraction into individual hydrophobic precursors of the system. The LODs, calculated from the blank tests based on 3σ, were varied from 0.03 to 0.06 μg L-1 and from 0.3 to 0.6 μg kg-1 for fluoroquinolone antibiotics in milk and shrimp samples, respectively. The proposed approach provided effective dispersion of extractant speeding up the extraction process and fast separation of phases without any external energy assistance.
Collapse
Affiliation(s)
- Kirill Barbayanov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
| | - Irina Timofeeva
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia.
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint-Petersburg University, St. Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
| |
Collapse
|
33
|
Nemati M, Altunay N, Tuzen M, Farajzadeh MA, Mogaddam MRA. In-situ sorbent formation for the extraction of pesticides from honey. J Sep Sci 2022; 45:2652-2662. [PMID: 35596522 DOI: 10.1002/jssc.202100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
An organic polymer was re-precipitated in solution to use as an adsorbent in dispersive solid phase extraction of some pesticides from honey samples prior to their determination by high performance liquid chromatography-tandem mass spectrometry. In this approach, different deep eutectic solvents were prepared using lysine and their ability in elution of the analytes from the adsorbent surface were tested. A diluted honey solution was transferred into a glass test tube and then a solution of polystyrene dissolved in dimethylformamide was injected into the solution. By doing this, polystyrene re-precipitated in the solution and dispersed in whole parts of it as many tiny particles. Then the mixture was centrifuged and the adsorbed analytes on the particles were eluted using a proper hydrophilic deep eutectic solvent. Central composite design approach was used for optimization of effective parameters. The limits of detection and quantification were in the ranges of 0.06-0.20 and 0.22-0.69 ng/g, respectively. The calibration curves obtained by matrix-matched standard solutions were linear in the range of 0.69-500 ng/g with coefficient of determinations ≥0.9962. The method provided high extraction recoveries (70-99%) and enrichment factors (140-198), and an acceptable precision (relative standard deviations ≤7.1%). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mahboob Nemati
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nail Altunay
- Department of Chemistry, Sivas Cumhuriyet University, Sivas, TR-58140, Turkey
| | - Mustafa Tuzen
- Art and Science Faculty, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, 60250, Turkey.,Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Research Institute, Dhahran, 31261, Saudi Arabia
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, North Cyprus, Mersin 10, Nicosia, 99138, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|