1
|
Li Y, Sun F, Xia X, Liu Q. Excessive oil absorption and maillard reaction products in fried muscle foods: Formation mechanisms, potential health risks and mitigation strategies. Food Chem 2024; 468:142456. [PMID: 39689493 DOI: 10.1016/j.foodchem.2024.142456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Fried muscle foods are popular among consumers for their golden color, fried flavor, and crispy exterior paired with a tender interior. However, physicochemical reactions occurring during frying lead to the formation of harmful components. This review focuses on the formation mechanisms of excessive oil and Maillard reaction products (advanced glycation end products, and heterocyclic amines) in fried muscle foods including protein oxidation, starch gelatinization, and generation of carbonyls and free radicals. The gastrointestinal digestion, absorption, and potential health risks of these components are discussed. It also summarizes the measures to inhibit oil absorption in four ways, including reducing initial moisture content, controlling moisture migration, reducing frying oil usage, and reducing interfacial tension between oil and food. Finally, it reviews mitigation strategies of Maillard reaction products from two aspects: reducing precursors, and trapping intermediates. This review may help produce healthier fried muscle foods.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Wu R, Mou X, Dong S, Khoder RM, Xiong S, Liu R. Formation and kinetic analysis of AGEs in Pacific white shrimp during frying. Food Chem 2024; 460:140408. [PMID: 39089035 DOI: 10.1016/j.foodchem.2024.140408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/03/2024]
Abstract
Advanced glycation end products (AGEs) are complex and heterogeneous compounds closely associated with various chronic diseases. The changes in Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL), Nε-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1), and fluorescent AGEs (F-AGEs) in fried shrimp during frying (170 °C, 0-210 s) were described by kinetic models. Besides,the correlations between AGEs contents and physicochemical indicators were analyzed to reveal their intrinsic relationship. Results showed that the changes of four AGEs contents followed the zero-order kinetic, and their rate constants were ranked as kCML < kCEL ≈ kMG-H1 < kF-AGEs. Oil content and lipid oxidation were critical factors that affected the AGEs levels of the surface layer. Protein content and Maillard reaction were major factors in enhancing the CML and CEL levels of the interior layer. Furthermore, the impact of temperature on the generation of CML and CEL was greater than that of MG-H1 and F-AGEs.
Collapse
Affiliation(s)
- Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University/ National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Xia Mou
- College of Food Science and Technology, Huazhong Agricultural University/ National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Ramy M Khoder
- College of Food Science and Technology, Huazhong Agricultural University/ National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China; Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University/ National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University/ National R & D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
3
|
Tang Y, Huang Y, Li M, Zhu W, Zhang W, Luo S, Zhang Y, Ma J, Jiang Y. Balancing Maillard reaction products formation and antioxidant activities for improved sensory quality and health benefit properties of pan baked buns. Food Res Int 2024; 195:114984. [PMID: 39277245 DOI: 10.1016/j.foodres.2024.114984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the impact of processing temperatures (190 °C, 210 °C, and 230 °C) and durations (7 min, 10 min, and 14 min) on the formation of Maillard reaction products (MRPs) and antioxidant activities in pan baked buns. Key Maillard reaction indicators, including glyoxal (GO), methylglyoxal (MGO), 5-hydroxymethylfurfural (5-HMF), melanoidins, and fluorescent advanced glycation end products (AGEs) were quantified. The results demonstrated significant increases in GO, MGO, 5-HMF contents (p < 0.05), and antioxidant activities (p < 0.05) when the buns were baked at 210 °C for 14 min, 230 °C for 10 min and 14 min. However, the interior MRPs of baked buns were minimally affected by the baking temperature and duration. Prolonged heating temperatures and durations exacerbated MRPs production (43.8 %-1038 %) in the bottom crust. Nonetheless, this process promoted the release of bound phenolic compounds and enhanced the antioxidant activity. Heating induces the thermal degradation of macromolecules in food, such as proteins and polysaccharides, which releases bound phenolic compounds by disrupting their chemical bonds within the food matrix. Appropriate selections of baking parameters can effectively reduce the formation of MRPs while simultaneously improve sensory quality and health benefit of the pan baked buns. Considering the balance between higher antioxidant properties and lower MRPs, the optimal thermal parameters for pan baked buns were 210 °C for 10 min. Furthermore, a normalized analysis revealed a consistent trend for GO, MGO, 5-HMF, fluorescent AGEs, and melanoidins. Moreover, MRPs were positively correlated with total contents of phenolic compounds, ferric-reducing antioxidant power (FRAP), and color, but negatively correlated with moisture contents and reducing sugars. Additionally, the interaction between baking conditions and Maillard reactions probably contributed to enhanced primary flavors in the final product. This study highlights the importance of optimizing baking parameters to achieve desirable MRPs levels, higher antioxidant activity, and optimal sensory attributes in baked buns.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wen Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sha Luo
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Yingying Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin 300222, China
| | - Jie Ma
- Food Safety Facility, Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China.
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Chen T, Xue Y, Li C, Zhao Y, Huang H, Feng Y, Xiang H, Chen S. Identification of Key Volatile Compounds in Tilapia during Air Frying Process by Quantitative Gas Chromatography-Ion Mobility Spectrometry. Molecules 2024; 29:4516. [PMID: 39339511 PMCID: PMC11434510 DOI: 10.3390/molecules29184516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Air frying as a new roasting technology has potential for roasted fish production. In this study, the changes in volatile compounds (VCs) during air frying of tilapia were studied by quantitative gas chromatography-ion mobility spectrometry, followed by the identification of key VCs based on their odor activity value (OAV). There were 34 verified VCs, of which 16 VCs were identified as the key VCs with OAV ≥ 1. Most of the VCs were improved by air frying and peaked at 20 min. During the air frying, the total sulfhydryl content markedly decreased, while the protein carbonyl and MDA content significantly increased, suggesting the enhancement in the oxidation of lipids and proteins. The correlation network among the chemical properties and key VCs was constructed. The change in total sulfhydryl, protein carbonyl, and MDA showed significant correlation with most of the key VCs, especially 2-methyl butanal, ethyl acetate, and propanal. The results indicated that the oxidation of lipids and proteins contributed the most to the flavor improvement in air-fried tilapia. This study provides a crucial reference for the volatile flavor improvement and pre-cooked product development of roasted tilapia.
Collapse
Affiliation(s)
- Tianyu Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chunsheng Li
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yongqiang Zhao
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hui Huang
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yang Feng
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Huan Xiang
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shengjun Chen
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
5
|
Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, Farag MA, Liu L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem 2024; 438:137994. [PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
Collapse
Affiliation(s)
- Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, NE, USA.
| | - Ning Yan
- Ning Yan, Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
6
|
Ding Y, Liao Y, Xia J, Xu D, Li M, Yang H, Lin H, Benjakul S, Zhang B. Changes in the Physicochemical Properties and Microbial Communities of Air-Fried Hairtail Fillets during Storage. Foods 2024; 13:786. [PMID: 38472899 DOI: 10.3390/foods13050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 03/14/2024] Open
Abstract
This study assessed the physicochemical properties of air-fried hairtail fillets (190 °C, 24 min) under different storage temperatures (4, 25, and 35 °C). The findings revealed a gradual decline in sensory scores across all samples during storage, accompanied by a corresponding decrease in thiobarbituric acid reactive substances (TBARS) and total viable count over time. Lower storage temperatures exhibited an effective capacity to delay lipid oxidation and microbiological growth in air-fried hairtail fillets. Subsequently, alterations in the microbiota composition of air-fried hairtail fillets during cold storage were examined. Throughout the storage duration, Achromobacter, Escherichia-Shigella, and Pseudomonas emerged as the three dominant genera in the air-fried hairtail samples. Additionally, Pearson correlation analysis demonstrated that among the most prevalent microbial genera in air-fried hairtail samples, Achromobacter and Psychrobacter exhibited positive correlations with the L* value, a* value, and sensory scores. Conversely, they displayed negative correlations with pH, b* value, and TBARS. Notably, air-fried samples stored at 4 °C exhibited prolonged freshness compared with those stored at 25 °C and 35 °C, suggesting that 4 °C is an optimal storage temperature. This study offers valuable insights into alterations in the physicochemical properties and microbial distribution in air-fried hairtail fillets during storage, facilitating the improvement of meat quality by adjusting microbial communities in air-fried hairtail fillets.
Collapse
Affiliation(s)
- Yixuan Ding
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yueqin Liao
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiangyue Xia
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Disha Xu
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Menghua Li
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongli Yang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Huimin Lin
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Bin Zhang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
7
|
Liu Y, Liu C, Huang X, Li M, Zhao G, Sun L, Yu J, Deng W. Exploring the role of Maillard reaction and lipid oxidation in the advanced glycation end products of batter-coated meat products during frying. Food Res Int 2024; 178:113901. [PMID: 38309860 DOI: 10.1016/j.foodres.2023.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The Maillard reaction occurs during the frying of batter-coated meat products, resulting in the production of advanced glycosylation products that are harmful to human health. This study investigated the effects of frying temperature (140, 150, 160, 170 and 180 ℃) and time (80, 100, 120, 140 and 160 s) on the quality, advanced glycation end product (AGE) level and the relationship between these parameters in batter-coated meat products were investigated. The results showed that with an increase in frying temperature and time, the moisture content of the batter-coated meat products gradually decreased, the thiobarbituric Acid Reactive Substance (TBARS) values and oil content increased to 0.37 and 21.7 %, respectively, and then decreased, and CML and CEL content increased to 7.30 and 4.86 mg/g, respectively. Correlation analysis showed that the moisture content and absorbance at 420 nm, as well as TBARS values, were highly correlated with the oil content in batter-coated meat products. Additionally, the absorbance at 420 nm and TBARS levels were significantly correlated with AGE levels. Moreover, the AGE content in batter-coated meat products was less variable at lower frying temperatures or shorter frying times, and the influence of temperature on AGE formation was greater than that of time. Overall, these findings may help to better control the cooking conditions of batter-coated meat products based on AGE profiles.
Collapse
Affiliation(s)
- Yanxia Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chun Liu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoshu Huang
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Miaoyun Li
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.
| | - Gaiming Zhao
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingxia Sun
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiahuan Yu
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Deng
- International Joint Laboratory of Meat Processing and Safety in Henan Province, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Meat Processing and Quality Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
8
|
Liu R, Yang Y, Cui X, Mwabulili F, Xie Y. Effects of Baking and Frying on the Protein Oxidation of Wheat Dough. Foods 2023; 12:4479. [PMID: 38137283 PMCID: PMC10742965 DOI: 10.3390/foods12244479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Protein oxidation caused by food processing is harmful to human health. A large number of studies have focused on the effects of hot processing on protein oxidation of meat products. As an important protein source for human beings, the effects of hot processing on protein oxidation in flour products are also worthy of further study. This study investigated the influences on the protein oxidation of wheat dough under baking (0-30 min, 200 °C or 20 min, 80-230 °C) and frying (0-18 min, 180 °C or 10 min, 140-200 °C). With the increase in baking and frying time and temperature, we found that the color of the dough deepened, the secondary structure of the protein changed from α-helix to β-sheet and β-turn, the content of carbonyl and advanced glycation end products (AGEs) increased, and the content of free sulfhydryl (SH) and free amino groups decreased. Furthermore, baking and frying resulted in a decrease in some special amino acid components in the dough, and an increase in the content of amino acid oxidation products, dityrosine, kynurenine, and N'-formylkynurenine. Moreover, the nutritional value evaluation results showed that excessive baking and frying reduced the free radical scavenging rate and digestibility of the dough. These results suggest that frying and baking can cause protein oxidation in the dough, resulting in the accumulation of protein oxidation products and decreased nutritional value. Therefore, it is necessary to reduce excessive processing or take reasonable intervention measures to reduce the effects of thermal processing on protein oxidation of flour products.
Collapse
Affiliation(s)
- Ru Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaojie Cui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Wu R, Jia C, Rong J, Xiong S, Liu R. Effect of Pretreatment Methods on the Formation of Advanced Glycation End Products in Fried Shrimp. Foods 2023; 12:4362. [PMID: 38231862 DOI: 10.3390/foods12234362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Fried shrimp are popular for their attractive organoleptic and nutritional qualities. However, consumers are more concerned about the safety of fried foods. To investigate the formation of advanced glycation end products (AGEs) in fried shrimp and provide pretreatment guidance for producing low-AGEs fried pacific white shrimp were treated with seven pretreatment methods before frying. The AGEs contents, physicochemical indicators, and their correlations in the fried shrimps' interior, surface, and batter layer were analyzed. Results indicated that pretreatment methods influenced both Maillard and oxidation reactions by altering the basic compositions, which controlled the formation of AGEs. The highest and lowest AGEs contents were obtained in shelled shrimp with exscinded back and whole shrimp, respectively. The batter-coated treatment reduced the AGEs contents in samples but increased the oil content. Correlation analysis showed that lipid oxidation was the decisive chemical reaction to the formation of AGEs by promoting the generation of dicarbonyl compounds and their combination with free amino acids. Conclusively, the whole shrimp was suitable for producing fried shrimp with low AGEs, oil content, and desirable color.
Collapse
Affiliation(s)
- Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
10
|
Mo J, Zhao Y, Wu R, Hu B, Jia C, Rong J, Liu R, Zhao S. Formation of AGEs in Penaeus vannamei fried with high oleic acid sunflower oil. Food Chem X 2023; 19:100869. [PMID: 37780319 PMCID: PMC10534242 DOI: 10.1016/j.fochx.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Here, we investigated the effects of frying process on the formation of advanced glycation end products (AGEs) in shrimps using Penaeus vannamei as the raw material. The results showed that the oil, malondialdehyde, fluorescent AGEs, carboxymethyl lysine (CML), methylglyoxal hydroimidazolone (MG-H1) and the outer layer carboxyethyl lysine (CEL) content was higher in the fried shrimps than that in the raw unfried shrimps. The outer layer CML, CEL and inner CEL, MG-H1 values all reached the maximum after the first batch of frying (22.43 mg/kg, 304.24 mg/kg, 83.76 mg/kg, and 169.42 mg/kg respectively). However, fluorescent AGEs and MG-H1 of the outer layer reached the maximum after the fifth and fourth batches of frying (1230.0 AU/g and 341.63 mg/kg). Malondialdehyde, fluorescent AGEs, CML, MG-H1, and CEL concentration in the fried shrimps firstly increased and then decreased to stabilization with more frying batches, with higher content in the outer layer of fried shrimps.
Collapse
Affiliation(s)
- Jiao Mo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yuanyuan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Runlin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Benlun Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Caihua Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
- Author Affiliation: Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| | - Jianhua Rong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
- Author Affiliation: Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
- Author Affiliation: Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei Province 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| |
Collapse
|
11
|
Bai X, Li Y, Liang W, Xia X, Bian C. Formation of advanced glycation end products of chicken breast meat induced by freeze-thaw cycles and subsequent cooking. Int J Biol Macromol 2023; 244:125387. [PMID: 37330105 DOI: 10.1016/j.ijbiomac.2023.125387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The impacts of freeze-thaw (F-T) cycles and cooking on the basic composition, protein and lipid oxidation, and advanced glycation end products (AGEs) of chicken breasts were studied. During F-T cycles, the moisture and protein contents of raw and cooked chicken breasts decreased, and protein and lipid oxidation occurred, increasing carbonyl and TBARS contents. Meanwhile, the contents of methylglyoxal, glyoxal, and hydroxymethylfurfural in raw meat increased by 2.27, 2.27, and 5 times, respectively, whereas glyoxal and hydroxymethylfurfural contents increased by 2.73 and 3 times, respectively, after cooking as F-T cycles increased. The formation of carboxymethyl lysine, pentosidine, and fluorescent AGEs in cooked samples was confirmed using an ELISA kit and fluorescent intensity. The study also revealed that AGEs contents of chicken meat were negatively correlated with moisture contents and positively correlated with carbonyl and TBARS levels. Therefore, F-T cycles and subsequent cooking promoted AGEs formation in cooked meat.
Collapse
Affiliation(s)
- Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Weiwei Liang
- School of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Chun Bian
- School of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
12
|
Li L, Zhuang Y, Zou X, Chen M, Cui B, Jiao Y, Cheng Y. Advanced Glycation End Products: A Comprehensive Review of Their Detection and Occurrence in Food. Foods 2023; 12:foods12112103. [PMID: 37297348 DOI: 10.3390/foods12112103] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The Maillard reaction (MR) is a complicated chemical process that has been extensively studied. Harmful chemicals known as advanced glycation end products (AGEs), with complex structures and stable chemical characteristics, are created during the final stage of the MR. AGEs can be formed both during the thermal processing of food and in the human body. The number of AGEs formed in food is much higher compared to endogenous AGEs. A direct connection exists between human health and the build-up of AGEs in the body, which can result in diseases. Therefore, it is essential to understand the content of AGEs in the food we consume. The detection methods of AGEs in food are expounded upon in this review, and the advantages, disadvantages, and application fields of these detection methods are discussed in depth. Additionally, the production of AGEs in food, their content in typical foods, and the mechanisms influencing their formation are summarized. Since AGEs are closely related to the food industry and human health, it is hoped that this review will further the detection of AGEs in food so that their content can be evaluated more conveniently and accurately.
Collapse
Affiliation(s)
- Lixian Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingjun Zhuang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xiuzhi Zou
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Ye Jiao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
13
|
Lin YY, Huang SF, Liao KW, Ho CT, Hung WL. Quantitation of α-Dicarbonyls, Lysine- and Arginine-Derived Advanced Glycation End Products, in Commercial Canned Meat and Seafood Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6727-6737. [PMID: 37088952 PMCID: PMC10161224 DOI: 10.1021/acs.jafc.3c01205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Commercial sterilization is a thermal processing method commonly used in low-acid canned food products. Meanwhile, heat treatment can significantly promote advanced glycation end product (AGE) formation in foodstuffs. In this research, the validated analytical methods have been developed to quantitate both lysine- and arginine-derived AGEs and their precursors, α-dicarbonyls, in various types of commercial canned meat and seafood products. Methylglyoxal-hydroimidazolone 1 was the most abundant AGEs found in the canned food products, followed by Nε-(carboxyethyl)lysine, Nε-(carboxymethyl)lysine, and glyoxal-hydroimidazolone 1. Correlation analysis revealed that methylglyoxal and glyoxal were only positively associated with the corresponding arginine-derived AGEs, while their correlations with the corresponding lysine-derived AGEs were not significant. Importantly, we demonstrated for the first time that total sugar and carbohydrate contents might serve as the potential markers for the prediction of total AGEs in canned meats and seafoods. Altogether, this study provided a more complete view of AGEs' occurrence in commercial canned food products.
Collapse
Affiliation(s)
- You-Yu Lin
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Fang Huang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Wei-Lun Hung
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Hu X, Jiang Q, Wang H, Li J, Tu Z. Insight into the effect of traditional frying techniques on glycosylated hazardous products, quality attributes and flavor characteristics of grass carp fillets. Food Chem 2023; 421:136111. [PMID: 37087991 DOI: 10.1016/j.foodchem.2023.136111] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
This study aimed to evaluate the evolution of quality attributes, oxidation index, glycosylated hazardous products, aroma characteristics of grass carp fillets and their relationship under air-frying, roast-frying and pan-frying. With frying progressed, the level of carbonyl protein and lipid oxidation products increased significantly (following air-frying > pan-frying > roast-frying), and the latter decreased subsequently after 6 min. Fillets possessed by frying increased significantly Nε-carboxymethyl-lysines (CML) and 5-hydroxymethylfurfural (5-HMF) levels, whose increment was pan-frying > air-frying > roast-frying. Compared to raw, eighty-seven volatiles were identified and the total concentrations of those increased gradually in air-frying, but then decreased up to 6 min in roast-frying and pan-frying. Furthermore, significant correlations between CML, TBARS and 5-HMF, quality attributes, oxidation index; volatiles (VIP and/or OAV > 1) and lipid oxidation index were obtained. Conclusively, fillets possessed by air-/roast-frying showed more lipid oxidation and alcohols/aldehydes, while pan-fried enriched CML and pyrazines.
Collapse
Affiliation(s)
- Xiangfei Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jinlin Li
- National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; National Research and Development Center of Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
15
|
Wang J, Qiao L, Wang R, Zhang N, Liu Y, Chen H, Sun J, Wang S, Zhang Y. Effect of Frying Process on the Flavor Variations of Allium Plants. Foods 2023; 12:foods12071371. [PMID: 37048190 PMCID: PMC10093356 DOI: 10.3390/foods12071371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The Allium plant is widely used in cuisines around the world for its characteristic flavor. The general profile of the plant changes a lot and presents quite different smells after the frying process. In this work, five Allium plants and their fried oils were compared to find out how the frying process impacts the general flavor profile. The results of sensory analysis indicated that the frying process could substantially increase the flavor acceptability of fresh Allium plants. Meanwhile, according to gas chromatography-mass spectrometry (GC-MS) analysis, fewer volatile compounds were detected in fresh Allium plants than in their fried oils. Furthermore, contents of nitrogen-containing compounds (ranging from 0.17 μg/g to 268.97 μg/g), aldehydes (ranging from 71.82 μg/g to 1164.84 μg/g), and lactones (ranging from 0 μg/g to 12.38 μg/g) increased significantly. In addition, more aroma-active substances were identified in the fried Allium oils revealed by gas chromatography-olfactometry (GC-O) analysis. Sulfur-containing compounds were the most abundant in fresh Allium plants, whereas nitrogen-containing compounds dominated in fried oils. The thermal degradation of sugars, amino acids and lipids as well as interactions between carbohydrates, proteins, and fats during the frying process were thought to be the main contributors to these variations. Therefore, this research provides a theoretical basis for the quality control of onion oil flavor and promotes the further development of the onion plant industry. Consequently, the research provided a theoretical basis for the quality control of Allium oils' flavor and promoted the further development of Allium plant industries.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Lina Qiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ruifang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Yuping Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Jie Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Shuqi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400700, China
| |
Collapse
|