1
|
Huang Y, Liu Y, Fu N, Huang Q, Zhang H. Advances in the synthesis and properties of sulfur quantum dots for food safety detection and antibacterial applications. Food Chem 2025; 463:141055. [PMID: 39236382 DOI: 10.1016/j.foodchem.2024.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Food safety is closely related to human health and has become a worldwide, pressing concern. Food safety analysis is essential for ensuring food safety. Sulfur quantum dots (SQDs), a new type of zero-dimensional metal-free nanomaterials, have recently become the focus of scientific research due to their good luminescence properties, dispersibility, biocompatibility, and inherent antibacterial properties. This review focuses on recent advances in SQDs, with emphasis on their practical applications in the food field. First, commonly used methods for the synthesis of SQDs are presented, including traditional and emerging strategies. The properties of SQDs are then analyzed in detail, particularly their luminescence properties, catalytic activities, and reducing properties. Next, the use of SQDs in food safety detection and antibacterial fields are elaborated. Finally, this review discusses the challenges associated with the use of SQDs in food safety detection and antimicrobial applications.
Collapse
Affiliation(s)
- Yihong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yujia Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Ning Fu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| | - Hanqiang Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Key Laboratory of Biomedical Sensors of Ganzhou, School of Pharmacy, School of Medical and Information Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2024. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
3
|
Frigoli M, Krupa MP, Hooyberghs G, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Sensors for Antibiotic Detection: A Focused Review with a Brief Overview of Commercial Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5576. [PMID: 39275486 PMCID: PMC11398233 DOI: 10.3390/s24175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health, powered by pathogens that become increasingly proficient at withstanding antibiotic treatments. This review introduces the factors contributing to antimicrobial resistance (AMR), highlighting the presence of antibiotics in different environmental and biological matrices as a significant contributor to the resistance. It emphasizes the urgent need for robust and effective detection methods to identify these substances and mitigate their impact on AMR. Traditional techniques, such as liquid chromatography-mass spectrometry (LC-MS) and immunoassays, are discussed alongside their limitations. The review underscores the emerging role of biosensors as promising alternatives for antibiotic detection, with a particular focus on electrochemical biosensors. Therefore, the manuscript extensively explores the principles and various types of electrochemical biosensors, elucidating their advantages, including high sensitivity, rapid response, and potential for point-of-care applications. Moreover, the manuscript investigates recent advances in materials used to fabricate electrochemical platforms for antibiotic detection, such as aptamers and molecularly imprinted polymers, highlighting their role in enhancing sensor performance and selectivity. This review culminates with an evaluation and summary of commercially available and spin-off sensors for antibiotic detection, emphasizing their versatility and portability. By explaining the landscape, role, and future outlook of electrochemical biosensors in antibiotic detection, this review provides insights into the ongoing efforts to combat the escalating threat of AMR effectively.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mikolaj P Krupa
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Geert Hooyberghs
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
4
|
Bayrak S, Gergeroglu H. Graphene-based biosensors in milk analysis: A review of recent developments. Food Chem 2024; 440:138257. [PMID: 38154279 DOI: 10.1016/j.foodchem.2023.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cow's milk, an excellent source of fat, protein, amino acids, vitamins and minerals, is currently one of the most consumed products worldwide. Contaminations originating from diverse sources, such as biological, chemical, and physical, cause dairy product quality problems and thus dairy-related disorders, raising public health issues. For this reason, legal authorities have deemed it necessary to classify certain contaminations in commercial milk and keep them within particular limitations; therefore, it is urgent to develop next-generation detection systems that can accurately identify just the contaminants of concern to human health. This review presents a detailed investigation of biosensors based on graphene and its derivatives, which offer superior sensitivity and selectivity, by classifying the contaminants under the headings biological, chemical, and physical, in cow's milk according to their sources. We reviewed the current status of graphene-based biosensor (GBs) technology for milk or dairy analysis, highlighting its strengths and weaknesses with the help of comparative studies, tables, and charts, and we put forward a novel perspective to handle future challenges.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Food Engineering, Ege University, 35040 Izmir, Turkey.
| | - Hazal Gergeroglu
- CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia - San Sebastian, Spain
| |
Collapse
|
5
|
Nguyen SH, Nguyen VN, Tran MT. Dual-channel fluorescent sensors based on chitosan-coated Mn-doped ZnS micromaterials to detect ampicillin. Sci Rep 2024; 14:10066. [PMID: 38698009 PMCID: PMC11065863 DOI: 10.1038/s41598-024-59772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the β-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of β-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.
Collapse
Affiliation(s)
- Son Hai Nguyen
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Van-Nhat Nguyen
- College of Engineering and Computer Science, VinUniversity, Hanoi, 100000, Vietnam
| | - Mai Thi Tran
- College of Engineering and Computer Science, VinUniversity, Hanoi, 100000, Vietnam.
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, 100000, Vietnam.
| |
Collapse
|
6
|
Prakashan D, Kolhe P, Gandhi S. Design and fabrication of a competitive lateral flow assay using gold nanoparticle as capture probe for the rapid and on-site detection of penicillin antibiotic in food samples. Food Chem 2024; 439:138120. [PMID: 38064831 DOI: 10.1016/j.foodchem.2023.138120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Lateral flow assays (LFAs) are among the utmost cost-efficient, paper-based point-of-care (POC) diagnostic devices. Herein, we have reported the fabrication of a competitive LFA for on-site detection of penicillin. Various parameters such as Ab concentration for conjugation, Pen-BSA conjugate concentration, pore size of membrane, and blocking buffer were standardised for the fabrication of LFA. Different concentrations of penicillin (1 pM-1 mM) were added to the sample pad to observe the color intensity. The visual detection limit (LOD) achieved from the LFA was 10 nM for Penicillin that correlated with the LOD calculated from the 'ColorGrab' colorimeter application. Additionally, LFA showed insignificant cross reactivity with other β-lactam antibiotics and were also validated with spiked food samples such as milk, meat and egg. Hence, the fabricated LFA can be successfully utilised for the POC detection of penicillin in food samples on large scale.
Collapse
Affiliation(s)
- Drishya Prakashan
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Pratik Kolhe
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
7
|
Zou Y, Shi Y, Wang T, Ji S, Zhang X, Shen T, Huang X, Xiao J, Farag MA, Shi J, Zou X. Quantum dots as advanced nanomaterials for food quality and safety applications: A comprehensive review and future perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13339. [PMID: 38578165 DOI: 10.1111/1541-4337.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
The importance of food quality and safety lies in ensuring the best product quality to meet consumer demands and public health. Advanced technologies play a crucial role in minimizing the risk of foodborne illnesses, contamination, drug residue, and other potential hazards in food. Significant materials and technological advancements have been made throughout the food supply chain. Among them, quantum dots (QDs), as a class of advanced nanomaterials with unique physicochemical properties, are progressively demonstrating their value in the field of food quality and safety. This review aims to explore cutting-edge research on the different applications of QDs in food quality and safety, including encapsulation of bioactive compounds, detection of food analytes, food preservation and packaging, and intelligent food freshness indicators. Moreover, the modification strategies and potential toxicities of diverse QDs are outlined, which can affect performance and hinder applications in the food industry. The findings suggested that QDs are mainly used in analyte detection and active/intelligent food packaging. Various food analytes can be detected using QD-based sensors, including heavy metal ions, pesticides, antibiotics, microorganisms, additives, and functional components. Moreover, QD incorporation aided in improving the antibacterial and antioxidant activities of film/coatings, resulting in extended shelf life for packaged food. Finally, the perspectives and critical challenges for the productivity, toxicity, and practical application of QDs are also summarized. By consolidating these essential aspects into this review, the way for developing high-performance QD-based nanomaterials is presented for researchers and food technologists to better capitalize upon this technology in food applications.
Collapse
Affiliation(s)
- Yucheng Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Yongqiang Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Tianxing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Shengyang Ji
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Tingting Shen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaowei Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Universidade de Vigo, Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo P.B., Egypt
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| |
Collapse
|
8
|
Kolhe P, Shah M, Nathani A, Shekhar Sharma C, Gandhi S. Block copolymer-derived recessed nanodisk-array electrodes for electrochemical detection of β-lactam antibiotics. Food Chem 2024; 435:137557. [PMID: 37774611 DOI: 10.1016/j.foodchem.2023.137557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Antimicrobial resistance (AMR) is one of the major socio-economic factors contributing to public health. β-lactams are most commonly prescribed drugs for variety of bacterial infections. Frequent use of antibiotics leads to AMR in humans and animals. The present work is focused on developing an electro-immunosensor to control and regulate the excessive use of antibiotics in animal-based food products. An amphiphilic block co-polymer poly(ethylene oxide-block-methyl methacrylate)(PEO-b-PMMA) was used to fabricate recessed nano-disk array electrode (RNE) and immobilized with Pen-Ab and Cef-Ab antibodies. The Limit of detection (LOD) of RNE working electrode was found to be 14.8 pM for penicillin and 13.8 pM for cefalexin with good selectivity in presence of non-specific antibiotics. Fabricated RNE electrode could detect trace amounts of spiked antigen in real samples of milk, egg and meat extract. Further, mesoporous thin film and microarrays can eventually be used to develop point-of-care diagnosis of antibiotics in animal-based food products.
Collapse
Affiliation(s)
- Pratik Kolhe
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - Maitri Shah
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - Akash Nathani
- Creative & Advanced Research Based On Nanomaterials (CARBON) Lab, Department of Chemical Engineering, Indian Institute of Technology, Kandi, Sangareddy 502285, Telangana, India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Lab, Department of Chemical Engineering, Indian Institute of Technology, Kandi, Sangareddy 502285, Telangana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India.
| |
Collapse
|
9
|
Sun Y, Deng X, Luo C, Ma W, Liu W, Wang J, Li Q, Bu T, Zhang X. Time-resolved fluorescence microspheres-antibody-penicillin-binding protein assisted construction of immunochromatographic assay for sensitive detection of 22 β-lactams in milk. Mikrochim Acta 2023; 191:50. [PMID: 38141100 DOI: 10.1007/s00604-023-06106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
A sensitive immunochromatographic assay (ICA) using time-resolved fluorescence microspheres (TRFMs) coupled with an indirect-labeling mode was developed for simultaneously determining 22 kinds of β-lactams in milk samples. The TRFMs labeled anti-receptor monoclonal antibodies (mAbs) conjugated to penicillin-binding proteins (PBPs) as ternary TRFMs-mAb-PBPs (TMP) nanoscaffolds provide excellent solubility, brightness, and stability. Thanks to the fact that they not only fully expose the binding sites of PBPs, thereby enhancing the biological affinity of PBPs towards the target, but also generated superb fluorescence signals, the versatile TMP manifested unique possibilities as efficient probes for ICA with remarkable enhancement in sensitivity in β-lactams screening. The results showed that the standard curves of the 22 varying β-lactams displayed linearity in their respective concentration ranges (R2 > 0.98), with the cutoff values of 1-100 ng/mL. The constructed TMP-ICA was successfully applied to the analysis of real milk, with consistent results compared with liquid chromatography-tandem mass spectrometry (LC-MS), providing an effective method for sensing β-lactams in food matrices.
Collapse
Affiliation(s)
- Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, People's Republic of China
| | - Xiangjie Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, People's Republic of China
| | - Changwei Luo
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Wentao Ma
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Wanjing Liu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Jinkui Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Qingyue Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Tong Bu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China.
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
10
|
Pan M, Li H, Yang J, Wang Y, Wang Y, Han X, Wang S. Review: Synthesis of metal organic framework-based composites for application as immunosensors in food safety. Anal Chim Acta 2023; 1266:341331. [PMID: 37244661 DOI: 10.1016/j.aca.2023.341331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/29/2023]
Abstract
Ensuring food safety continues to be one of the major global challenges. For effective food safety monitoring, fast, sensitive, portable, and efficient food safety detection strategies must be devised. Metal organic frameworks (MOFs) are porous crystalline materials that have attracted attention for use in high-performance sensors for food safety detection owing to their advantages such as high porosity, large specific surface area, adjustable structure, and easy surface functional modification. Immunoassay strategies based on antigen-antibody specific binding are one of the important means for accurate and rapid detection of trace contaminants in food. Emerging MOFs and their composites with excellent properties are being synthesized, providing new ideas for immunoassays. This article summarizes the synthesis strategies of MOFs and MOF-based composites and their applications in the immunoassays of food contaminants. The challenges and prospects of the preparation and immunoassay applications of MOF-based composites are also presented. The findings of this study will contribute to the development and application of novel MOF-based composites with excellent properties and provide insights into advanced and efficient strategies for developing immunoassays.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Huilin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yixin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yueyao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Xintong Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China; Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
11
|
Qian W, Zhou J, Chen Y, Liu H, Ding P, Liu Y, Liang C, Zhu X, Zhang Y, Liu E, Wang A, Zhang G. Label-free electrochemical immunosensor based on staphylococcal protein a and AgNPs-rGO-Nf for sensitive detection of virginiamycin M1. Bioelectrochemistry 2023; 153:108489. [PMID: 37354640 DOI: 10.1016/j.bioelechem.2023.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Virginiamycin (VIR), a feed additive, is used to promote pig and poultry growth. However, it is hazardous to human health. This work described a label-free electrochemical immunosensor based on silver nanoparticles-reduced graphene oxide (AgNPs-rGO) nanocomposites and staphylococcal protein A (SPA) for the first time to directly detect the residual marker VIR M1. Good catalytic currents for oxygen reduction reaction were apparently obtained after the modification of nanocomposites on gold electrode. Nanocomposites were characterized using UV-Vis, X-ray diffraction (XRD) patterns, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). SPA was targeted to immobilize VIR M1 monoclonal antibody (mAb) by binding to Fc region of antibody. The proposed immunosensor showed a wide linear range from 0.25 ng mL-1 to 100 ng mL-1, providing detection limit (LOD) of 0.18 ng mL-1 of VIR M1. Recovery rates ranged from 92.27% to 98.84%, and relative standard deviation (RSD) was not above 6.6%, indicating the immunosensor could detect VIR M1 in actual samples with high accuracy. The sensor showed good selectivity, reproducibility and stability and could be considered as a potential tool for detection of VIR M1 in feed and animal derived food.
Collapse
Affiliation(s)
- Wenjing Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450002, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450002, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Enping Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450002, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China.
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450002, China; Henan Key Laboratory of Immunobiology, Zhengzhou 450001, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
13
|
Li Y, Chen X, Lin Y, Yang Y, Zhang L, Zhao P, Wang C, Fei J, Xie Y. Detection of catechins in tea beverages using a novel electrochemical sensor based on cyclodextrin nanosponges composite. EFOOD 2023. [DOI: 10.1002/efd2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
| | - Xiaoling Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
| | - Yueli Lin
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
| | - Li Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology Xiangtan University Xiangtan People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
- Hunan Institute of Advanced Sensing and Information Technology Xiangtan University Xiangtan People's Republic of China
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Xiangtan University Xiangtan People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Xiangtan University Xiangtan People's Republic of China
| |
Collapse
|
14
|
Shah M, Kolhe P, Gandhi S. Nano-assembly of multiwalled carbon nanotubes for sensitive voltammetric responses for the determination of residual levels of endosulfan. CHEMOSPHERE 2023; 321:138148. [PMID: 36804249 DOI: 10.1016/j.chemosphere.2023.138148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Endosulfan (ES) is an extensively utilized agricultural pesticide in developing countries, despite its life-threatening toxic effects. In this study, we propose a sensitive detection method against endosulfan using multiwalled carbon nanotubes (MWCNT). Herein, we have conjugated endosulfan with bovine serum albumin (BSA) via zero-length conjugation method and successfully confirmed with various biophysical techniques. Endosulfan antibodies (ES-Ab) were raised in-house, fabricated on electrodes coupled with MWCNT, and optimized to achieve maximum peak current by varying the parameters such as MWCNT and antibody concentration, scan rate, temperature, pH, and response time using voltammetry. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and impedance spectroscopies (IS) were performed for electrochemical analysis. The fabricated immunosensor was also evaluated for its cross reactivity with isodrin, chlorpyrifos, and monocrotophos. The limit of detection for ES was found to be 0.184 ppt in standard buffer (range 0.001 ppt-100 ppb). Additionally, spiked ES in water, animal feed, root, and leaf extract samples were also analyzed and validated by HPLC. To summarize, the fabricated electrode can be used for successful detection of endosulfan in the agricultural sector to elude the lethal effect at large.
Collapse
Affiliation(s)
- Maitri Shah
- DBT- National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Pratik Kolhe
- DBT- National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Sonu Gandhi
- DBT- National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India.
| |
Collapse
|
15
|
Richard YA, Lincy SA, Piraman S, Dharuman V. Label-free electrochemical detection of cancer biomarkers DNA and anti-p53 at tin oxide quantum dot-gold-DNA nanoparticle modified electrode. Bioelectrochemistry 2023; 150:108371. [PMID: 36640456 DOI: 10.1016/j.bioelechem.2023.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Lung cancer is one of the deadliest types of cancer and accounts for 8.1% of all cancer related deaths. To prevent a growing death rate, it is crucial to identify lung cancer at an early stage by single polynucleotide morphism detection. In this paper, we present a novel label-free electrochemical biosensor based on composites of tin oxide quantum dots and gold nanoparticles (SnO2-QD-Au) for the sensitive and precise detection of lung cancer DNA. The SnO2-QD and SnO2-QD-Au nanoparticles were characterized using Scanning and Transmission Electron Microscopes (SEM and TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy (UV), Fourier transmission infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Gold thiol covalent bonding was used for immobilising probe DNA on the surface of SnO2-QD-Au nanoparticles followed by target DNA hybridization and detected electrochemically in presence of 1 mM [Fe(CN6)]3-/4-as a redox couple probe. Under ideal circumstances, the sensor showed the lowest detection limit of 3.2 × 10-20 M with a linear range of 1 × 10-6 - 1 × 10-20 M. Additionally, the sensing method was applied to find a cancer biomarker, Anti-P53 antibody.
Collapse
Affiliation(s)
- Yesurajan Allwin Richard
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India
| | - Sebastinbaskar Aniu Lincy
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India
| | - Shakkthivel Piraman
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi 630 003, India
| | - Venkataraman Dharuman
- Molecular Electronics Laboratory, Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630 003, India.
| |
Collapse
|
16
|
Hong J, Su M, Zhao K, Zhou Y, Wang J, Zhou SF, Lin X. A Minireview for Recent Development of Nanomaterial-Based Detection of Antibiotics. BIOSENSORS 2023; 13:327. [PMID: 36979539 PMCID: PMC10046170 DOI: 10.3390/bios13030327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics are considered a new type of organic pollutant. Antibiotic residues have become a global issue due to their harm to human health. As the use of antibiotics is increasing in human life, such as in medicine, crops, livestock, and even drinking water, the accurate analysis of antibiotics is very vital. In order to develop rapid and on-site approaches for the detection of antibiotics and the analysis of trace-level residual antibiotics, a high-sensitivity, simple, and portable solution is required. Meanwhile, the rapid nanotechnology development of a variety of nanomaterials has been achieved. In this review, nanomaterial-based techniques for antibiotic detection are discussed, and some reports that have employed combined nanomaterials with optical techniques or electrochemical techniques are highlighted.
Collapse
Affiliation(s)
- Jiafu Hong
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Mengxing Su
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Kunmeng Zhao
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yihui Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingjing Wang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Shu-Feng Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xuexia Lin
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
17
|
Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A, Gandhi S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100284. [PMID: 36448023 PMCID: PMC9691282 DOI: 10.1016/j.biosx.2022.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 04/12/2023]
Abstract
The recent COVID-19 infection outbreak has raised the demand for rapid, highly sensitive POC biosensing technology for intelligent health and wellness. In this direction, efforts are being made to explore high-performance nano-systems for developing novel sensing technologies capable of functioning at point-of-care (POC) applications for quick diagnosis, data acquisition, and disease management. A combination of nanostructures [i.e., 0D (nanoparticles & quantum dots), 1D (nanorods, nanofibers, nanopillars, & nanowires), 2D (nanosheets, nanoplates, nanopores) & 3D nanomaterials (nanocomposites and complex hierarchical structures)], biosensing prototype, and micro-electronics makes biosensing suitable for early diagnosis, detection & prevention of life-threatening diseases. However, a knowledge gap associated with the potential of 0D, 1D, 2D, and 3D nanostructures for the design and development of efficient POC sensing is yet to be explored carefully and critically. With this focus, this review highlights the latest engineered 0D, 1D, 2D, and 3D nanomaterials for developing next-generation miniaturized, portable POC biosensors development to achieve high sensitivity with potential integration with the internet of medical things (IoMT, for miniaturization and data collection, security, and sharing), artificial intelligence (AI, for desired analytics), etc. for better diagnosis and disease management at the personalized level.
Collapse
Affiliation(s)
- Manisha Byakodi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| | - Riya Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Yogendra Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| |
Collapse
|
18
|
Shah M, Kolhe P, Roberts A, Shrikrishna NS, Gandhi S. Ultrasensitive immunosensing of Penicillin G in food samples using reduced graphene oxide (rGO) decorated electrode surface. Colloids Surf B Biointerfaces 2022; 219:112812. [PMID: 36088829 DOI: 10.1016/j.colsurfb.2022.112812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 01/02/2023]
Abstract
The impact of uncontrolled antibiotic use in animals has subsequently led to emergence of antibiotic-resistant bacteria among humans due to consumption of animal by-products. Hence, to investigate antibiotic contamination in animal origin food products, we have developed a reduced graphene oxide (rGO) based immunosensor using fabricated electrode conjugated with anti-Penicillin antibody (rGO/Pen-Ab) for sensitive detection of Penicillin G. To execute this, Penicillin was first conjugated with Bovine Serum Albumin (BSA) which was confirmed via chromatographic, spectroscopic and electrophoretic-based techniques against both the in-house developed Penicillin conjugate (Pen-BSA) as well as the commercial Penicillin conjugate (Com-Pen-BSA). Further, we fabricated electrode based on one step synthesized rGO and immobilized with antibodies generated against Pen-BSA (Pen-Ab), and Com-Pen-BSA (Com-Pen-Ab), separately for detection of Penicillin. Each synthesis and conjugation step was confirmed by different spectroscopic methods. For efficient working of the electrode, various parameters were optimized using Voltammetry. The limit of detection for Penicillin G against Pen-Ab and Com-Pen-Ab was determined as 0.724 pM and 0.668 pM respectively and both displayed negligible cross reactivity against other β-lactam antibiotics (Cefalexin and Ampicillin). Furthermore, antibiotics were also detected in spiked milk, egg and meat samples and the electrode was evaluated for repeatability and storage stability. In conclusion, in-house developed Pen-Ab showed better sensitivity as compared to Com-Pen-Ab. The fabricated rGO/Pen-Ab biosensor shows future potential for rapid detection of penicillin and other β-lactam antibiotics for safe consumption of animal by-products in humans.
Collapse
Affiliation(s)
- Maitri Shah
- DBT -National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - Pratik Kolhe
- DBT -National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - Akanksha Roberts
- DBT -National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | | | - Sonu Gandhi
- DBT -National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India.
| |
Collapse
|