1
|
Jia W, Guo A, Bian W, Zhang R, Wang X, Shi L. Integrative deep learning framework predicts lipidomics-based investigation of preservatives on meat nutritional biomarkers and metabolic pathways. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 38127336 DOI: 10.1080/10408398.2023.2295016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Preservatives are added as antimicrobial agents to extend the shelf life of meat. Adding preservatives to meat products can affect their flavor and nutrition. This review clarifies the effects of preservatives on metabolic pathways and network molecular transformations in meat products based on lipidomics, metabolomics and proteomics analyses. Preservatives change the nutrient content of meat products via altering ionic strength and pH to influence enzyme activity. Ionic strength in salt triggers muscle triglyceride hydrolysis by causing phosphorylation and lipid droplet splitting in adipose tissue hormone-sensitive lipase and triglyceride lipase. DisoLipPred exploiting deep recurrent networks and transfer learning can predict the lipid binding trend of each amino acid in the disordered region of input protein sequences, which could provide omics analyses of biomarkers metabolic pathways in meat products. While conventional meat quality assessment tools are unable to elucidate the intrinsic mechanisms and pathways of variables in the influences of preservatives on the quality of meat products, the promising application of omics techniques in food analysis and discovery through multimodal learning prediction algorithms of neural networks (e.g., deep neural network, convolutional neural network, artificial neural network) will drive the meat industry to develop new strategies for food spoilage prevention and control.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Agricultural Product Processing and Inspection Center, Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi, China
- Agricultural Product Quality Research Center, Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
- Food Safety Testing Center, Shaanxi Sky Pet Biotechnology Co., Ltd, Xi'an, China
| | - Aiai Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenwen Bian
- Agricultural Product Processing and Inspection Center, Shaanxi Testing Institute of Product Quality Supervision, Xi'an, Shaanxi, China
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
2
|
Jia W, Zhu J. Molecular Mechanism of ε-Polylysine Treatment of Animal-Derived Foods: Glycine Amidinotransferase Activity Implicates Upregulation of l-Arginine and Creatine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15106-15120. [PMID: 37793042 DOI: 10.1021/acs.jafc.3c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
ε-Polylysine is a novel food preservative approved by the U.S. Food and Drug Administration (FDA), yet the mechanism of its effect on animal-derived foods remains unclear. Assessment of the effect of preservatives on goat meat products is necessary. Herein, metabolite accumulation and protein expression of ε-polylysine (0.025%, w/w) spiked with goat meat were investigated by nontarget metabolomics and proteomics combined with ultrahigh performance liquid chromatography quadrupole-Orbitrap high-resolution-mass spectrometry (UHPLC-Q-Orbitrap HRMS) in a simulated in vitro digestion model. The amino side chain of ε-polylysine increased the activity of glycine aminotransferase due to its nucleophilic nature, inducing a significant upregulation of l-arginine (0.43-0.72 mg kg-1) and creatine (3.98-6.89 mg kg-1), with an improvement in muscle quality of goat meat. Downregulation of enzyme phenylalanine hydroxylase expression led to upregulation of l-phenylalanine (2.26-3.25 mg kg-1) and l-tyrosine (0.98-1.29 mg kg-1). Collectively, this study first revealed the biochemical mechanism of ε-polylysine in goat meat products, which makes available new prospects for more accurate use of ε-polylysine in animal-derived foods.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Jiying Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Fan Z, Jia W. Ambient 1,2-propanediol exposure accelerates the degradation of lipids and amino acids in milk via allosteric effects and affects the utilization of nutrients containing amide bond. Food Res Int 2023; 170:112965. [PMID: 37316053 DOI: 10.1016/j.foodres.2023.112965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The scandal of detecting 1, 2-propanediol (PL) in milk brought a crisis to the trust of consumers in the dairy industry, and the potential toxicity of PL has aroused the public concern about dietary exposure. A total of 200 pasteurized milk samples were collected from 15 regions, and the quantity of PL ranged between 0 and 0.31 g kg-1. Pseudo-targeted quantitative metabolomics integrated with proteomics demonstrated that PL enhanced the reduction of κ-casein, β-casein, and 107 substances (41 amines and 66 amides) containing amide bonds. Pathway enrichment and topological analysis indicated that PL induced the metabolism of lipids, amino acids, oligosaccharide nucleotides, and alkaloids by accelerating the rate of nucleophilic reaction, and acetylcholinesterase, sarcosine oxidase, and prolyl 4-hydroxylase were determined as the vital enzymes related to the degradation of above nutrients. The results of molecular simulation calculation illustrated that the number of hydrogen bonds between acetylcholinesterase, sarcosine oxidase, and substrate increased to 2 and 3, respectively, while the position of hydrogen bonds between prolyl 4-hydroxylase and proline was shifted, indicating the change of conformation and the enhancement of hydrogen bond force were essential factors for the up-regulation of enzyme activity. This study first revealed the mechanism of deposition and transformation of PL in milk, which contributed to the knowledge of the quality control of milk and provided vital indicators to evaluate the adverse risks of PL in dairy products.
Collapse
Affiliation(s)
- Zibian Fan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
4
|
Zhang R, Jia W. Deciphering the competitive binding interaction of β-lactoglobulin with benzaldehyde and vanillic acid via high-spatial-resolution multi-spectroscopic. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Du A, Jia W. New insights into the bioaccessibility and metabolic fates of short-chain bioactive peptides in goat milk using the INFOGEST static digestion model and an improved data acquisition strategy. Food Res Int 2023; 169:112948. [PMID: 37254372 DOI: 10.1016/j.foodres.2023.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
The metabolic fates of potentially bioactive short-chain peptides (SCPs; amino acid numbers between 2 and 4) in gastrointestinal digestion have received little attention due to their low concentration and broad suppression during high resolution mass spectrometry (HRMS) analysis. A tailored workflow integrating mesoporous magnetic solid phase extraction and a novel ion transmission strategy (data-dependent acquisition combined with both an inclusion list and an exclusion list followed by a data-independent acquisition) was used to profile the composition of SCPs during in vitro simulated digestion (LOQ 0.02 to 0.1 μg L-1). A total of 47 dipeptides, 59 tripeptides, and 21 tetrapeptides were identified and quantified from 0.01 to 27.84 mg L-1 (RSD ≤ 9.1%) based on parallel reaction monitoring and an internal standard method. The structural properties of stable SCPs resistant to intestinal digestion were determined by analysis of variance (p < 0.05), with a Pro residue at the C-terminal or penultimate position, a slightly greater negative charge at pH 7.0, and fewer C-terminal aliphatic and polar amino acids. SCPs' metabolic fates varied during digestion, but the overall trend of content change for either total or individual SCP increased as the digestion proceeded, and they were further assessed by a database-driven bioactivity search, which matched a wide variety of bioactivities with the predominance of dipeptidyl peptidase (DPP) IV and angiotensin-converting enzyme (ACE) inhibitors. This study facilitated the understanding of bioaccessibility of the food-derived SCPs and provided essential guidelines for the properties of conserved structure in vivo.
Collapse
Affiliation(s)
- An Du
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
6
|
Jia W, Wang X. 3-Chloropropane-1,2-diol exposure adversely influenced the bio-accessibility signatures of digested infant foods by suppressing the destabilization of α-lactalbumin and d-aspartate oxidase in a dose-dependent manner. Food Chem 2023; 427:136729. [PMID: 37385056 DOI: 10.1016/j.foodchem.2023.136729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The potential mechanisms about the health risks of endogenous 3-MCPD remain elusive. Here, we researched the influences of 3-MCPD on the metabolic landscape of digested goat infant formulas via integrative UHPLC-Q-Orbitrap HRMS-MS/MS-based peptidomics and metabolomics (%RSDs ≤ 7.35 %, LOQ 2.99-58.77 μg kg-1). Digested goat infant formulas under 3-MCPD-interference caused metabolic perturbation by down-regulating levels of peptides VGINYWLAHK (5.98-0.72 mg kg-1) and HLMCLSWQ (3.25-0.72 mg kg-1) pertained to health-promoting bioactive components, and accelerated the down-regulation of non-essential amino acids (AAs, l-tyrosine 0.88-0.39 mg kg-1, glutamic acid 8.83-0.88 μg kg-1, and d-aspartic acid 2.93-0.43 μg kg-1), semi-essential AA (l-arginine 13.06-8.12 μg kg-1) and essential AAs (l-phenylalanine 0.49-0.05 mg kg-1) that provide nutritional value. Peptidomics and metabolomics interactions elucidated that 3-MCPD altered the stability of α-lactalbumin and d-aspartate oxidase in a dose-dependent manner, and affected the flavor perception of goat infant formulas, leading to a decline of nutritional value of goat infant formulas.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Jia W, Wang X. Zanthoxylum bungeanum as a natural pickling spice alleviates health risks in animal-derived foods via up-regulating glutathione S-transferase, down-regulating cytochrome P450 1A. Food Chem 2023; 411:135535. [PMID: 36701916 DOI: 10.1016/j.foodchem.2023.135535] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endogenous aflatoxin B1 (AFB1) was quantified in five hundred and forty Hengshan goat meat samples (0.00 ± 23.09 μg kg-1). Zanthoxylum bungeanum (Z. bungeanum), as a natural pickling spice, can ameliorate the flavor of animal-derived food (goat meat). Yet, considering the direct administration of Z. bungeanum in AFB1-contaminated goat meat, the degradation mechanisms of AFB1 remain elusive. Here, UHPLC-Q-Orbitrap HRMS-based integrative metabolomics (LOQ: 1.74-59.54 μg kg-1) and proteomics analyses were executed to determine the effects of Z. bungeanum in the biotransformation of AFB1. Z. bungeanum (1.50 %, w/w) application mediated the metabolism of xenobiotics by cytochrome P450, significantly down-regulated cytochrome P450 1A and stimulated the up-regulation of glutathione S-transferase levels in AFB1-contaminated goat meat, leading to degradation of AFB1 (20.00-3.39 μg kg-1). Metabolomics assays indicated that Z. bungeanum up-regulated l-histidine (1.43-2.21 mg kg-1) and l-arginine, manifesting potential applications for the contribution of Z. bungeanum to the nutritional value of goat meat.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Jia W, Wu X, Liu N, Xia Z, Shi L. Quantitative fusion omics reveals that refrigeration drives methionine degradation through perturbing 5-methyltetrahydropteroyltriglutamate-homocysteine activity. Food Chem 2023; 409:135322. [PMID: 36584532 DOI: 10.1016/j.foodchem.2022.135322] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Postharvest senescence and quality deterioration of fresh tea leaves occurred due to the limitation of processing capacity. Refrigerated storage prolongs the shelf life of fresh tea. In this study, quantitative fusion omics delineated the translational landscape of metabolites and proteins in time-series (0-12 days) refrigerated tea by UHPLC-Q-Orbitrap HRMS. Accurate quantification results showed the content of amino acids, especially l-theanine, decreased with the lengthening of the storage duration (15.57 mg g-1 to 7.65 mg g-1) driven by theanine synthetase. Downregulation of enzyme 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase expression led to methionine degradation (6.29 µg g-1 to 1.78 µg g-1). Refrigerated storage inhibited serine carboxypeptidase-like acyltransferases activity (59.49 % reduction in 12 days) and induced the polymerization of epicatechin and epigallocatechin and generation of procyanidin dimer and δ-type dehydrodicatechin, causing the manifestation of color deterioration. A predictive model incorporating zero-order reaction and Arrhenius equation was constructed to forecast the storage time of green tea.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ning Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Zengrun Xia
- Ankang Research and Development Center for Se-enriched Products, Ankang 725000, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
9
|
Di C, Jia W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit Rev Food Sci Nutr 2023; 64:9210-9227. [PMID: 37171059 DOI: 10.1080/10408398.2023.2209192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Muscle injury is defined as an overuse injury or traumatic distraction of a muscle, which is latent in any sport event, from amateur to large events. Based on previous numbers of muscle injuries and time spent to the athletes' recovery, the use of dietary functional factors intervention strategies is essential to enhance the recovery process and health. In recent years, there has been increasing evidence that biologically active peptides played an important role in sports nutrition and muscle injure recovery. Food-derived bioactive peptides were physiologically active peptides mostly derived from proteins following hydrolysis, which could be resorbed in intact form to reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. However, the complexity of the histoarchitectural considerations for skeletal muscle injuries and the repair mechanism of damaged skeletal muscle were not well known. In the following overview, the potential mechanisms and possible limitations regarding the damaged skeletal muscle metabolism were summarized, which aimed to present an overview of the nutritional strategies and recommendations after a muscular sports injury, emphasizing the use of main bioactive peptides. In addition, this review will provide implications for the studies of dietary bioactive peptides in the future.
Collapse
Affiliation(s)
- Chenna Di
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| |
Collapse
|
10
|
Jia W, Wu X, Kang X. Integrated the embedding delivery system and targeted oxygen scavenger enhances free radical scavenging capacity. Food Chem X 2023; 17:100558. [PMID: 36845467 PMCID: PMC9943856 DOI: 10.1016/j.fochx.2022.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.
Collapse
Key Words
- Antioxidant control strategies
- Antioxidations
- BHA, butyl hydroxy anisole
- BHT, butylated hydroxytoluene
- FDA, Food and Drug Administration
- HPLC, high performance liquid chromatography
- HPODE, hydroperoxyoctadecadienoic acid
- LC, liquid chromatography
- Linoleic acid
- Lipoxygenase
- MDA, malondialdehyde
- MPN, metal-polyphenol network
- MS, mass spectrometry
- MUFA, monounsaturated fatty acid
- Nanocomposite packaging
- Nanoparticle delivery system
- PUFA, polyunsaturated fatty acid
- SFA, saturated fatty acid
- TA, tannic acid
- TBHQ, tert-butyl hydroquinone
- US FDA, US Food and Drug Administration
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Kang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Unraveling propylene glycol-induced lipolysis of the biosynthesis pathway in ultra-high temperature milk using high resolution mass spectrometry untargeted lipidomics and proteomics. Food Res Int 2023; 164:112459. [PMID: 36738011 DOI: 10.1016/j.foodres.2023.112459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
In July 2022, the food safety accident that excessive propylene glycol was detected in milk processing factory raised widespread concerns about quality and nutrition of milk with illegal additive. To the best of our knowledge, the influences of propylene glycol to lipids in milk had not been systematically explored. Therefore, spatiotemporal distributions of lipids related to propylene glycol reaction and changes of sensory quality were investigated by food exogenous. Briefly, 10 subclasses (Cer, DG, HexCer, LPC, LPE, PC, PE, PI, SPH and TG) included 147 lipids and 38 pivotal enzymes were annotated. Propylene glycol altered lysophospholipidase and phospholipase A2 through altering structural order in lipids domains surrounding proteins to inhibit glycerophospholipid metabolism and initiated obvious changes in PC (10.45-27.91 mg kg-1) and PE (12.92-49.02 mg kg-1). This study offered insights into influences of propylene glycol doses and storage time on milk metabolism at molecular level to assess the quality of milk.
Collapse
|
12
|
Goat milk-derived short chain peptides: Peptide LPYV as species-specific characteristic and their versatility bioactivities by MOF@Fe 3O 4@GO mesoporous magnetic-based peptidomics. Food Res Int 2023; 164:112442. [PMID: 36738007 DOI: 10.1016/j.foodres.2022.112442] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Goat milk as an ideal substitute for human milk has not been sufficiently explored. An in-situ synthesized MOF@Fe3O4@GO was demonstrated as a magnetic mesoporous adsorbent for efficiently enriching short chain peptides (SCPs) in milk compared with the routine solid phase extraction approach with graphite carbon black or C18 as the packing material in terms of the number of enriched SCPs and data stability. A total of 61 and 126 SCPs were identified and quantified in bovine milk (0.09-89.34 μg L-1) and goat milk (10.5-1267.06 μg L-1), respectively, and peptide LPYV can be used as a potential marker for adulteration of goat milk. Relative high expression of chymotrypsin and pepsin by EnzymePredictor analysis could partially elaborate the reason of the abundance of SCPs in goat milk. Compared with bovine milk, further bioinformatics analysis indicated that goat milk could own higher nutritional value because of relative higher concentrations (>1 mg/L) of SCPs (LLV, FL, LVYP) with confirmed bioactivities including angiotensin-converting enzyme (ACE) inhibitor, antioxidant, dipeptidylpeptidase (DPP) III and DPP IV inhibitor, etc. Overall, this study opened a novel avenue for understanding versatility benefit of dairy products from a perspective of SCPs by using a developed MOF@Fe3O4@GO mesoporous magnetic-based peptidomics.
Collapse
|
13
|
Jia W, Ma R. Cross-modal interactions caused by nonvolatile compounds derived from fermentation, distillation and aging to harmonize flavor. Crit Rev Food Sci Nutr 2023; 64:6686-6713. [PMID: 36718555 DOI: 10.1080/10408398.2023.2172714] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chinese liquor (Baijiu), unique liquor produced in China and among the six world-renowned distilled liquors, is never a follower of others. Flavor is the essential characteristics of Baijiu which largely affect consumers' acceptance and selection. Though the flavor of Baijiu has been widely explored, the majority of research and review mainly focused on the volatile compounds in Baijiu. The research status on detection, source and flavor contribution of nonvolatile compounds in Baijiu is clarified in the article based on available literatures and knowledge. The nonvolatile composition of Baijiu is the result of contributions of different degrees from each step involved in the production process. Gas chromatography-mass spectrometry combined with derivatization and ultra-high performance liquid chromatography coupled to mass spectrometry is the generally adopted methods for the characterization of nonvolatile compounds in Baijiu. Certain nonvolatile compounds are taste-active compounds. Cross-modal interactions caused by nonvolatile composition could affect the aroma intensity of flavor compounds in Baijiu. The work provides numerous incompletely explored but useful points for the flavor chemistry of Baijiu and lays a theoretical foundation for the better understanding of Baijiu flavor and rapid development of Baijiu industry.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Rutian Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
14
|
Synergy of physicochemical reactions occurred during aging for harmonizing and improving flavor. Food Chem X 2022; 17:100554. [PMID: 36845494 PMCID: PMC9944979 DOI: 10.1016/j.fochx.2022.100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Numerous counterfeit vintage Baijiu are widely distributed in the market driven by economic interest which disturb the market economic rules and damage the reputation of particular Baijiu brand. Found on the situation, the Baijiu system variation during aging period, aging mechanisms and discrimination strategies for vintage Baijiu are systematically illuminated. The aging mechanisms of Baijiu cover volatilization, oxidation, association, esterification, hydrolysis, formation of colloid molecules and catalysis by metal elements or other raw materials dissolved from storage vessels. The discrimination of aged Baijiu has been performed by electrochemical method, colorimetric sensor array or component characterization coupled with multivariate analysis. Nevertheless, the characterization of non-volatile compounds in aged Baijiu is deficient. Further research on the aging principles, more easy-operation and low-cost discrimination strategies for aged Baijiu are imperative. The above information is favorable to better understand the aging process and mechanisms of Baijiu, and promote the development of artificial aging techniques.
Collapse
|
15
|
Jia W, Wang X, Shi L. Interference of endogenous benzoic acid with the signatures of sulfonic acid derivatives and carbohydrates in fermented dairy products. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|