1
|
Pan Y, Zhang X, Yan Q, Li J, Kouame KJEP, Li X, Liu L, Zong X, Si K, Liu X, Yu M. Sphingomyelin-enriched milk phospholipids offer superior benefits in improving the physicochemical properties, microstructure, and surface characteristics of infant formula. Food Chem 2025; 463:141549. [PMID: 39395349 DOI: 10.1016/j.foodchem.2024.141549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Phospholipids from different sources have varying chemical compositions, but how they contribute to different properties of infant formula is unclear. In this study, four types of phospholipids, milk phospholipids (MPLs), soybean phospholipids (SBPLs), sunflower phospholipids (SFPLs), and egg yolk phospholipids (EYPLs), were added to infant formula to investigate their physicochemical properties, microstructure, and surface characteristics. MPLs uniquely offer high sphingomyelin and saturated fatty acid levels. The MPL-based emulsion had the smallest particle size (334.50 nm), lowest stability constant (0.30), and highest viscosity among all groups tested. Furthermore, the abundance of sphingomyelin in MPLs allowed for a denser interfacial film and the complete phospholipid-coated structure of lipid droplets in infant formula emulsion. This consequently improved the microstructure and fat encapsulation of the powder, leading to significantly lower surface fat content in the MPL group. Therefore, the proper selection of phospholipids is crucial for modulating the stability and surface characteristics of infant formula.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xueying Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Qingquan Yan
- Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Jiayu Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Xuexing Zong
- Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Kuolin Si
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Inner Mongolia Mengniu Cheese Company Ltd., 011517, Hohhot, China
| | - Xiaoyan Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Mengna Yu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| |
Collapse
|
2
|
Zhu H, Fauconnier ML, Zhang H, Xu X, Wang X, Zhang Y, Guo R, Zhang W, Zhang S, Wang Y, Pang X, Lv J. A Comparative Study on the Composition and Structure of Human Milk Phospholipids and its Natural Resources: Based on a Similarity Evaluation Model. Food Chem 2024; 460:140556. [PMID: 39089024 DOI: 10.1016/j.foodchem.2024.140556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Human milk phospholipids (HMPLs) play an indispensable role in the neurodevelopment and growth of infants. In this study, a total of 37 phospholipid fatty acid (PLFA) species and 139 phospholipid molecular species were detected from human milk and other natural phospholipid sources (including 5 animal-derived species and 2 plant species). Moreover, a similarity evaluation model for HMPLs was established, including phospholipid classes, PLFAs, and phospholipid molecular species, to evaluate their natural substitutes. The closest scores for HMPL substitute in these three dimensions was 0.89, 0.72, and 0.77, which belonged to mare milk, goat milk, and camel milk, respectively. The highest comprehensive similarity score was obtained by camel milk at 0.75, while the lowest score was observed in soybean phospholipid (0.22). Therefore, these results not only monitored the stereochemical structure of HMPLs and their substitutes, but also further provided new insights for the development of infant formulae.
Collapse
Affiliation(s)
- Huiquan Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux, 5030, Belgium; National Center of Technology Innovation for Dairy, Hohhot 010100, China
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-bio Tech, University of Liege, Gembloux, 5030, Belgium
| | - Hong Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Xuebing Xu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Xiaodan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yumeng Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruihua Guo
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Wenyuan Zhang
- Research Group of Postharvest Technology, State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of AgriculturalSciences, Beijing 100081, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Center of Technology Innovation for Dairy, Hohhot 010100, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Chen Y, Chen W, Dai Y, Yan X, Jiang C, Zhang F, Zhang M, Hu X, Zhao J, Wu T, Li S, Han S, Chen X. Human breast milk-derived phospholipid DOPE ameliorates intestinal injury associated with NEC by inhibiting ferroptosis. Food Funct 2024; 15:10811-10822. [PMID: 39403969 DOI: 10.1039/d4fo03904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Neonatal necrotizing enterocolitis (NEC) is a severe inflammatory bowel disease that commonly affects premature infants. Breastfeeding has been proven to be one of the most effective methods for preventing NEC. However, the specific role of lipids, the second major nutrient category in human breast milk (HBM), in intestinal development remains unclear. Our preliminary lipidomic analysis of the HBM lipidome revealed that dioleoyl phosphatidylethanolamine (DOPE) is not only abundant but also shows high solubility in lipids, endowing it with significant biological utility. Experimental results confirmed that DOPE significantly reduces the mortality of neonatal rats, ameliorates impairment of intestinal barrier function, and alleviates the expression of intestinal inflammatory factors IL-1β and IL-6. Furthermore, DOPE promotes the migration and proliferation of intestinal epithelial cells, thereby enhancing the integrity of the intestinal barrier function in vitro. The progression of NEC is linked with the onset of ferroptosis. Our cellular-level analysis of lipid peroxide and iron ion concentrations revealed that DOPE significantly reduces the indicators of ferroptosis, while also modulating the expression of pivotal ferroptosis-associated factors, including SLC7A11, GPX4, and ACSL4. Hence, this research on DOPE is expected to provide novel insights into the bioactive lipids present in HBM.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Wenjuan Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Yu Dai
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Xiangyun Yan
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Chengyao Jiang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Fan Zhang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Min Zhang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Xiaoshan Hu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Juyi Zhao
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Tingyue Wu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Shushu Li
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Shuping Han
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| | - Xiaohui Chen
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
5
|
Pan Y, Liu Y, Zhao J, Cui L, Li X, Liu L, Kouame KJEP, Wang Z, Tan X, Jiang Y, Gao C. Simulated in vitro infant digestion and lipidomic analysis to explore how the milk fat globule membrane modulates fat digestion. Food Chem 2024; 447:139008. [PMID: 38513488 DOI: 10.1016/j.foodchem.2024.139008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
We hypothesized that the addition of milk fat globule membranes (MFGMs) to infant formula would improve its lipolysis, making it more similar to human milk (HM) and superior to commercial infant formula (CIF) in fat digestion. Therefore, we prepared two model infant formulas (MIFs) by adding MFGMs to dairy ingredients in different ways and compared their fat digestion behavior with those of HM and CIF. MFGMs were added alone (MIF1) and with other milk-based materials (MIF2) before homogenization. The addition of MFGMs reduced the flocculation of lipids and proteins in the gastric phase and promoted lipolysis in the intestine phase. The amount of free fatty acids released followed the order of HM > MIF1 > CIF ≥ MIF2. After digestion, the number of different glyceride species between each sample and HM reached 64 (MIF1), 73 (MIF2), 67 (CIF1), and 72 (CIF2). In conclusion, the fat digestion of MIF1 had the highest similarity with HM.
Collapse
Affiliation(s)
- Yue Pan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Jiayi Zhao
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Liqin Cui
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Zhong Wang
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xin Tan
- Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yanxi Jiang
- Beingmate Group Co., Ltd., 311113 Hangzhou, China
| | - Chao Gao
- Heilongjiang Beingmate Dairy Co., Ltd., 151400 Suihua, China
| |
Collapse
|
6
|
Yuan Y, Zhao J, Liu Q, Liu Y, Liu Y, Tian X, Qiao W, Zhao Y, Liu Y, Chen L. Human milk sphingomyelin: Function, metabolism, composition and mimicking. Food Chem 2024; 447:138991. [PMID: 38520905 DOI: 10.1016/j.foodchem.2024.138991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Human milk, which contains various nutrients, is the "gold standard" for infant nutrition. Healthy human milk meets all the nutritional needs of early infant development. Polar lipids mainly exist in the milk fat globule membrane, accounting for approximately 1-2% of human milk lipids; sphingomyelin (SM) accounts for approximately 21-24% of polar lipids. SM plays an important role in promoting the development of the brain and nervous system, regulating intestinal flora, and improving skin barriers. Though SM could be synthesized de novo, SM nutrition from dietary is also important for infants. The content and composition of SM in human milk has been reported, however, the molecular mechanisms of nutritional functions of SM for infants required further research. This review summarizes the functional mechanisms, metabolic pathways, and compositional, influencing factors, and mimicking of SM in human milk, and highlights the challenges of improving maternal and infant early/long-term nutrition.
Collapse
Affiliation(s)
- Yuying Yuan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaoyan Tian
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yanyan Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
7
|
Liu Q, Liu Y, Zhao J, Qiao W, Hou J, Wang Y, Zhang M, Jia G, Liu Y, Fan X, Li Z, Jia H, Zhao X, Chen L. Impact of manufacturing processes on glycerolipid and polar lipid composition and ultrastructure in infant formula. Food Chem 2024; 444:138623. [PMID: 38309081 DOI: 10.1016/j.foodchem.2024.138623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The introduction of exogenous lipids in the production of infant formula induces significant alterations in milk lipid composition, content, and membrane structure, thus affecting the lipid digestion, absorption, and utilization. This study meticulously tracks these changes throughout the manufacturing process. Pasteurization has a significant effect on phosphatidylcholine and sphingomyelin in the outer membrane, decreasing their relative contents to total polar lipids from 12.52% and 17.34% to 7.72% and 12.59%, respectively. Subsequent processes, including bactericidal-concentration and spray-drying, demonstrate the thermal stability of sphingomyelin and ceramides, while glycerolipids with arachidonic acid/docosahexaenoic acid and glycerophospholipids, particularly phosphatidylethanolamine, diminish significantly. Polar lipids addition and freeze-drying technology significantly enhance the polar lipid content and improve microscopic morphology of infant formula. These findings reveal the diverse effects of technological processes on glycerolipid and polar lipid compositions, concentration, and ultrastructure in infant formulas, thus offering crucial insights for optimizing lipid content and structure within infant formula.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ge Jia
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaofei Fan
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Ziqi Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Haidong Jia
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xiaojiang Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin 150030, China; National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
8
|
Vélez-Ixta JM, Juárez-Castelán CJ, Ramírez-Sánchez D, Lázaro-Pérez NDS, Castro-Arellano JJ, Romero-Maldonado S, Rico-Arzate E, Hoyo-Vadillo C, Salgado-Mancilla M, Gómez-Cruz CY, Krishnakumar A, Piña-Escobedo A, Benitez-Guerrero T, Pizano-Zárate ML, Cruz-Narváez Y, García-Mena J. Post Natal Microbial and Metabolite Transmission: The Path from Mother to Infant. Nutrients 2024; 16:1990. [PMID: 38999737 PMCID: PMC11243545 DOI: 10.3390/nu16131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The entero-mammary pathway is a specialized route that selectively translocates bacteria to the newborn's gut, playing a crucial role in neonatal development. Previous studies report shared bacterial and archaeal taxa between human milk and neonatal intestine. However, the functional implications for neonatal development are not fully understood due to limited evidence. This study aimed to identify and characterize the microbiota and metabolome of human milk, mother, and infant stool samples using high-throughput DNA sequencing and FT-ICR MS methodology at delivery and 4 months post-partum. Twenty-one mothers and twenty-five infants were included in this study. Our results on bacterial composition suggest vertical transmission of bacteria through breastfeeding, with major changes occurring during the first 4 months of life. Metabolite chemical characterization sheds light on the growing complexity of the metabolites. Further data integration and network analysis disclosed the interactions between different bacteria and metabolites in the biological system as well as possible unknown pathways. Our findings suggest a shared bacteriome in breastfed mother-neonate pairs, influenced by maternal lifestyle and delivery conditions, serving as probiotic agents in infants for their healthy development. Also, the presence of food biomarkers in infants suggests their origin from breast milk, implying selective vertical transmission of these features.
Collapse
Affiliation(s)
- Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Daniela Ramírez-Sánchez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Noemí Del Socorro Lázaro-Pérez
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - José Javier Castro-Arellano
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Silvia Romero-Maldonado
- Unidad de Cuidados Intermedios al Recién Nacido, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
| | - Enrique Rico-Arzate
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Carlos Hoyo-Vadillo
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Marisol Salgado-Mancilla
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Carlos Yamel Gómez-Cruz
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Aparna Krishnakumar
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - Tizziani Benitez-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| | - María Luisa Pizano-Zárate
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Secretaría de Salud, Mexico City 11000, Mexico
- Unidad de Medicina Familiar No. 4, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Mexico City 07738, Mexico
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico
| |
Collapse
|
9
|
Wang Y, Liu Q, Liu Y, Qiao W, Zhao J, Cao H, Liu Y, Chen L. Advances in the composition, efficacy, and mimicking of human milk phospholipids. Food Funct 2024; 15:6254-6273. [PMID: 38787648 DOI: 10.1039/d4fo00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Phospholipids are the essential components of human milk, contributing to the enhancement of cognitive development, regulation of immune functions, and mitigation of elevated cholesterol levels. Infant formulas supplemented with phospholipids can change the composition, content, and globule membrane structure of milk lipids, improving their digestive properties and nutritional value. However, mimicking phospholipids in infant formulas is currently limited, and the supplemented standards of phospholipid species and amounts in infant formulas are unknown. Consequently, there is a significant difference between the phospholipids in infant formulas and those in human milk. This article reviews the recent progress in human milk phospholipid research, aiming to describe the composition, content, and positive effects of human milk phospholipids, as well as summarises the dietary sources of phospholipid supplementation and the current state of human milk phospholipid mimicking in infant formulas. This review provides clear directions for research on mimicking human milk phospholipids and evaluating the nutritional functions of phospholipids in infants.
Collapse
Affiliation(s)
- Yuru Wang
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Qian Liu
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Huiru Cao
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
| | - Lijun Chen
- Key Laboratory of Dairy Science, Ministry of Education, Food Science College, Northeast Agricultural University, Harbin, 150030, China.
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd, Beijing 100163, China
- Beijing Sanyuan Foods Co. Ltd., No. 8, Yingchang Street 100076, Yinghai Town, Daxing District, Beijing, China.
| |
Collapse
|
10
|
Demmelmair H, Uhl O, Zhou SJ, Makrides M, Gibson RA, Prosser C, Gallier S, Koletzko B. Plasma Sphingomyelins and Carnitine Esters of Infants Consuming Whole Goat or Cow Milk-Based Infant Formulas or Human Milk. J Nutr 2024; 154:1781-1789. [PMID: 38615734 PMCID: PMC11217027 DOI: 10.1016/j.tjnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Infant formulas are typically manufactured using skimmed milk, whey proteins, and vegetable oils, which excludes milk fat globule membranes (MFGM). MFGM contains polar lipids, including sphingomyelin (SM). OBJECTIVE The objective of this study was comparison of infant plasma SM and acylcarnitine species between infants who are breastfed or receiving infant formulas with different fat sources. METHODS In this explorative study, we focused on SM and acylcarnitine species concentrations measured in plasma samples from the TIGGA study (ACTRN12608000047392), where infants were randomly assigned to receive either a cow milk-based infant formula (CIF) with vegetable oils only or a goat milk-based infant formula (GIF) with a goat milk fat (including MFGM) and vegetable oil mixture to the age ≥4 mo. Breastfed infants were followed as a reference group. Using tandem mass spectrometry, SM species in the study formulas and SM and acylcarnitine species in plasma samples collected at the age of 4 mo were analyzed. RESULTS Total SM concentrations (∼42 μmol/L) and patterns of SM species were similar in both formulas. The total plasma SM concentrations were not different between the formula groups but were 15 % (CIF) and 21% (GIF) lower in the formula groups than in the breastfed group. Between the formula groups, differences in SM species were statistically significant but small. Total carnitine and major (acyl) carnitine species were not different between the groups. CONCLUSIONS The higher total SM concentration in breastfed than in formula-fed infants might be related to a higher SM content in human milk, differences in cholesterol metabolism, dietary fatty acid intake, or other factors not yet identified. SM and acylcarnitine species composition in plasma is not closely related to the formula fatty acid composition. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12608000047392.
Collapse
Affiliation(s)
- Hans Demmelmair
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany.
| | - Olaf Uhl
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Shao J Zhou
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Maria Makrides
- Woman's and Children's Health Research Institute, University of Adelaide, Adelaide, Australia
| | - Robert A Gibson
- Food and Wine, School of Agriculture, University of Adelaide, Adelaide, Australia
| | - Colin Prosser
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Sophie Gallier
- Science Department, Dairy Goat Co-operative (NZ) Ltd, Hamilton, New Zealand
| | - Berthold Koletzko
- Department of Pediatrics, Division of Metabolic and Nutritional Medicine, Ludwig Maximilians University Munich, Dr. von Hauner Children's Hospital, Munich, Germany
| |
Collapse
|
11
|
Li Z, Liu A, Cao Y, Zhou H, Shen Q, Wu S, Luo J. Milk fat globule membrane proteins are crucial in regulating lipid digestion during simulated in vitro infant gastrointestinal digestion. J Dairy Sci 2024:S0022-0302(24)00859-2. [PMID: 38825138 DOI: 10.3168/jds.2024-24707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 06/04/2024]
Abstract
Products of lipolysis released during digestion positively affect the metabolism of newborns. In contrast to the 3-layer biological membranes covering human milk (HM) fat, the lipid droplets in infant milk formula (IMF) are covered by a single membrane composed of casein and whey proteins. To reduce the differences in lipid structure between IMF and HM, studies have used milk fat globule membrane (MFGM) components such as milk polar lipids (MPL) to prepare emulsions mimicking HM fat globules However, few studies have elucidated the effect of membrane proteins (MP) on lipid digestion in infants. In this study, 3 kinds of emulsions were prepared: One with MPL as the interfaced of lipid droplets (RE-1), one with membrane protein concentrate (MPC) (RE-2) as the interface of lipid droplets, and one with both MPL and MPC (1:2) as the co-interface of lipid droplets (RE-3). The interfacial coverage of the emulsions was confirmed by measuring the contents of MPL and MPC at the lipid droplet interface, and by confocal laser scanning microscopy analyzed. By controlling the homogenization intensity, the specific surface area of lipid droplets was controlled at the same level among the 3 emulsions. The stability constants of the emulsions varied, and RE-1 was the most stable. During simulated in vitro infant gastrointestinal digestion, the amount of free fatty acids (FFA) released from the lipid droplets was significantly higher from those with MPC at the interface (RE-2, RE-3) than from that with MPL at the interface (RE-1). The amount of FFA released at the end of intestinal digestion of RE-1, RE-2, and RE-3 was 255.00 ± 3.54 µmol,328.75 ± 5.30 µmol, 298.50 ± 9.19 µmol, respectively. Compared with the lipid droplets in RE-2, those with MPL at the interface (RE-1, RE-3) released more unsaturated fatty acids (USFAs) during digestion. The emulsifying activity index was highest in RE-3 (MPL and MPC co-interface). The presence of MPL at the emulsion interface increased the release of USFAs, while the presence of MPC increased the release of FFA. These results show that both MPL and MP are indispensable in the construction of MFGM. Understanding their effects on digestion can provide new strategies for the development of infant foods.
Collapse
Affiliation(s)
- Zhixi Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Ajie Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Yu Cao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Hui Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Qingwu Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China
| | - Shan Wu
- Research and Development Center, Xi'an Yinqiao Dairy Technology Co., Ltd., Xi'an, Shaanxi, China.
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410114, China.
| |
Collapse
|
12
|
Liao G, Wang T, Li X, Gu J, Jia Q, Wang Z, Li H, Qian Y, Qiu J. Comparison of the Lipid Composition of Milk Fat Globules in Goat ( Capra hircus) Milk during Different Lactations and Human Milk. Foods 2024; 13:1618. [PMID: 38890847 PMCID: PMC11171730 DOI: 10.3390/foods13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Goat milk is considered the optimal substitute for human milk and is characterized by variations in the lipid composition of its fat globules across lactation phases. Therefore, the objective of this study was to thoroughly analyze the differences between goat milk during different lactations and human milk, aiming to offer scientific guidance for the production of functional dairy products. Compared with transitional and mature milk, the findings indicated that the total membrane protein content in goat colostrum exhibited greater similarity to that found in human milk. Additionally, goat milk exhibited higher milk fat globule size, as well as a higher total lipid and protein content than human milk. A total of 1461 lipid molecules across 61 subclasses were identified in goat milk and human milk. The contents of glycerides and glycerophospholipids were higher in goat colostrum, whereas sphingolipids and fatty acids were more abundant in human milk. Meanwhile, the compositions of lipid subclasses were inconsistent. There were 584 differentially expressed lipids identified between human and goat milk, including 47 subclasses that were primarily involved in the metabolism of glycerophospholipids, sphingolipids, and triglycerides. In summary, for both the membrane protein and the lipid composition, there were differences between the milk of different goat lactations and human milk.
Collapse
Affiliation(s)
- Guangqin Liao
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Tiancai Wang
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Xiabing Li
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Jingyi Gu
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Qi Jia
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Zishuang Wang
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Houru Li
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610065, China
| | - Yongzhong Qian
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| | - Jing Qiu
- Key Laboratory of Agri-Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; (G.L.); (T.W.); (X.L.); (J.G.); (Q.J.); (Z.W.); (H.L.); (Y.Q.)
| |
Collapse
|
13
|
Ma Q, Zhou T, Wang Z, Zhao Y, Li X, Liu L, Zhang X, Kouame KJEP, Chen S. Ultrasound modification on milk fat globule membrane and soy lecithin to improve the physicochemical properties, microstructure and stability of mimicking human milk fat emulsions. ULTRASONICS SONOCHEMISTRY 2024; 105:106873. [PMID: 38608436 PMCID: PMC11024657 DOI: 10.1016/j.ultsonch.2024.106873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Starting from the consideration of the structure of human milk fat globule (MFG), this study aimed to investigate the effects of ultrasonic treatment on milk fat globule membrane (MFGM) and soy lecithin (SL) complexes and their role in mimicking human MFG emulsions. Ultrasonic power significantly affected the structure of the MFGM-SL complex, further promoting the unfolding of the molecular structure of the protein, and then increased solubility and surface hydrophobicity. Furthermore, the microstructure of mimicking MFG emulsions without sonication was unevenly distributed, and the average droplet diameter was large. After ultrasonic treatment, the droplets of the emulsion were more uniformly dispersed, the particle size was smaller, and the emulsification properties and stability were improved to varying degrees. Especially when the ultrasonic power was 300 W, the mimicking MFG emulsion had the highest encapsulation rate and emulsion activity index and emulsion stability index were increased by 60.88 % and 117.74 %, respectively. From the microstructure, it was observed that the spherical droplets of the mimicking MFG emulsion after appropriate ultrasonic treatment remain well separated without obvious flocculation. This study can provide a reference for the screening of milk fat globules mimicking membrane materials and the further utilization and development of ultrasound in infant formula.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Tao Zhou
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Zhong Wang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yanjie Zhao
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; National Center of Technology Innovation for Dairy, 010010 Hohhot, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Shuo Chen
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
14
|
Nie C, Zhao Y, Wang X, Li Y, Fang B, Wang R, Wang X, Liao H, Li G, Wang P, Liu R. Structure, Biological Functions, Separation, Properties, and Potential Applications of Milk Fat Globule Membrane (MFGM): A Review. Nutrients 2024; 16:587. [PMID: 38474716 DOI: 10.3390/nu16050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The milk fat globule membrane (MFGM) is a thin film that exists within the milk emulsion, suspended on the surface of milk fat globules, and comprises a diverse array of bioactive components. Recent advancements in MFGM research have sparked a growing interest in its biological characteristics and health-related functions. Thorough exploration and utilization of MFGM as a significant bioactive constituent in milk emulsion can profoundly impact human health in a positive manner. Scope and approach: This review comprehensively examines the current progress in understanding the structure, composition, physicochemical properties, methods of separation and purification, and biological activity of MFGM. Additionally, it underscores the vast potential of MFGM in the development of additives and drug delivery systems, with a particular focus on harnessing the surface activity and stability of proteins and phospholipids present on the MFGM for the production of natural emulsifiers and drug encapsulation materials. KEY FINDINGS AND CONCLUSIONS MFGM harbors numerous active substances that possess diverse physiological functions, including the promotion of digestion, maintenance of the intestinal mucosal barrier, and facilitation of nerve development. Typically employed as a dietary supplement in infant formula, MFGM's exceptional surface activity has propelled its advancement toward becoming a natural emulsifier or encapsulation material. This surface activity is primarily derived from the amphiphilicity of polar lipids and the stability exhibited by highly glycosylated proteins.
Collapse
Affiliation(s)
- Chao Nie
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Yunyi Zhao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Haiping Liao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Gengsheng Li
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Pengjie Wang
- Food Laboratory of Zhongyuan, Luohe 462000, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
15
|
Wang M, Zhang F, Debrah AA, Khan J, Hou H, Yuan Q, Du Z. Selective extraction of phospholipids from human milk using glass fabric modified with zirconium-based metal organic framework. J Chromatogr A 2023; 1710:464435. [PMID: 37820461 DOI: 10.1016/j.chroma.2023.464435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Phospholipids (PLs) are important and complex trace lipids in milk, which have positive effects on the infants' nervous and immune system development. Herein, a new method for selective extraction of PLs using glass fabric @ MOF-808 was proposed. Based on Lewis acid-base interaction, MOF-808 containing abundant Zr-OH groups was selected as the adsorption body, and glass fabric was used as a substrate to make the adsorbent easy to remove and reuse. The influencing factors such as loading solution, extraction time, eluent and elution time were further investigated. The adsorbent showed high adsorption capacity (3.31-6.54 mg/g for PLs) and good reusability (reused at least five times). The method showed low detection limits (1.61 μg/L - 10.24 μg/L) and quantification limits (5.24 μg/L-51.21 μg/L) for eight classes of PLs. The analysis of PLs in human milk at different lactation stages by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry could obtain up to 206 PLs, indicating that the method has extremely high extraction and anti-interference capabilities. This work is the first time to introduce MOF materials to selectively extract PLs and use glass fabric as a substrate for MOF-808, which has the advantages of easy recovery and high sensitivity. It provides technical support for the discovery of more PL species and has potential applications in phospholipidomics.
Collapse
Affiliation(s)
- Mengyu Wang
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengxia Zhang
- Corporate Laboratory, Junlebao Dairy Group, Shijiazhuang 050221, China
| | - Augustine Atta Debrah
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jehangir Khan
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haiyue Hou
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingbin Yuan
- Corporate Laboratory, Junlebao Dairy Group, Shijiazhuang 050221, China.
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Wang Y, Guo M, Ren F, Wang P, Li H, Li H, Li Y, Luo J, Yu J. A novel strategy to construct stable fat globules with all major milk fat globule membrane proteins to mimic breast milk fat emulsions at the protein level. Food Res Int 2023; 173:113351. [PMID: 37803655 DOI: 10.1016/j.foodres.2023.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Milk fat globule membrane (MFGM) proteins have several biological functions and maintain the fat globule structure. However, the major MFGM protein compositions in simulated human milk emulsions are different from those in human milk due to the composition loss in the isolation process of MFGM materials. To overcome this limitation, we developed a novel strategy, namely, the solution enriched with MFGM was homogenized with cream separated from the milk rich in large-sized fat globules. The results of physicochemical properties and the interfacial protein coverage of the emulsions showed that the emulsions prepared by the new method had a smaller particle size, higher stability, and more interfacial protein coverage when the ratio of fat to protein was 1:3. In addition, proteome differences in interfacial proteins between the new emulsions and simulated infant formula emulsions were investigated, and the results revealed that the interface of the emulsions prepared by the new method contained all major MFGM proteins and unique GO annotations and KEGG pathways. However, only four MFGM proteins (XO, ADPH, PAS 6/7) were quantified at the interface of the emulsions prepared by the common method. Furthermore, the protein number and the total relative abundance of major MFGM proteins were approximately 2-fold and 475-fold higher at the interface of the emulsions prepared by the new method compared to the common method. Overall, the study modulated the interfacial protein composition of fat globules by screening the sources of lipid and homogenization methods and revealed its potential effect on processing stability and biological properties.
Collapse
Affiliation(s)
- Yi Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Mengyuan Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Hongjuan Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yixuan Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| | - Jie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
17
|
Wang S, De Souza C, Ramachandran M, Luo Y, Zhang Y, Yi H, Ma Z, Zhang L, Lin K. Lipidomics insight on differences between human MFGM and dietary-derived lipids. Food Chem 2023; 422:136236. [PMID: 37130453 DOI: 10.1016/j.foodchem.2023.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/24/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
Milk fat globule membrane (MFGM) contains lipids, which are essential for promoting infant brain development and improving cognition. In this study, the lipid differences between human MFGM and four dietary lipid sources (cow MFGM, soybean, krill, and yolk) were compared using the UHPLC-Q-Exactive MS-based lipidomics techniques. A total of 45 lipid classes and 5048 lipid species were detected. The analysis of phospholipid classes revealed that the lipid composition of human MFGM and cow MFGM was more similar than the other dietary-derived lipids. Additionally, the human MFGM lipid species were compared with cow MFGM, soybean, krill, and yolk, and 401, 416, 494, and 444 significantly different lipids were identified, respectively. Through lipid metabolic pathway analysis, differential lipids were mainly involved in the glycerophospholipid metabolic pathway. Overall, these results will provide a rationale for the future addition of lipids to infant formula to more closely approximate human MFGM lipid profiles.
Collapse
Affiliation(s)
- Shaolei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mythili Ramachandran
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Ya Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yixin Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China.
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; National Center of Technology Innovation for Dairy, Hohhot 010000, China.
| |
Collapse
|