1
|
Wu Y, Xu Y, Shen Q, Xu T, Dong Z, Lou A. Optimization of pulsed electric fields-assisted thawing process conditions and its effect on the quality of Zhijiang duck meat. Food Chem X 2024; 24:101812. [PMID: 39290748 PMCID: PMC11406327 DOI: 10.1016/j.fochx.2024.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Freezing storage is a common preservation method for industrialized duck meat. However, both the frozen storage and thawing processes of meat can affect meat quality. Therefore, appropriate thawing methods are crucial for maintaining good meat quality. In this study, a pulsed electric field (PEF) was used for thawing zhijiang duck meat and the freshed duck meats were used as control. Optimization of the PEF-assisted thawing process and its effect on the quality of zhijiang duck meat were analyzed. Our data showed that the shear force in the 2 kV/cm PEF-assisted thawing group was the lowest in PEF-assisted thawing groups. The color of zhijiang duck meat in the 2 kV/cm PEF-assisted thawing group was optimal. The 2 kV/cm PEF-assisted thawing could improve the texture characteristics of zhijiang duck meat and enhance water holding capacity of zhijiang duck meat. PEF-assisted thawing could better maintain the microstructure of zhijiang duck meat. Our data showed that if the intensity or duration of PEF treatment is too high, the quality of duck meat will actually decrease. Therefore, appropriate parameters should be selected in practical applications, which will provide a reference for the application of PEF-assisted thawing on the market.
Collapse
Affiliation(s)
- Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| | - Yan Xu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Tingxia Xu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhuoqi Dong
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Aihua Lou
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Kong D, Liu J, Wang J, Chen Q, Liu Q, Sun F, Kong B. Effects of ultrasound-assisted immersion thawing in plasma-activated water on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi. Food Chem 2024; 460:140424. [PMID: 39033636 DOI: 10.1016/j.foodchem.2024.140424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
This work investigated the effects of five thawing methods (air thawing (AT), water thawing (WT), plasma-activated water thawing (PT), ultrasound-assisted water thawing (UWT) and ultrasound-assisted plasma-activated water thawing (UPT)) on thawing rate, quality characteristics, lipid and protein oxidation of porcine longissimus dorsi using fresh sample as control. The thawing time of UPT samples was significantly reduced by 81.15% compared to AT treatment (P < 0.05). The thawing loss of UPT samples was 1.55% significantly lower than AT samples (4.51%) (P < 0.05). In addition, UPT samples had the least cooking loss and centrifugal loss. UPT treatment reduced the conversion of bound and immobilized water to free water and resulted in more uniform water distribution. UPT treatment significantly decreased the thiobarbituric acid reactive substances (TBARS) value and carbonyl content and increased the total sulfhydryl content of the samples (P < 0.05). In conclusion, UPT treatment increased the thawing rate and retarded the lipid and protein oxidation, resulting in better maintenance of quality characteristics of porcine longissimus dorsi than other thawing methods.
Collapse
Affiliation(s)
- Dewei Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Zhao G, Zhang Y, Zhang J, Wang S, Wang K, Xu L, Zhang Q, Zhu C. Investigating the impact of lipid oxidation on the duck odorous smell during storage and reheating based on lipidomics. Curr Res Food Sci 2024; 9:100884. [PMID: 39498459 PMCID: PMC11533012 DOI: 10.1016/j.crfs.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
In the actual production of duck meat, the cooking time for marinated and sliced duck products is around 30 min. Before consumption, it is recommended to use a water bath for reheating at 75 °C for 10 min. However, many consumers reflect that after reheating, there will be an unpleasant smell, affecting the quality of food. Therefore, to investigate the effects of lipid oxidation on the duck odorous smell during heat treatment and reheating, lipid oxidation, sensory evaluation and lipidomics were performed on raw duck meat, 90 °C processed, and reheated cooked duck meat stored at 4 ± 1 °C for 3 and 7 days, respectively. The results showed that the duck odorous smell increased after heat treatment and reheating. A total of 26 lipid subclasses and 519 lipid molecules were identified in duck meat based on lipidomics. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in duck meat phospholipids played an important role in the production of duck odorous smell. These findings may contribute in reducing duck odorous smell by targeted inhibition of lipid oxidation.
Collapse
Affiliation(s)
- Gaiming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Ying Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Jiali Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Sen Wang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Ke Wang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Long Xu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Qiuhui Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chaozhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
4
|
Matys A, Nowacka M, Witrowa-Rajchert D, Wiktor A. Chemical and Thermal Characteristics of PEF-Pretreated Strawberries Dried by Various Methods. Molecules 2024; 29:3924. [PMID: 39203004 PMCID: PMC11357456 DOI: 10.3390/molecules29163924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
By increasing the permeability of the cell membrane of the treated material, pulsed electric fields (PEF) enhance the internal transport of various chemical substances. Changing the distribution of these components can modify the chemical and thermal properties of the given material. This study aimed to analyze the impact of PEF (1 kV/cm; 1 and 4 kJ/kg) applied to strawberries prior to drying by various methods (convective, infrared-convective, microwave-convective, and vacuum) on the chemical and thermal properties of the obtained dried materials (sugars content, total phenolic content, and antioxidant capacity (ABTS and DPPH assays); thermal properties (TGA and DSC); and molecular composition (FTIR)). PEF could have induced and/or enhanced sucrose inversion because, compared to untreated samples, PEF-pretreated samples were characterized by a lower share of sucrose in the total sugar content but a higher share of glucose and fructose. Reduced exposure to oxygen and decreased drying temperature during vacuum drying led to obtaining dried strawberries with the highest content of antioxidant compounds, which are sensitive to these factors. All PEF-pretreated dried strawberries exhibited a lower glass transition temperature (Tg) than the untreated samples, which confirms the increased mobility of the system after the application of an electric field.
Collapse
Affiliation(s)
- Aleksandra Matys
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.N.); (A.W.)
| | | | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland; (M.N.); (A.W.)
| | | |
Collapse
|
5
|
Yue X, Bi S, Li X, Zhang X, Lan L, Chen L, Zhang Z, Liu Y, Zhou Y, Ye C, Zhu Q. Electrical Stimulation Induces Activation of Mitochondrial Apoptotic Pathway and Down-Regulates Heat Shock Proteins in Pork: An Innovative Strategy for Enhancing the Ripening Process and Quality of Dry-Cured Loin Ham. Foods 2024; 13:1717. [PMID: 38890945 PMCID: PMC11172275 DOI: 10.3390/foods13111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
A fundamental regulatory framework to elucidate the role of electrical stimulation (ES) in reducing long production cycles, enhancing protein utilization, and boosting product quality of dry-cured ham is essential. However, how mitochondria and enzymes in meat fibers are altered by ES during post-processing, curing, and fermentation procedures remains elusive. This study sought to explore the impact of ES on the regulation of heat shock proteins (HSP27, HSP70), apoptotic pathways, and subsequent influences on dry-cured pork loin quality. The gathered data validated the hypothesis that ES notably escalates mitochondrial oxidative stress and accelerates mitochondrial degradation along the ripening process. The proapoptotic response in ES-treated samples was increased by 120.7%, with a cellular apoptosis rate 5-fold higher than that in control samples. This mitochondrial degradation is marked by increased ratios of Bax/Bcl-2 protein along the time course, indicating that apoptosis could contribute to the dry-cured ham processing. ES was shown to further down-regulate HSP27 and HSP70, establishing a direct correlation with the activation of mitochondrial apoptosis pathways, accompanied by dry-cured ham quality improvements. The findings show that ES plays a crucial role in facilitating the ripening of dry-cured ham by inducing mitochondrial apoptosis to reduce HSP expression. This knowledge not only explains the fundamental mechanisms behind myofibril degradation in dry-cured ham production but also offers a promising approach to enhance quality and consistency.
Collapse
Affiliation(s)
- Xi Yue
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Xiangrui Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Xinxin Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Lisha Lan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Zhili Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| | - Ying Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| | - Chun Ye
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (X.Y.); (S.B.); (X.L.); (X.Z.); (L.L.); (L.C.); (Z.Z.); (Y.L.); (Y.Z.); (C.Y.)
- Key Laboratory of Agricultural and Animal Products Storage and Processing, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Wang W, Lin H, Guan W, Song Y, He X, Zhang D. Effect of static magnetic field-assisted thawing on the quality, water status, and myofibrillar protein characteristics of frozen beef steaks. Food Chem 2024; 436:137709. [PMID: 37857201 DOI: 10.1016/j.foodchem.2023.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of static magnetic field-assisted thawing (SMAT) at varying intensities (0, 1, 2, and 3 mT) on the quality, water status, and myofibrillar protein (MP) characteristics of frozen beef steaks. The thawing times of SMAT-1, 2, and 3 treatments could be shortened by approximately 10.9 %, 20.0 %, and 8.5 %, respectively, compared to the control. The results indicated that SMAT treatment significantly decreased thawing loss, maintained color stability, and reduced the degree of lipid oxidation in beef steaks compared to the control group (P < 0.05). Low-field nuclear magnetic resonance results confirmed that SMAT treatment enhanced the water-holding capacity of muscle. Furthermore, SMAT-2 treatment protected the muscle microstructure, decreased carbonyl content, and increased total sulfhydryl content (P < 0.05) compared to the control group. In conclusion, SMAT treatment effectively improved the beef quality and the characteristics of MP after thawing, especially in 2 mT.
Collapse
Affiliation(s)
- Wenxin Wang
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yu Song
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Zhao Y, Wang D, Xu J, Tu D, Zhuang W, Tian Y. Effect of polysaccharide concentration on heat-induced Tremella fuciformis polysaccharide-soy protein isolation gels: Gel properties and interactions. Int J Biol Macromol 2024; 262:129782. [PMID: 38281520 DOI: 10.1016/j.ijbiomac.2024.129782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The formation of a single soybean protein isolate (SPI) gel is limited by the processing conditions, and has the disadvantages of poor gel property, and it is usually necessary to add other biomacromolecules to improve its property. In this study, we investigated the effects of polysaccharide concentration on gel properties and interaction mechanisms of Tremella fuciformis polysaccharide (TFP)-SPI complexes. It was found that (1) the rheological properties, texture properties, water-holding properties, and thermal stability of TFP-SPI composite gels were improved with the addition of TFP (0.25-2.0 %, w/v) in a concentration-dependent manner; (2) hydrogen bond, the electrostatic interaction, hydrophobic interaction, and disulfide bond in the gel system increased with the increase of TFP concentration; (3) the electrostatic and hydrophobic interactions played an important role in the formation of the TFP-SPI composite gel while hydrogen bond formation was the least contributor to the binary composite gel network. Overall, TFP is not only a critical health food but also a promising structural component for improving the gel properties of SPI.
Collapse
Affiliation(s)
- Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danni Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxin Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Chen Y, Lan D, Wang W, Zhang W, Wang Y. Quality characteristics of peanut protein-based patties produced with pre-emulsified olive oil as a fat replacer: Influence of acylglycerol type. Int J Biol Macromol 2023; 252:126262. [PMID: 37567535 DOI: 10.1016/j.ijbiomac.2023.126262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The emulsion (O/W) may be used as a fat replacer to develop healthier meat analogs. The purpose of this work was to evaluate the effects of oil incorporation methods (direct oil addition and emulsion addition) and oil types [triacylglycerol (TAG) and diacylglycerol (DAG)] on the quality characteristics of peanut protein-based patties crosslinked by transglutaminase (TGase). The patties formulated with emulsions showed larger texture parameters (springiness, cohesiveness and gumminess), lower cooking loss and higher acceptability compared with directly adding oil. The rheological results confirmed that the presence of emulsions strengthened the gel structure in patties, which allowed the patties containing emulsions to stabilize free water. Whereas, TAG-based emulsion was more effective than DAG-based emulsion in improving quality of products, possibly because the competitive adsorption at oil-water interface of DAG reduced the crosslinking between the interfacial protein and adjacent protein molecules. This study revealed the relationship between the acylglycerol type in emulsion and the patty quality, providing a reference for the development of plant-based patties.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Weifei Wang
- Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Liu J, Hu Z, Ma Q, Yang C, Zheng A, Liu D. Reduced water-holding capacity of beef during refrigeration is associated within creased heme oxygenase 1 expression, oxidative stress and ferroptosis. Meat Sci 2023; 202:109202. [PMID: 37150068 DOI: 10.1016/j.meatsci.2023.109202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/15/2022] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
Low molecular weight iron (LMW-Fe)-mediated oxidative stress from heme degradation may reduce beef water-holding capacity (WHC). However, the underlying mechanism of heme degradation is still unknown. In the present study, we assessed the WHC, tissue morphology, reactive oxygen species (ROS), apoptosis, heme oxygenase(HMOX) 1 expression, and ferroptosis characteristics of beef chilled at 4 °C for 6 days. Results showed that water loss increased and WHC decreased during beef storage (P < 0.05). Increased protein and mRNA expression of HMOX1 promoted the decomposition of heme and facilitated the liberation of iron ions (P < 0.05), and excess LMW-Fe was associated with ROS formation, depletion of glutathione, and inhibition of glutathione peroxidase 4 activity (P < 0.05). Muscle tissue showed typical features of ferroptosis, including expression of ferroptosis-related genes, malondialdehyde accumulation, and structural damage to mitochondria (P < 0.05). It was also found that HMOX1 and the heme pathway-mediated ferroptosis were associated with structural changes in myofibrils and reduced WHC in chilled beef.
Collapse
Affiliation(s)
- Jun Liu
- College of Life Sciences, Hubei Normal University, 435002, Huangshi, China; College of animal science and technology, Ningxia University, 750021 Yinchuan, China
| | - Ziying Hu
- College of Food Science and Engineering, Ningxia University, 750021 Yinchuan, China
| | - Qin Ma
- College of Food Science and Engineering, Ningxia University, 750021 Yinchuan, China
| | - Chaoyun Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, 750021 Yinchuan, China
| | - Anran Zheng
- College of animal science and technology, Ningxia University, 750021 Yinchuan, China; College of Food Science and Engineering, Ningxia University, 750021 Yinchuan, China
| | - Dunhua Liu
- College of animal science and technology, Ningxia University, 750021 Yinchuan, China; College of Food Science and Engineering, Ningxia University, 750021 Yinchuan, China.
| |
Collapse
|
10
|
Li M, He S, Sun Y, Pan D, Zhou C, He J. Effectiveness of l-arginine/l-lysine in retarding deterioration of structural and gelling properties of duck meat myofibrillar protein during freeze-thaw cycles. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Liu Y, Xiao D, Liu Y, Zhou J, Zhao S. An exploratory experiment using temperature drop curve features to identify activity information of duck eggs at mid-incubation. J Therm Biol 2022; 110:103384. [DOI: 10.1016/j.jtherbio.2022.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
|
12
|
Xu C, Zang M, Qiao X, Wang S, Zhao B, Shi Y, Bai J, Wu J. Effects of ultrasound-assisted thawing on lamb meat quality and oxidative stability during refrigerated storage using non-targeted metabolomics. ULTRASONICS SONOCHEMISTRY 2022; 90:106211. [PMID: 36327923 PMCID: PMC9619372 DOI: 10.1016/j.ultsonch.2022.106211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the changes of ultrasound-assisted thawing on lamb meat quality and differential metabolite profiles during refrigerated storage. Compared with flow water thawing (FW), pH, a*, C*, and sulfhydryl content of lamb were significantly increased, while L*, drip loss and cooking loss were significantly decreased after ultrasound-assisted thawing (UT). On day 1 (UT1 and FW1) and day 7 (UT7 and FW7) in the UT and FW groups, principal component analysis explained 42.22% and 39.25% of the total variance. In this study, 44 (UT1 and FW1) and 47 (UT7 and FW7) differentially expressed metabolites were identified, including amino acids, carbohydrates and their conjugates, nucleic acids, carbonyl compounds and others. The results of this study provide data to clarify the differences between UT and FW, and lay a foundation for the application of ultrasound-assisted thawing in the meat industry.
Collapse
Affiliation(s)
- Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Mingwu Zang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| | - Xiaoling Qiao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jiajia Wu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing Key Laboratory of Meat Processing Technology, Beijing 100068, China
| |
Collapse
|
13
|
Punthi F, Yudhistira B, Gavahian M, Chang CK, Cheng KC, Hou CY, Hsieh CW. Pulsed electric field-assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Compr Rev Food Sci Food Saf 2022; 21:5109-5130. [PMID: 36199192 DOI: 10.1111/1541-4337.13052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Drying is a key processing step for plant-based foods. The quality of dried products, including the physical, nutritional, microbiological, and sensory attributes, is influenced by the drying method used. Conventional drying technologies have low efficiency and can negatively affect product quality. Recently, pulsed electric field (PEF)-assisted techniques are being explored as a novel pretreatment for drying. This review focuses on the application of PEF as pretreatment for drying plant-based products, the preservation effects of this pretreatment, and its underlying mechanisms. A literature search revealed that PEF-assisted drying is beneficial for maintaining the physicochemical properties of the dried products and preserving their color and constituent chemical compounds. PEF-assisted drying promotes rehydration and improves the kinetics of drying. Unlike conventional technologies, PEF-assisted drying enables selective cell disintegration while maintaining product quality. Before the drying process, PEF pretreatment inactivates microbes and enzymes and controls respiratory activity, which may further contribute to preservation. Despite numerous advantages, the efficiency and applicably of PEF-assisted drying can be improved in the future.
Collapse
Affiliation(s)
- Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Food Science and Technology, Sebelas Maret University, Surakarta, Indonesia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.,Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan, Republic of China.,Department of Optometry, Asia University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
14
|
Chan KH, Chang CK, Gavahian M, Yudhistira B, Santoso SP, Cheng KC, Hsieh CW. The Impact of Different Pretreatment Processes (Freezing, Ultrasound and High Pressure) on the Sensory and Functional Properties of Black Garlic (Allium sativum L.). Molecules 2022; 27:molecules27206992. [PMID: 36296587 PMCID: PMC9607198 DOI: 10.3390/molecules27206992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Black garlic (BG) is an emerging derivative of fresh garlic with enhanced nutritional properties. This study aimed to develop functional BG products with good consumer acceptance. To this end, BG was treated with freezing (F-BG), ultrasound (U-BG), and HHP (H-BG) to assess its sensory and functional properties. The results showed that F-BG and H-BG had higher S-allyl-cysteine (SAC), polyphenol, and flavonoid contents than BG. H-BG and F-BG displayed the best sensory quality after 18 days of aging, while 5-hydroxymethylfurfural (5-HMF), SAC, and polyphenols were identified as the most influential sensory parameters. Moreover, the F-BG and H-BG groups achieved optimal taste after 18 days, as opposed to untreated BG, which needed more than 24 days. Therefore, the proposed approaches significantly reduced the processing time while enhancing the physical, sensory, and functional properties of BG. In conclusion, freezing and HHP techniques may be considered promising pretreatments to develop BG products with good functional and sensory properties.
Collapse
Affiliation(s)
- Kai-Hui Chan
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- Department of Food Science and Technology, Sebelas Maret University, Surakarta City 57126, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Techology, Daan Dist., Taipei 10607, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Optometry, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
- Correspondence: (K.-C.C.); (C.-W.H.); Tel.: +886-4-22840385 (ext. 5010) (C.-W.H.)
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404333, Taiwan
- Correspondence: (K.-C.C.); (C.-W.H.); Tel.: +886-4-22840385 (ext. 5010) (C.-W.H.)
| |
Collapse
|