1
|
Wu X, Zhang Q, Zhou D, Zhang L, Zhou H, Gao X, Fang X, Huo C, Zhang J. Corn Stover-derived nanocellulose and lignin-modified particles: Pickering emulsion stabilizers and potential quercetin sustained-release carriers. Food Chem 2025; 465:142021. [PMID: 39571425 DOI: 10.1016/j.foodchem.2024.142021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/09/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
Pickering emulsions (PEs) have wide applications in delivering nutraceuticals. However, the impact of extracting nanocellulose from corn stover on stabilizing PEs and delivering nutraceuticals remains unclear. In this study, four types of nanocellulose, cellulose nanocrystals (CNC), cellulose nanofibers (CNF), lignin-containing cellulose nanocrystals (LCNC), and lignin-containing cellulose nanofibers (LCNF) were successfully prepared from corn stover, an agricultural waste. Among them, LCNC and LCNF exhibited stable reticulated microstructures, lower crystallinity, and excellent thermal stability. Besides, lignin enhanced the nanoparticles' hydrophobicity, promoting the formation of more ideally amphiphilic particles, resulting in denser emulsions at the oil-water interface. Furthermore, emulsions stabilized by LCNC and LCNF demonstrated remarkable resistance to quercetin degradation under UV light exposure (with residual level exceeding 90 %) and improved quercetin's bioaccessibility during the in vitro digestion tests, achieving the highest bioaccessibility of 48.3 %. This study provided an innovative perspective on utilizing stover-derived materials for stabilizing PEs and delivering lipophilic nutrients.
Collapse
Affiliation(s)
- Xinling Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Qiang Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Deyi Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Li Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Haigen Zhou
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Xiaodi Gao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Xuwen Fang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Chao Huo
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| | - Jinsong Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, PR China.
| |
Collapse
|
2
|
Liu Q, Liu P, Ban Q. Green development strategy for efficient quercetin- loaded whey protein complex: Focus on quercetin loading characteristics, component interactions, stability, antioxidant, and in vitro digestive properties. Food Chem 2025; 472:142939. [PMID: 39842208 DOI: 10.1016/j.foodchem.2025.142939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
This study aimed to develop a quercetin-loaded whey protein complex using pH-induced co-assembly for the intestinal-targeted delivery of quercetin. The investigation focused on quercetin loading capacity, formation mechanism, stability, antioxidant activity, and in vitro digestive properties of the complex. The results indicated that the stable complex was obtained at a quercetin-to-protein mass ratio of 1:20, exhibiting a high encapsulation efficiency (96.4 %) and loading capacity (4.6 %). Interaction studies revealed that quercetin binds to whey protein via hydrophobic interactions and hydrogen bonding, forming an irregular layered structure. Stability analysis demonstrated that the complex possesses high ionic and thermal stability. The antioxidant capacity of quercetin was significantly enhanced by complex encapsulation. In vitro digestion studies showed that the complex could pass through the gastrointestinal tract smoothly and effectively improve the bio-accessibility of quercetin. These findings provide a theoretical basis for the application of whey protein-based quercetin delivery systems in the functional food field.
Collapse
Affiliation(s)
- Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
| | - Puying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Liu Y, Dong F, Zhou L, Zhao Q, Zhang S. Development of soybean protein-based bioactive substances delivery systems: A systematic overview based on recent researches. Int J Biol Macromol 2025; 285:137998. [PMID: 39626811 DOI: 10.1016/j.ijbiomac.2024.137998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Some bioactive substances in food have problems such as poor solubility, unstable chemical properties and low bioavailability, which limit their application in functional foods. In recent years, in order to improve the above problems of bioactive substances, soybean protein-based drug delivery systems have been developed. This article reviewed the structure and properties of several major soybean protein commonly used to construct bioactive substance delivery systems. Several common carrier types based on soybean protein were then introduced. The biological functions and limitations of several common soybean protein delivery bioactive substances and the role of soybean protein-based delivery systems were discussed. At present, soybean protein is the most widely used in drug delivery systems. Soybean protein-based nano-particles are currently the most commonly used delivery carriers. Soybean protein-based hydrogels, emulsions, microcapsules and electrospinning are also widely used. Polyphenols, carotenoids, vitamins, functional oils and probiotics are bioactive substances that are frequently delivered. However, in order to promote the application of soybean protein-based delivery systems in food, soybean protein peptidyl delivery vectors and collaborative delivery are the future development trends. In addition, a number of challenges must be addressed, including the sensitization of soybean protein, intolerance to environmental conditions, and the limitations of processing technologies.
Collapse
Affiliation(s)
- Yuexin Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengjuan Dong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- School of food and health, Beijing Technology and Business University, Beijing 100048, China
| | - Qingkui Zhao
- Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Research and Product Development Center, Shandong Guohong Biotechnology Company Limited, Liaocheng, Shandong 252899, China.
| |
Collapse
|
4
|
Cao X, Cao J, Xu T, Zheng L, Dai J, Zhang X, Tian T, Ren K, Tong X, Wang H, Jiang L. Construction of nanodelivery system based on the interaction mechanism between ultrasound-treated soybean whey protein and quercetin: structure, physicochemical stability and bioaccessibility. ULTRASONICS SONOCHEMISTRY 2025; 112:107195. [PMID: 39671813 PMCID: PMC11700283 DOI: 10.1016/j.ultsonch.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
In this study, soybean whey protein (SWP) nanodelivery system was constructed through ultrasound treatment and quercetin (Que) modification. The effect of ultrasound power on the interaction mode between SWP and Que, and the formation and stability of SWP-Que nanodelivery system were investigated. Optimal ultrasound treatment (300-500 W) produced SWP-Que nanoparticles with smaller particle size, higher ζ-potential values, and more uniform dispersion. Fluorescence spectroscopy and FTIR analyses revealed that SWP primarily binds to Que through hydrophobic interactions. Ultrasound treatment induced the unfolding of the SWP structure, thereby increasing its binding affinity to Que. After 400 W sonication, the encapsulation efficiency can reach 95.63 ± 0.60 %. The SWP-Que nanoparticles protected Que from degradation under environmental stresses (heat, UV, and storage) and improved its bioaccessibility during digestion as the ultrasonic power of 400 W. This study highlights the potential of ultrasound-modified SWP nanoparticles for effective nutrient delivery.
Collapse
Affiliation(s)
- Xinru Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianhe Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lexi Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingyi Dai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaokun Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian Tian
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Agricultural, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Li J, Li L. Insight into the binding mechanism between soy protein isolate-oat β-glucan extrudate and quercetin in nanoparticles by multi-spectroscopic techniques. Food Chem 2024; 471:142723. [PMID: 39799681 DOI: 10.1016/j.foodchem.2024.142723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/07/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Nanoparticles prepared by soy protein isolate (SPI)-oat β-glucan (OG) extrudates (E-SPI-OG) could encapsulate quercetin and improve its bioaccessibility. This study systematically investigated the binding mechanism between E-SPI-OG and quercetin in nanoparticles using multi-spectroscopic techniques. The results revealed that fluorescence quenching via static type occurred during the interaction between E-SPI-OG and quercetin, accompanied by the occurrence of non-radiative energy transfer (binding distance was 2.99 nm and less than 7 nm). The interaction between E-SPI-OG and quercetin was an endothermic and spontaneous binding process (ΔH > 0 and ΔG < 0) and mainly driven by hydrophobic interactions (ΔH of 4.92 kJ·mol-1 and ΔS of 121.39 J·mol-1·K-1). Tryptophan and tyrosine residues of E-SPI-OG were involved in binding to quercetin, resulting in a larger binding constant (2.07-5.48 × 105 L·mol-1) and more binding sites (1.15-1.25). Quercetin altered the secondary structure of E-SPI-OG (α-helix content was reduced from 8.9 % to 6.75 %), causing its structure to become loose.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Wang Y, Jiang Y, Shi J. Fabrication of novel casein/oligochitosan nanocomplexes for lutein delivery: Enhanced stability, bioavailability, and antioxidant properties. Food Res Int 2024; 197:115241. [PMID: 39593323 DOI: 10.1016/j.foodres.2024.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
This study aimed to prepare novel nanocomplexes for delivery of lutein using transglutaminase (TGase)-type glycation of casein. The effect of glycated casein nanoparticles on the environmental stability, bioavailability, and antioxidant properties of lutein was investigated. Glycated casein nanoparticles with uniform distribution and small particle size were successfully prepared by ultrasound technology. The structure analysis revealed intermolecular interactions between lutein and glycated casein, with the complexes having a spherical and stable structure. The fabricated nanoparticles exhibited a high encapsulation efficiency (91.89%) and loading capacity (3.06%) for lutein. TGase-type glycation of casein nanoparticles contributed to the strong thermal stability, pH stability, storage stability, and salt stability. Moreover, glycated casein/lutein nanoparticles exhibited resistance to gastric digestion, rapid intestinal release rate, increased lutein bioavailability, and antioxidant activity under simulated digestion. This study provides key support for the development of glycated casein-based nanoparticles as delivery systems and reinforcing stability of hydrophilic nutraceuticals.
Collapse
Affiliation(s)
- Yu Wang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujun Jiang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia Shi
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Ma D, Zhang X, Mahmood N, Zhao Q, Li Y, Zhang S. Utilization of soybean protein isolate hydrolysates as carriers: Improved encapsulation efficiency and stability of curcumin. Food Chem 2024; 467:141920. [PMID: 39662249 DOI: 10.1016/j.foodchem.2024.141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to explore the potential of soybean protein isolate hydrolysates (SPIH) prepared via Alcalase as delivery carriers and develop novel SPIH-Cur nanoparticles. Hydrolysis caused the varying degrees degradation in the 7S and 11S subunits, significantly enhancing SPI's antioxidant activity. The reduction in particle size and the exposure of hydrophobic groups in SPIH contributed to the formation of stable SPIH-Cur nanoparticles, due to their well binding capacity to curcumin (Cur). The 30 min SPIH-Cur sample exhibited the highest encapsulation efficiency (83.09 %), owing to its high binding affinity (Ka = 9.56 × 103 M-1). Encapsulation by SPIH also significantly improved Cur's thermal and light stability. Moreover, FTIR, fluorescence spectra, and molecular docking analyses revealed that the formation of SPIH-Cur were primarily driven by hydrophobic forces and hydrogen bonds. Above results provide a foundation for fabricating nanoparticles that deliver lipophilic bioactive compounds with high encapsulation efficiency and stability derived from SPIH.
Collapse
Affiliation(s)
- Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
8
|
Wang Z, Lan T, Jiang J, Song T, Liu J, Zhang H, Lin K. On the modification of plant proteins: Traditional methods and the Hofmeister effect. Food Chem 2024; 451:139530. [PMID: 38703723 DOI: 10.1016/j.foodchem.2024.139530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/06/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
With increasing consumer health awareness and demand from some vegans, plant proteins have received a lot of attention. Plant proteins have many advantages over animal proteins. However, the application of plant proteins is limited by a number of factors and there is a need to improve their functional properties to enable a wider range of applications. This paper describes the advantages and disadvantages of traditional methods of modifying plant proteins and the appropriate timing for their use, and collates and describes a method with fewer applications in the food industry: the Hofmeister effect. It is extremely simple but efficient in some respects compared to traditional methods. The paper provides theoretical guidance for the further development of plant protein-based food products and a reference value basis for improving the functional properties of proteins to enhance their applications in the food industry, pharmaceuticals and other fields.
Collapse
Affiliation(s)
- Ziming Wang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tiantong Lan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Jing Jiang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tingyu Song
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Ke Lin
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Han C, Ren X, Shen X, Yang X, Li L. Improvement of physicochemical properties and quercetin delivery ability of fermentation-induced soy protein isolate emulsion gel processed by ultrasound. ULTRASONICS SONOCHEMISTRY 2024; 107:106902. [PMID: 38797128 PMCID: PMC11139769 DOI: 10.1016/j.ultsonch.2024.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
This study aimed to investigate the effects of ultrasonic treatment at different powers on the physicochemical properties, microstructure and quercetin delivery capacity of fermentation-induced soy protein isolate emulsion gel (FSEG). The FSEG was prepared by subjecting soy protein isolate (SPI) emulsion to ultrasonic treatment at various powers (0, 100, 200, 300, and 400 W), followed by lactic acid bacteria fermentation. Compared with the control group (0 W), the FSEG treated with ultrasound had higher hardness, water holding capacity (WHC) and rheological parameters. Particularly, at an ultrasonic power of 300 W, the FSEG had the highest hardness (101.69 ± 4.67 g) and WHC (75.20 ± 1.07%) (p < 0.05). Analysis of frequency sweep and strain scanning revealed that the storage modulus (G') and yield strains of FSEG increased after 300 W ultrasonic treatment. Additionally, the recovery rate after creep recovery test significantly increased from 18.70 ± 0.49% (0 W) to 58.05 ± 0.54% (300 W) (p < 0.05). Ultrasound treatment also resulted in an increased β-sheet content and the formation of a more compact micro-network structure. This led to a more uniform distribution of oil droplets and reduced mobility of water within the gel. Moreover, ultrasonic treatment significantly enhanced the encapsulation efficiency of quercetin in FSEG from 81.25 ± 0.62 % (0 W) to 90.04 ± 1.54% (300 W). The bioaccessibility of quercetin also increased significantly from 28.90 ± 0.40% (0 W) to 42.58 ± 1.60% (300 W) (p < 0.05). This study enriches the induction method of soy protein emulsion gels and provides some references for the preparation of fermented emulsion gels loaded with active substances.
Collapse
Affiliation(s)
- Chunpeng Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Ren
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Shen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Liu J, Yu H, Kong J, Ge X, Sun Y, Mao M, Wang DY, Wang Y. Preparation, characterization, stability, and controlled release of chitosan-coated zein/shellac nanoparticles for the delivery of quercetin. Food Chem 2024; 444:138634. [PMID: 38330608 DOI: 10.1016/j.foodchem.2024.138634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Quercetin, an essential flavonoid compound, exhibits diverse biological activities including anti-inflammatory and antioxidant effects. Nevertheless, due to its inadequate solubility in water and vulnerability to degradation, pure quercetin is constrainedly utilized in pharmaceutical formulations and functional foods. Considering the existing scarcity of nanoparticles consisted of zein and hydrophobic biopolymers, this study developed a quercetin-loaded nanoencapsulation based on zein, shellac, and chitosan (QZSC). When the mass ratio of zein to chitosan was 4:1, the encapsulation efficiency of QZSC reached 74.95%. The ability of QZSC for scavenging DPPH radicals and ABTS radicals increased from 59.2% to 75.4% and from 47.0% to 70.2%, respectively, compared to Quercetin. For QZSC, the maximum release amount of quercetin reached 59.62% in simulated gastric fluid and 81.64% in simulated intestinal fluid, achieving controlled and regulated release in vitro. In summary, this study offers a highly promising encapsulation strategy for hydrophobic bioactive substances that are prone to instability.
Collapse
Affiliation(s)
- Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - David Y Wang
- Hong Kong Baptist University, Hong Kong Special Administrative Region; Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, China.
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
11
|
Bag S, Ghosal S, Mukherjee M, Pramanik G, Bhowmik S. Quercetin Exhibits Preferential Binding Interaction by Selectively Targeting HRAS1 I-Motif DNA-Forming Promoter Sequences. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10157-10170. [PMID: 38700902 DOI: 10.1021/acs.langmuir.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
I-Motif (iM) DNA structures represent among the most significant noncanonical nucleic acid configurations. iM-forming DNA sequences are found in an array of vital genomic locations and are particularly frequent in the promoter islands of various oncogenes. Thus, iM DNA is a crucial candidate for anticancer medicines; therefore, binding interactions between iM DNA and small molecular ligands, such as flavonoids, are critically important. Extensive sets of spectroscopic strategies and thermodynamic analysis were utilized in the present investigation to find out the favorable interaction of quercetin (Que), a dietary flavonoid that has various health-promoting characteristics, including anticancer properties, with noncanonical iM DNA structure. Spectroscopic studies and thermal analysis revealed that Que interacts preferentially with HRAS1 iM DNA compared with VEGF, BCL2 iM, and duplex DNA. Que, therefore, emerged as a suitable natural-product-oriented antagonist for targeting HRAS1 iM DNA. The innovative spectroscopic as well as mechanical features of Que and its specific affinity for HRAS1 iM may be useful for therapeutic applications and provide crucial insights for the design of compounds with remarkable medicinal properties.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Moupriya Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
12
|
Shimul IM, Moshikur RM, Nabila FH, Moniruzzaman M, Goto M. Formulation and characterization of choline oleate-based micelles for co-delivery of luteolin, naringenin, and quercetin. Food Chem 2023; 429:136911. [PMID: 37478610 DOI: 10.1016/j.foodchem.2023.136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Flavonoids have diverse beneficial roles that potentiate their application as nutraceutical agents in nutritional supplements and as natural antimicrobial agents in food preservation. To address poor solubility and bioactivity issues, we developed water-soluble micellar formulations loaded with single and multiple flavonoids using the biocompatible surface-active ionic liquid choline oleate. The food preservation performance was investigated using luteolin, naringenin, and quercetin as model bioactive compounds. The micellar formulations formed spherical micelles with particle sizes of <150 nm and exhibited high aqueous solubility (>5.15 mg/mL). Co-delivery of multiple flavonoids (luteolin, naringenin, and quercetin in LNQ-MF) resulted in 84.85% antioxidant activity at 100 μg/mL. The effects on Staphylococcus aureus and Salmonella enterica were synergistic with fractional inhibitory concentration indices of 0.87 and 0.71, respectively. LNQ-MF hindered the growth of S. aureus in milk (0.83-0.89 log scale) compared to the control. Co-delivered encapsulated flavonoids are a promising alternative to chemical preservatives.
Collapse
Affiliation(s)
- Islam Md Shimul
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fahmida Habib Nabila
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
13
|
Zhang X, Wei Z, Sun Y, Luo T, Xue C. Preparation of core-shell hordein/pectin nanoparticles as quercetin delivery matrices: Physicochemical properties and colon-specific release analyses. Food Res Int 2023; 170:112971. [PMID: 37316013 DOI: 10.1016/j.foodres.2023.112971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Quercetin (Que) is a hydrophobic flavanol that has the potential to prevent colon diseases. This study aimed to design hordein/pectin nanoparticle as a colon-specific delivery system for quercetin. The encapsulation efficiency, physicochemical stability and release properties of the nanoparticles were estimated. The FTIR and secondary structure analysis indicated that hydrogen bonds, hydrophobic interactions and electrostatic attractions were formed in the quercetin-loaded hordein/pectin nanoparticles (Que-hordein/pectin NPs). In comparison to Que-hordein NPs, Que-hordein/pectin NPs exhibited better colloidal stability (physical, UV light, heating and salt). Furthermore, the release properties studies showed that pectin coating restrained the premature release of Que from hordein NPs in gastric fluid and intestinal fluid. In-vitro release, when the Que-hordein/pectin NPs were exposed to simulated colonic fluid (SCF) for 6 h, quercetin was greatly released from the hordein/pectin NPs (15.29 ± 1.17% - 80.60 ± 1.78%). In-vivo release, the concentration of Que (μg/g) in Que-hordein/pectin NPs was 2.18 times higher than Que-hordein NPs in colon tissue after 6 h of oral administration. This study suggests that Que-hordein/pectin NPs have promising applications in the specific delivery and release of quercetin to the colon.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Yuanjing Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tian Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|