1
|
Qiao Q, Gao Y, Liu Q. Metabolic and molecular mechanisms of spine color formation in Chinese red chestnut. FRONTIERS IN PLANT SCIENCE 2024; 15:1377899. [PMID: 38835869 PMCID: PMC11148441 DOI: 10.3389/fpls.2024.1377899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
The spines of Chinese red chestnut are red and the depth of their color gradually increases with maturity. To identify the anthocyanin types and synthesis pathways in red chestnut and to identify the key genes regulating the anthocyanin biosynthesis pathway, we obtained and analyzed the transcriptome and anthocyanin metabolism of red chestnut and its control variety with green spines at 3 different periods. GO and KEGG analyses revealed that photosynthesis was more highly enriched in green spines compared with red spines, while processes related to defense and metabolism regulation were more highly enriched in red spines. The analysis showed that the change in spine color promoted photoprotection in red chestnut, especially at the early growth stage, which resulted in the accumulation of differentially expressed genes involved in the defense metabolic pathway. The metabolome results revealed 6 anthocyanins in red spines. Moreover, red spines exhibited high levels of cyanidin, peonidin and pelargonidin and low levels of delphinidin, petunidin and malvidin. Compared with those in the control group, the levels of cyanidin, peonidin, pelargonidin and malvidin in red spines were significantly increased, indicating that the cyanidin and pelargonidin pathways were enriched in the synthesis of anthocyanins in red spines, whereas the delphinidin pathways were inhibited and mostly transformed into malvidin. During the process of flower pigment synthesis, the expression of the CHS, CHI, F3H, CYP75A, CYP75B1, DFR and ANS genes clearly increased, that of CYP73A decreased obviously, and that of PAL, 4CL and LAR both increased and decreased. Notably, the findings revealed that the synthesized anthocyanin can be converted into anthocyanidin or epicatechin. In red spines, the upregulation of BZ1 gene expression increases the corresponding anthocyanidin content, and the upregulation of the ANR gene also promotes the conversion of anthocyanin to epicatechin. The transcription factors involved in color formation included 4 WRKYs.
Collapse
Affiliation(s)
- Qian Qiao
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhong Liu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| |
Collapse
|
2
|
Zhao H, Wang L, Bai Y, Li Y, Tang T, Liang H, Gao D. Immobilized enzyme with sustainable chestnut biochar to remediate polycyclic aromatic hydrocarbons contaminated soils. ENVIRONMENTAL TECHNOLOGY 2024; 45:2034-2044. [PMID: 36579925 DOI: 10.1080/09593330.2022.2164221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) contaminated soil severely and are difficult to remediate. In this study, acid-modified chestnut inner shell biochar with abundant pore channels was used as the main raw materials for the immobilization of white-rot fungal crude enzyme. The maximum immobilization rate of crude enzymes (97.25%±6.20%) could be achieved under the optimal conditions of 24 h immobilization of 10 U/mL crude enzymes by 1 g biochar at 25℃ and pH = 5. Meanwhile, immobilization improved the stability of the crude enzyme. The relative activity of the immobilized crude enzyme increased by 59.32% and 49.73% (compared to the free crude enzymes) after 5 weeks of storage at 4°C and 25°C, respectively. It has been verified that chestnut-based immobilized crude enzyme can degrade 37% of benzo[a]pyrene in 10 days for PAHs-contaminated soils. An efficient, feasible, and low-cost remediation method for PAHs-contaminated soils was explored, which provides technical support for the application of crude enzymes in organic contaminated soils.
Collapse
Affiliation(s)
- Huan Zhao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing, People's Republic of China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing, People's Republic of China
| | - Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing, People's Republic of China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing, People's Republic of China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing, People's Republic of China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing, People's Republic of China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing, People's Republic of China
| |
Collapse
|
3
|
Wang W, Wang M, Feng J, Zhang S, Chen Y, Zhao Y, Tian R, Zhu C, Nieuwenhuizen NJ. Terpene Synthase Gene Family in Chinese Chestnut ( Castanea mollissima BL.) Harbors Two Sesquiterpene Synthase Genes Implicated in Defense against Gall Wasp Dryocosmus kuriphilus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1571-1581. [PMID: 38206573 DOI: 10.1021/acs.jafc.3c07086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chinese chestnut (Castanea mollissima BL.) is a well-known fruit tree that has been cultivated in East Asia for millennia. Leaves and buds of the plant can become seriously infested by the gall wasp Dryocosmus kuriphilus (GWDK), which results in gall formation and associated significant losses in fruit production. Herbivore-induced terpenes have been reported to play an important role in plant-herbivory interactions, and in this study, we show that upon herbivory by GWDK, four terpene-related compounds were significantly induced, while the concentrations of these four compounds in intact buds were relatively low. Among these compounds, (E)-nerolidol and (E, E)-α-farnesene have frequently been reported to be involved in plant herbivory defenses, which suggests direct and/or indirect functions in chestnut GWDK defenses. Candidate terpene synthase (TPS) genes that may account for (E)-nerolidol and (E, E)-α-farnesene terpene biosynthesis were characterized by transcriptomics and phylogenetic approaches, which revealed altered transcript levels for two TPSs: CmAFS, a TPS-g subfamily member, and CmNES/AFS, a TPS-b clade member. Both genes were dramatically upregulated in gene expression upon GWDK infestation. Furthermore, Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana showed that CmAFS catalyzed the formation of (E, E)-α-farnesene, while CmNES/AFS showed dual (E)-nerolidol and (E, E)-α-farnesene synthase activity. Biochemical assays of the recombinant CmAFS and CmNES/AFS proteins confirmed their catalytic activity in vitro, and the enzymatic products were consistent with two of the major volatile compounds released upon GWDK-infested chestnut buds. Subcellular localization demonstrated that CmAFS and CmNES/AFS were both localized in the cytoplasm, the primary compartment for sesquiterpene synthesis. In summary, we show that two novel sesquiterpene synthase genes CmAFS and CmNES/AFS are inducible by herbivory and can account for the elevated accumulation of (E, E)-α-farnesene and (E)-nerolidol upon GWDK infestation and may be implicated in chestnut defense against GWDK herbivores.
Collapse
Affiliation(s)
- Wu Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Mindy Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
| | - Jiao Feng
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijie Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yuqiang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Ruiping Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Cancan Zhu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169 Auckland, New Zealand
| |
Collapse
|
4
|
Xu K, Zhang Z, Jiang K, Yang A, Wang T, Xu L, Li X, Zhang X, Meng F, Wang B. Elucidating the effect of different processing methods on the sensory quality of chestnuts based on multi-scale molecular sensory science. Food Chem 2024; 431:136989. [PMID: 37572488 DOI: 10.1016/j.foodchem.2023.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
Chestnuts are known for their unique flavor and nutritional value. However, the flavor changes in chestnuts after processing remain unclear. Multi-intelligent sensory technologies and headspace solid-phase microextraction-arrow gas chromatography-mass spectrometry (HS-SPME-Arrow-GC-MS) combined with multivariate statistical analysis were applied to evaluate the effect of packaging and heat sterilization procedures on the sensory quality of chestnuts. The results showed that the significant variations (p < 0.05) between the different chestnut processing methods were revealed via the electronic eye (E-eye), electronic nose (E-nose), and electronic tongue (E-tongue). The packaging had a more significant influence on the sensory quality of the chestnuts than heat sterilization procedures. HS-SPME-Arrow-GC-MS identified 83 volatile compounds. The processed chestnuts exhibited higher aldehyde, ester, and alkene concentrations, while N2 packaging was more favorable to flavor elicitation and retention. Therefore, combining intelligent sensory techniques with GC-MS can rapidly determine the chestnut quality and guide industrial production.
Collapse
Affiliation(s)
- Kunli Xu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zheting Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Kexin Jiang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Aolin Yang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tielong Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lingyun Xu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xiaodong Li
- Shimadzu CO., LTD., China Innovation Center, Beijing 100020, China
| | - Xiaoli Zhang
- Shimadzu CO., LTD., China Innovation Center, Beijing 100020, China
| | - Fanyu Meng
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Bei Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Guo Q, Chen L, Yang D, Zheng B. Heat-moisture treatment enhances the ordered degree of starch structure in whole chestnut flour and alters its gut microbiota modulation in mice fed with high-fat diet. Int J Biol Macromol 2024; 254:127961. [PMID: 37951440 DOI: 10.1016/j.ijbiomac.2023.127961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Currently, chestnuts attract more attention among consumers due to its rich nutritional functions, but systematic evaluation on the effect of thermal processing on its nutritional value is still limited. In this work, based on results of microstructural properties that heat-moisture treatment (HMT) could enhance the total ordered degree of starch structure in whole chestnut flour (CN) and promote the formation of anti-enzymatic component, in vitro experiment was then conducted and confirmed that HMT could significantly reduce the predicted glycemic index (pGI) of CN from 75.6 to 64.3 and improve its dietary fiber content from 7.06 to 13.42 g/100 g (p < 0.05). Further dietary intervention studies with CN and heat-moisture treated CN (HMT-CN) supplementation on the high-fat diet (HFD) consuming mice were discussed in terms of gut microbiota and its metabolites changes. The results showed that both CN and HMT-CN significantly resisted the weight gain induced by HFD, while HMT-CN had better serum lipid regulation effect. However, they had different effects on the gut metabolism pathways, among which CN inhibited the production of stearamine by promoting the proliferation of Dubosiella, while HMT-CN contributed to the growth of Lachnoclostridium, Desulfovibrio, and Faecalibaculum which stimulated the formation of associated metabolites including jwh-018-d11, valylproline, tetranor-12(S)-HETE, and PA (3:0/18:0). Overall, these discoveries could provide basic data for the effective utilization of CN in food industry processing.
Collapse
Affiliation(s)
- Qiyong Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Deyi Yang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Xiao Y, Xiao C, He X, Yang X, Tong Z, Wang Z, Sun Z, Qiu W. A Novel Non-Specific Lipid Transfer Protein Gene, CmnsLTP6.9, Enhanced Osmotic and Drought Tolerance by Regulating ROS Scavenging and Remodeling Lipid Profiles in Chinese Chestnut ( Castanea mollissima Blume). PLANTS (BASEL, SWITZERLAND) 2023; 12:3916. [PMID: 38005813 PMCID: PMC10675601 DOI: 10.3390/plants12223916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Chestnut (Castanea mollissima Blume) is an important economic tree owing to its tasty fruit and adaptability to environmental stresses, especially drought. Currently, there is limited information about non-specific lipid transfer protein (nsLTP) genes that respond to abiotic stress in chestnuts. Here, a chestnut nsLTP, named CmnsLTP6.9, was identified and analyzed. The results showed that the CmnsLTP6.9 protein localized in the extracellular matrix had two splicing variants (CmnsLTP6.9L and CmnsLTP6.9S). Compared with CmnsLTP6.9L, CmnsLTP6.9S had an 87 bp deletion in the 5'-terminal. Overexpression of CmnsLTP6.9L in Arabidopsis enhanced tolerance to osmotic and drought stress. Upon exposure to osmotic and drought treatment, CmnsLTP6.9L could increase reactive oxygen species (ROS)-scavenging enzyme activity, alleviating ROS damage. However, CmnsLTP6.9S-overexpressing lines showed no significant differences in phenotype, ROS content, and related enzyme activities compared with the wild type (WT) under osmotic and drought treatment. Moreover, lipid metabolism analysis confirmed that, unlike CmnsLTP6.9S, CmnsLTP6.9L mainly altered and upregulated many fatty acyls and glycerophospholipids, which implied that CmnsLTP6.9L and CmnsLTP6.9S played different roles in lipid transference in the chestnut. Taken together, we analyzed the functions of CmnsLTP6.9L and CmnsLTP6.9S, and demonstrated that CmnsLTP6.9L enhanced drought and osmotic stress tolerance through ROS scavenging and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenming Qiu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.X.); (C.X.); (X.H.); (X.Y.); (Z.T.); (Z.W.); (Z.S.)
| |
Collapse
|
7
|
Gou LJ, Liu TT, Zeng Q, Dong WR, Wang L, Long S, Su JT, Chen YX, Zhou G. Natamycin Has an Inhibitory Effect on Neofusicoccum parvum, the Pathogen of Chestnuts. Molecules 2023; 28:molecules28093707. [PMID: 37175119 PMCID: PMC10179887 DOI: 10.3390/molecules28093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This research aimed to investigate natamycin's antifungal effect and its mechanism against the chestnut pathogen Neofusicoccum parvum. Natamycin's inhibitory effects on N. parvum were investigated using a drug-containing plate culture method and an in vivo assay in chestnuts and shell buckets. The antifungal mechanism of action of natamycin on N. parvum was investigated by conducting staining experiments of the fungal cell wall and cell membrane. Natamycin had a minimum inhibitory concentration (MIC) of 100 μg/mL and a minimum fungicidal concentration (MFC) of 200 μg/mL against N. parvum. At five times the MFC, natamycin had a strong antifungal effect on chestnuts in vivo, and it effectively reduced morbidity and extended the storage period. The cell membrane was the primary target of natamycin action against N. parvum. Natamycin inhibits ergosterol synthesis, disrupts cell membranes, and causes intracellular protein, nucleic acid, and other macromolecule leakages. Furthermore, natamycin can cause oxidative damage to the fungus, as evidenced by decreased superoxide dismutase and catalase enzyme activity. Natamycin exerts a strong antifungal effect on the pathogenic fungus N. parvum from chestnuts, mainly through the disruption of fungal cell membranes.
Collapse
Affiliation(s)
- Lin-Jing Gou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Tian-Tian Liu
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zeng
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Wan-Rong Dong
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Lu Wang
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Sha Long
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Jiang-Tao Su
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
| | - Yu-Xin Chen
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Gao Zhou
- Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
- Post-Doctoral Research Center of Mayinglong Pharmaceutical Group Co., Ltd., Wuhan 430064, China
| |
Collapse
|
8
|
Jiang X, Fang Z, Lai J, Wu Q, Wu J, Gong B, Wang Y. Genetic Diversity and Population Structure of Chinese Chestnut ( Castanea mollissima Blume) Cultivars Revealed by GBS Resequencing. PLANTS (BASEL, SWITZERLAND) 2022; 11:3524. [PMID: 36559637 PMCID: PMC9781913 DOI: 10.3390/plants11243524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Chinese chestnut (Castanea mollissima Bl.) is one of the earliest domesticated and cultivated fruit trees, and it is widely distributed in China. Because of the high quality of its nuts and its high resistance to abiotic and biotic stresses, Chinese chestnut could be used to improve edible chestnut varieties worldwide. However, the unclear domestication history and highly complex genetic background of Chinese chestnut have prevented the efficiency of breeding efforts. To explore the genetic diversity and structure of Chinese chestnut populations and generate new insights that could aid chestnut breeding, heterozygosity statistics, molecular variance analysis, ADMIXTURE analysis, principal component analysis, and phylogenetic analysis were conducted to analyze single nucleotide polymorphism data from 185 Chinese chestnut landraces from five geographical regions in China via genotyping by sequencing. Results showed that the genetic diversity level of the five populations from different regions was relatively high, with an observed heterozygosity of 0.2796-0.3427. The genetic diversity level of the population in the mid-western regions was the highest, while the population north of the Yellow River was the lowest. Molecular variance analysis showed that the variation among different populations was only 2.07%, while the intra-group variation reached 97.93%. The Chinese chestnut samples could be divided into two groups: a northern and southern population, separated by the Yellow River; however, some samples from the southern population were genetically closer to samples from the northern population. We speculate that this might be related to the migration of humans during the Han dynasty due to the frequent wars that took place during this period, which might have led to the introduction of chestnut to southern regions. Some samples from Shandong Province and Beijing City were outliers that did not cluster with their respective groups, and this might be caused by the special geographical, political, and economic significance of these two regions. The findings of our study showed the complex genetic relationships among Chinese chestnut landraces and the high genetic diversity of these resources.
Collapse
Affiliation(s)
- Xibing Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhou Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Junsheng Lai
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Qiang Wu
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Jian Wu
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yanpeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
9
|
Xie C, Tian E, Jim CY, Liu D, Hu Z. Effects of climate-change scenarios on the distribution patterns of Castanea henryi. Ecol Evol 2022; 12:e9597. [PMID: 36514555 PMCID: PMC9731913 DOI: 10.1002/ece3.9597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Castanea henryi, with edible nuts and timber value, is a key tree species playing essential roles in China's subtropical forest ecosystems. However, natural and human perturbations have nearly depleted its wild populations. The study identified the dominant environmental variables enabling and limiting its distribution and predicted its suitable habitats and distribution. The 212 occurrence records covering the whole distribution range of C. henryi in China and nine main bioclimatic variables were selected for detailed analysis. We applied the maximum entropy model (MaxEnt) and QGIS to predict potentially suitable habitats under the current and four future climate-change scenarios. The limiting factors for distribution were accessed by Jackknife, percent contribution, and permutation importance. We found that the current distribution areas were concentrated in the typical subtropical zone, mainly Central and South China provinces. The modeling results indicated temperature as the critical determinant of distribution patterns, including mean temperature of the coldest quarter, isothermality, and mean diurnal range. Winter low temperature imposed an effective constraint on its spread. Moisture served as a secondary factor in species distribution, involving precipitation seasonality and annual precipitation. Under future climate-change scenarios, excellent habitats would expand and shift northwards, whereas range contraction would occur on the southern edge. Extreme climate change could bring notable range shrinkage. This study provided a basis for protecting the species' germplasm resources. The findings could guide the management, cultivation, and conservation of C. henryi, assisted by a proposed three-domain operation framework: preservation areas, loss areas, and new areas, each to be implemented using tailor-made strategies.
Collapse
Affiliation(s)
- Chunping Xie
- College of Science Qiongtai Normal University Haikou China
| | - Erlin Tian
- College of Science Qiongtai Normal University Haikou China
| | - Chi Yung Jim
- Department of Social Sciences Education University of Hong Kong Tai Po Hong Kong China
| | - Dawei Liu
- Nanjing Forest Police College Nanjing China
| | - Zhaokai Hu
- Guangdong Ocean University Zhanjiang China
| |
Collapse
|
10
|
Wang Y, Liu C, Fang Z, Wu Q, Xu Y, Gong B, Jiang X, Lai J, Fan J. A Review of the Stress Resistance, Molecular Breeding, Health Benefits, Potential Food Products, and Ecological Value of Castanea mollissima. PLANTS (BASEL, SWITZERLAND) 2022; 11:2111. [PMID: 36015414 PMCID: PMC9416426 DOI: 10.3390/plants11162111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Chestnut (Castanea spp., Fagaceae family) is an economically and ecologically valuable species. The main goals of chestnut production vary among species and countries and depend on the ecological characteristics of orchards, agronomic management, and the architecture of chestnut trees. Here, we review recent research on chestnut trees, including the effects of fungal diseases (Cryphonectria parasitica and Phytophthora cinnamomi) and insect pests (Dryocosmus kuriphilus Yasumatsu), molecular markers for breeding, ecological effects, endophytic fungi, and extracts with human health benefits. We also review research on chestnut in the food science field, technological improvements, the soil and fertilizer used for chestnut production, and the postharvest biology of chestnut. We noted differences in the factors affecting chestnut production among regions, including China, the Americas, and Europe, especially in the causal agents of disease and pests. For example, there is a major difference in the resistance of chestnut to C. parasitica in Asian, European, and American countries. Our review provides new insights into the integrated disease and pest management of chestnut trees in China. We hope that this review will foster collaboration among regions and help to clarify differences in the direction of breeding efforts among countries.
Collapse
Affiliation(s)
- Yanpeng Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Cuiyu Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhou Fang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Qiang Wu
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Yang Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Bangchu Gong
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xibing Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Junsheng Lai
- Qingyuan Bureau of Natural Resources and Planning, Lishui 323800, China
| | - Jingen Fan
- Lanxi City Nursery of Zhejiang Provence, Lanxi 321100, China
| |
Collapse
|
11
|
Paucar-Menacho LM, Castillo-Martínez WE, Simpalo-Lopez WD, Verona-Ruiz A, Lavado-Cruz A, Martínez-Villaluenga C, Peñas E, Frias J, Schmiele M. Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals. Foods 2022; 11:foods11131957. [PMID: 35804772 PMCID: PMC9265478 DOI: 10.3390/foods11131957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022] Open
Abstract
Bioactive compounds, such as phenolic compounds, are phytochemicals found in significant amounts in cereals and pseudocereals and are usually evaluated by spectrophotometric (UV-VIS), HPLC, and LC-MS techniques. However, their bioavailability in grains is quite limited. This restriction on bioavailability and bioaccessibility occurs because they are in conjugated polymeric forms. Additionally, they can be linked through chemical esterification and etherification to macro components. Techniques such as thermoplastic extrusion, germination, fermentation, and hydrolysis have been widely studied to release phenolic compounds in favor of their bioavailability and bioaccessibility, minimizing the loss of these thermosensitive components during processing. The increased availability of phenolic compounds increases the antioxidant capacity and favor their documented health promoting.
Collapse
Affiliation(s)
- Luz María Paucar-Menacho
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Williams Esteward Castillo-Martínez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Wilson Daniel Simpalo-Lopez
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Anggie Verona-Ruiz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Alicia Lavado-Cruz
- Departamento de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote 02711, Peru; (L.M.P.-M.); (W.E.C.-M.); (W.D.S.-L.); (A.V.-R.); (A.L.-C.)
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Elena Peñas
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Juana Frias
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (C.M.-V.); (E.P.) (J.F.)
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), MGT-367 Highway-Km 583, No. 5000, Diamantina 39100-000, Brazil
- Correspondence: ; Tel.: +55-38988037758
| |
Collapse
|