1
|
Wu P, Fan J, Tai Y, He X, Zheng D, Yao Y, Sun S, Ying B, Luo Y, Hu W, Sun X, Li Y. Ag@TiO 2 nanoribbon array: a high-performance sensor for electrochemical non-enzymatic glucose detection in beverage sample. Food Chem 2024; 447:139018. [PMID: 38503067 DOI: 10.1016/j.foodchem.2024.139018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Developing an accurate, cost-effective, reliable, and stable glucose detection sensor for the food industry poses a significant yet challenging endeavor. Herein, we present a silver nanoparticle-decorated titanium dioxide nanoribbon array on titanium plate (Ag@TiO2/TP) as an efficient electrode for non-enzymatic glucose detection in alkaline environments. Electrochemical evaluations of the Ag@TiO2/TP electrode reveal a broad linear response range (0.001 mM - 4 mM), high sensitivity (19,106 and 4264 μA mM-1 cm-2), rapid response time (6 s), and a notably low detection limit (0.18 μM, S/N = 3). Moreover, its efficacy in measuring glucose in beverage samples shows its practical applicability. The impressive performance and structural benefits of the Ag@TiO2/TP electrode highlight its potential in advancing electrochemical sensors for small molecule detection.
Collapse
Affiliation(s)
- Peilin Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiwen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongchao Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenchuang Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Cao W, Guo T, Wang J, Ding Y, Fan B, Liu D. Hierarchical N-doped porous carbon scaffold Cu/Co-oxide with enhanced electrochemical sensing properties for the detection of glucose in beverages and ascorbic acid in vitamin C tablets. Food Chem 2024; 436:137750. [PMID: 37862993 DOI: 10.1016/j.foodchem.2023.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
This research focuses on the development of a highly efficient electrocatalyst, CuxO/NPC@Co3O4/NPC-10-7, for detecting glucose and ascorbic acid. In a 0.1 M NaOH solution, the modified electrode exhibits a sensitivity of 3314.29 μA mM-1 cm-2 for glucose detection. The linear range for ascorbic acid sensing is 0.5 μM - 23.332 mM, with a detection limit as low as 0.24 μM. In a 0.1 M PBS solution, the linear range for ascorbic acid detection extends to 43.328 mM, which represents the best performance reported to date by chronoamperometry. Moreover, the electrode demonstrates high accuracy, with a recovery rate of 96.80 % - 103.60 % for glucose detection and a recovery rate of 95.25 % - 104.83 % for ascorbic acid detection. These results suggest that the CuxO/NPC@Co3O4/NPC-10-7 modified electrode shows significant potential for practical applications in food detection.
Collapse
Affiliation(s)
- Wenbin Cao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Tong Guo
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jialiang Wang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yigang Ding
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Baoming Fan
- School of Materials and Mechanical Engineering, Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China
| | - Dong Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, PR China; School of Materials and Mechanical Engineering, Key Laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
3
|
Xia P, Pan J, Zhang Y, Mao M, Ma L, Chen J, Zhang L, Wang H, Fan H, Gao X, Deng L. Highly sensitive detection of glucose at a novel non-enzyme electrochemical sensing based on Mo-doped CoO Nanosheets. Chem Asian J 2024; 19:e202300951. [PMID: 38105351 DOI: 10.1002/asia.202300951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
In this work, a Mo doped CoO nanosheet grown on nickel foam (labeled as: Mo-CoO) with defect-rich and improved electron transfer capacity was designed to be used as a novel non-enzyme electrode material. Physical characterizations demonstrated the Mo elements were doped inside of the samples and they were mutually stabilized with each other, resulting in a high structural stability electrochemical catalytical activity even if the content of Mo was low. For non-enzymatic glucose electrochemical sensing, the prepared Mo-CoO-1 showed a remarkable sensitivity of 89.3 mA cm-2 mM-1 , and a low detection limit of 0.43 μM. Density functional theory (DFT) studies revealed that the doped Mo atom exhibited a higher d-band center compared to the Co atom. A stronger p-d orbital hybridization between the glucose and the Mo atoms indicated the enhancement of glucose adsorption and activation. Importantly, Mo-CoO-1 provided a good selectivity and long-term stability, which can be expected to be used in future practical applications.
Collapse
Affiliation(s)
- Pengkun Xia
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Jing Pan
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Yue Zhang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Mingzhen Mao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Lei Ma
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Jianlin Chen
- Department of Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Long Zhang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Hui Wang
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Hui Fan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Xiaohui Gao
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| | - Lianwen Deng
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|