1
|
Zhai Y, Wang J, Zhou L, Zhang X, Ren Y, Qi H, Zhang C. Simultaneously predicting SPAD and water content in rice leaves using hyperspectral imaging with deep multi-task regression and transfer component analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:554-568. [PMID: 39221962 DOI: 10.1002/jsfa.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Water content and chlorophyll content are important indicators for monitoring rice growth status. Simultaneous detection of water content and chlorophyll content is of significance. Different varieties of rice show differences in phenotype, resulting in the difficulties of establishing a universal model. In this study, hyperspectral imaging was used to detect the Soil and Plant Analyzer Development (SPAD) values and water content of fresh rice leaves of three rice varieties (Jiahua 1, Xiushui 121 and Xiushui 134). RESULTS Both partial least squares regression and convolutional neural networks were used to establish single-task and multi-task models. Transfer component analysis (TCA) was used as transfer learning to learn the common features to achieve an approximate identical distribution between any two varieties. Single-task and multi-task models were also built using the features of the source domain, and these models were applied to the target domain. These results indicated that for models of each rice variety the prediction accuracy of most multi-task models was close to that of single-task models. As for TCA, the results showed that the single-task model achieved good performance for all transfer learning tasks. CONCLUSION Compared with the original model, good and differentiated results were obtained for the models using features learned by TCA for both the source domain and target domain. The multi-task models could be constructed to predict SPAD values and water content simultaneously and then transferred to another rice variety, which could improve the efficiency of model construction and realize rapid detection of rice growth indicators. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanning Zhai
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Jun Wang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Lei Zhou
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Xincheng Zhang
- Institute of Crop Science, Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Yun Ren
- Institute of Crop Science, Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Hengnian Qi
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Zou X, Wang Q, Chen Y, Wang J, Xu S, Zhu Z, Yan C, Shan P, Wang S, Fu Y. Fusion of convolutional neural network with XGBoost feature extraction for predicting multi-constituents in corn using near infrared spectroscopy. Food Chem 2025; 463:141053. [PMID: 39241414 DOI: 10.1016/j.foodchem.2024.141053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Near-infrared (NIR) spectroscopy has been widely utilized to predict multi-constituents of corn in agriculture. However, directly extracting constituent information from the NIR spectra is challenging due to many issues such as broad absorption band, overlapping and non-specific nature. To solve these problems and extract implicit features from the raw data of NIR spectra to improve performance of quantitative models, a one-dimensional shallow convolutional neural network (CNN) model based on an eXtreme Gradient Boosting (XGBoost) feature extraction method was proposed in this paper. The leaf node feature information in the XGBoost was encoded and reconstructed to obtain the implicit features of raw data in the NIR spectra. A two-parametric Swish (TSwish or TS) activation function was proposed to improve the performance of CNN, and the elastic net (EN) was also applied to avoid the overfitting problem of the CNN model. Performance of the developed XGBoost-CNN-TS-EN model was evaluated using two public NIR spectroscopy datasets of corn and soil, and the obtained determination coefficients (R2) for moisture, oil, protein, and starch of the corn on test set were 0.993, 0.991, 0.998, and 0.992, respectively, with that of the soil organic matter being 0.992. The XGBoost-CNN-TS-EN model exhibits superior stability, good prediction accuracy, and generalization ability, demonstrating its great potentials for quantitative analysis of multi-constituents in spectroscopic applications.
Collapse
Affiliation(s)
- Xin Zou
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Qiaoyun Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China.
| | - Yinji Chen
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Jilong Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Shunyuan Xu
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Ziheng Zhu
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Chongyue Yan
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Peng Shan
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - Shuyu Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China
| | - YongQing Fu
- Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| |
Collapse
|
3
|
Li J, Qian J, Chen J, Ruiz-Garcia L, Dong C, Chen Q, Liu Z, Xiao P, Zhao Z. Recent advances of machine learning in the geographical origin traceability of food and agro-products: A review. Compr Rev Food Sci Food Saf 2025; 24:e70082. [PMID: 39680486 DOI: 10.1111/1541-4337.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The geographical origin traceability of food and agro-products has been attracted worldwide. Especially with the rise of machine learning (ML) technology, it provides cutting-edge solutions to erstwhile intractable issues to identify the origin of food and agro-products. By utilizing advanced algorithms, ML can extract feature information of food and agro-products that is closely related to origin and, more accurately, identify and trace their origins, which is of great significance to the entire food and agriculture industry. This paper provides a comprehensive overview of the state-of-the-art applications of ML in the geographical origin traceability of food and agro-products. First, commonly used ML methods are summarized. The paper then outlines the whole process of preparation for modeling, model training as well as model evaluation for building traceability models-based ML. Finally, recent applications of ML combined with different traceability techniques in the field of food and agro-products are revisited. Although ML has made many achievements in solving the geographical origin traceability problem of food and agro-products, it still has great development potential. For example, the application of ML is yet insufficient in the geographical origin traceability using DNA or computer vision techniques. The ability of ML to predict the geographical origin of food and agro-products can be further improved, for example, by increasing model interpretability, incorporating data fusion strategies, and others.
Collapse
Affiliation(s)
- Jiali Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianping Qian
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyong Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Luis Ruiz-Garcia
- Department of Agroforestry Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Chen Dong
- College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou, China
| | - Qian Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zihan Liu
- School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China
| | - Pengnan Xiao
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyao Zhao
- School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
He C, Shi X, Lin H, Li Q, Xia F, Shen G, Feng J. The combination of HSI and NMR techniques with deep learning for identification of geographical origin and GI markers of Lycium barbarum L. Food Chem 2024; 461:140903. [PMID: 39178543 DOI: 10.1016/j.foodchem.2024.140903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Lycium barbarum L. (L. barbarum) is renowned worldwide for its nutritional and medicinal benefits. Rapid and accurate identification of L.barbarum's geographic origin is essential because its nutritional content, medicinal efficacy, and market price significantly vary by region. This study proposes an innovative method combining hyperspectral imaging (HSI), nuclear magnetic resonance (NMR), and an improved ResNet-34 deep learning model to accurately identify the geographical origin and geographical indication (GI) markers of L.barbarum. The deep learning model achieved a 95.63% accuracy, surpassed traditional methods by 6.26% and reduced runtime by 29.9% through SHapley Additive exPlanations (SHAP)-based feature selection. Pearson correlation analysis between GI markers and HSI characteristic wavelengths enhanced the interpretability of HSI data and further reduced runtime by 33.99%. This work lays the foundation for portable multispectral devices, offering a rapid, accurate, and cost-effective solution for quality assurance and market regulation of L.barbarum products.
Collapse
Affiliation(s)
- Chengcheng He
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Xin Shi
- Ningxia Institute of Quality Standards and Testing Technology for Agricultural Products, Yinchuan 750002, China
| | - Haifeng Lin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Feng Xia
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Feng Y, Lv Y, Dong F, Chen Y, Li H, Rodas-González A, Wang S. Combining Vis-NIR and NIR hyperspectral imaging techniques with a data fusion strategy for prediction of norfloxacin residues in mutton. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124844. [PMID: 39053116 DOI: 10.1016/j.saa.2024.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/07/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Norfloxacin is an antibacterial compound that belongs to the fluoroquinolone family. Currently, hyperspectral imaging (HSI) for the detection of antibiotic residues focuses mostly on individual systems. Attempts to integrate different HSI systems with complementary spectral ranges are still lacking. This study investigates the feasibility of applying data fusion strategies with two HSI techniques (Visible near-infrared and near-infrared) in combination to predict norfloxacin residue levels in mutton. Spectral data from the two spectral techniques were analyzed using partial least squares regression (PLSR), support vector regression (SVR) and stochastic configuration networks (SCN), respectively, and the two data fusion strategies were fused at the data level (low-level fusion) and feature level (middle-level fusion, mid-level fusion). The results indicated that the modeling performance of the two fused datasets was better than that of the individual systems. Mid-level fusion data achieved the best model based on uninformative variable elimination (UVE) combined with SCN, in which the determination coefficient of prediction set (R2p) of 0.9312, (root mean square error of prediction set) RMSEP of 0.3316 and residual prediction deviation (RPD) of 2.7434, in comparison with all others. Therefore, two HSI systems with complementary spectral ranges, combined with data fusion strategies and feature selection, could be used synergistically to improve the detection of norfloxacin residues. This study may provide a valuable reference for the non-destructive detection of antibiotic residues in meat.
Collapse
Affiliation(s)
- Yingjie Feng
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yu Lv
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Fujia Dong
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
| | - Yue Chen
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Li
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | | | - Songlei Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
6
|
Zeng L, Yan X, Xu Y, Zheng L, Deng W, Li M, Li H, Wang Z. Comprehensive characterization of anthraquinones in Damnacanthus indicus using mass spectrometry molecular networking and metabolomics-based herb discrimination. RSC Adv 2024; 14:37911-37924. [PMID: 39610812 PMCID: PMC11603343 DOI: 10.1039/d4ra06732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Damnacanthus indicus is a widely used folk medicine in China, renowned for its various bioactivities. The key active components, anthraquinones, have not been comprehensively profiled due to their complex chemical nature. Establishing a high-throughput strategy to systematically characterize these anthraquinones is essential. Additionally, the cultivation of D. indicus across various provinces results in significant quality differences in the harvested herbs. Thus, developing an effective strategy to distinguish herbs from different regions and identify characteristic chemical markers for quality evaluation and control is crucial. In this study, a strategy based on ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) was employed to systematically characterize the chemical composition of D. indicus. Mass spectrometry molecular networking was utilized to rapidly recognize and identify anthraquinones. Principal component analysis (PCA) was applied to cluster the herbs from different habitats, while partial least square discriminant analysis (PLS-DA) was used to screen for chemical markers distinguishing herb origins. The result showed that a total of 112 anthraquinones and 66 non-anthraquinone compounds were identified in D. indicus. The biosynthetic pathways of anthraquinones in this herb were proposed. PCA grouped 15 batches of herbs from different origins into three clusters, corresponding to the climate types of their habitats. PLS-DA identified 27 significant chemical markers that could robustly distinguish the geographical origins of the herbs. This study provides a valuable reference for the quality evaluation and control of D. indicus and offers a scientific basis for the pharmacological research and rational utilization of these medicinal resources.
Collapse
Affiliation(s)
- Lihua Zeng
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Xing Yan
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Ya Xu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Lulu Zheng
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Wenwen Deng
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Mengning Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Zhixin Wang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences Nanchang 330115 China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine Nanchang 330115 China
| |
Collapse
|
7
|
Zhang X, Huang X, Harrington Aheto J, Xu F, Dai C, Ren Y, Wang L, Yu S. Rapid non-destructive monitoring and quality assessment of the fumigation process of Shanxi aged vinegar based on Vis-NIR hyperspectral imaging combined with multiple chemometric algorithms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124539. [PMID: 38870693 DOI: 10.1016/j.saa.2024.124539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
The quality of the grains during the fumigation process can significantly affect the flavour and nutritional value of Shanxi aged vinegar (SAV). Hyperspectral imaging (HSI) was used to monitor the extent of fumigated grains, and it was combined with chemometrics to quantitatively predict three key physicochemical constituents: moisture content (MC), total acid (TA) and amino acid nitrogen (AAN). The noise reduction effects of five spectral preprocessing methods were compared, followed by the screening of optimal wavelengths using competitive adaptive reweighted sampling. Support vector machine classification was employed to establish a model for discriminating fumigated grains, and the best recognition accuracy reached 100%. Furthermore, the results of partial least squares regression slightly outperformed support vector machine regression, with correlation coefficient for prediction (Rp) of 0.9697, 0.9716, and 0.9098 for MC, TA, and AAN, respectively. The study demonstrates that HSI can be employed for rapid non-destructive monitoring and quality assessment of the fumigation process in SAV.
Collapse
Affiliation(s)
- Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Joshua Harrington Aheto
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Chunxia Dai
- School of Electrical and Information Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Yi Ren
- School of Smart Agriculture, Suzhou Polytechnic Institute of Agriculture, Xiyuan Road 279, Suzhou 215008, Jiangsu, PR China
| | - Li Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
8
|
Tang LJ, Li XK, Huang Y, Zhang XZ, Li BQ. Accurate and visualiable discrimination of Chenpi age using 2D-CNN and Grad-CAM++ based on infrared spectral images. Food Chem X 2024; 23:101759. [PMID: 39280221 PMCID: PMC11401106 DOI: 10.1016/j.fochx.2024.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Dried tangerine peel ("Chenpi"), has numerous clinical and nutritional benefits, with its quality being significantly influenced by its storage age, referred to as "Chen Jiu Zhe Liang" in Chinese. Concequently, the rapid and accurate identification of Chenpi's age is important for consumers. In this study, Fourier transform infrared spectroscopy (FTIR) was employed to capture spectral images of Chenpi. These FTIR images were then analyzed using a two-dimensional convolutional neural networks (2D-CNN) model, achieving a discrimination accuracy of 97.92%. To address the "black box" nature of the 2D-CNN, Gradient-weighted Class Activation Mapping Plus Plus (Grad-CAM++) was utilized to highlight the important regions contributing to the model's performance. Additionally, six other machine learning models were developped using features identified by the 2D-CNN to validate their effectiveness. The results demonstrated that the combination of FTIR spectral images and 2D-CNN provides a highly effective method for accurately determining the age of Chenpi.
Collapse
Affiliation(s)
- Li Jun Tang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Xin Kang Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Yue Huang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Xiang-Zhi Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Bao Qiong Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| |
Collapse
|
9
|
Hoon Yun B, Yu HY, Kim H, Myoung S, Yeo N, Choi J, Sook Chun H, Kim H, Ahn S. Geographical discrimination of Asian red pepper powders using 1H NMR spectroscopy and deep learning-based convolution neural networks. Food Chem 2024; 439:138082. [PMID: 38070234 DOI: 10.1016/j.foodchem.2023.138082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
This study investigated an innovative approach to discriminate the geographical origins of Asian red pepper powders by analyzing one-dimensional 1H NMR spectra through a deep learning-based convolution neural network (CNN). 1H NMR spectra were collected from 300 samples originating from China, Korea, and Vietnam and used as input data. Principal component analysis - linear discriminant analysis and support vector machine models were employed for comparison. Bayesian optimization was used for hyperparameter optimization, and cross-validation was performed to prevent overfitting. As a result, all three models discriminated the origins of the test samples with over 95 % accuracy. Specifically, the CNN models achieved a 100 % accuracy rate. Gradient-weighted class activation mapping analysis verified that the CNN models recognized the origins of the samples based on variations in metabolite distributions. This research demonstrated the potential of deep learning-based classification of 1H NMR spectra as an accurate and reliable approach for determining the geographical origins of various foods.
Collapse
Affiliation(s)
- Byung Hoon Yun
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hyo-Yeon Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hyeongmin Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sangki Myoung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Neulhwi Yeo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jongwon Choi
- Department of Advanced Imaging, Chung-Ang University, Seoul 06974, South Korea.
| | - Hyang Sook Chun
- Department of Food Science & Technology, Chung-Ang University, Anseong 17546, South Korea.
| | - Hyeonjin Kim
- Department of Medical Sciences, Seoul National University, Seoul 03080, South Korea; Department of Radiology, Seoul National University Hospital, Seoul 03080, South Korea.
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
10
|
Bai R, Zhou J, Wang S, Zhang Y, Nan T, Yang B, Zhang C, Yang J. Identification and Classification of Coix seed Storage Years Based on Hyperspectral Imaging Technology Combined with Deep Learning. Foods 2024; 13:498. [PMID: 38338633 PMCID: PMC10855119 DOI: 10.3390/foods13030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Developing a fast and non-destructive methodology to identify the storage years of Coix seed is important in safeguarding consumer well-being. This study employed the utilization of hyperspectral imaging (HSI) in conjunction with conventional machine learning techniques such as support vector machines (SVM), k-nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGBoost), as well as the deep learning method of residual neural network (ResNet), to establish identification models for Coix seed samples from different storage years. Under the fusion-based modeling approach, the model's classification accuracy surpasses that of visible to near infrared (VNIR) and short-wave infrared (SWIR) spectral modeling individually. The classification accuracy of the ResNet model and SVM exceeds that of other conventional machine learning models (KNN, RF, and XGBoost). Redundant variables were further diminished through competitive adaptive reweighted sampling feature wavelength screening, which had less impact on the model's accuracy. Upon validating the model's performance using an external validation set, the ResNet model yielded more satisfactory outcomes, exhibiting recognition accuracy exceeding 85%. In conclusion, the comprehensive results demonstrate that the integration of deep learning with HSI techniques effectively distinguishes Coix seed samples from different storage years.
Collapse
Affiliation(s)
- Ruibin Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Siman Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Yue Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Bin Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (R.B.); (J.Z.); (S.W.); (Y.Z.); (T.N.); (B.Y.)
| |
Collapse
|
11
|
Hu H, Wang T, Wei Y, Xu Z, Cao S, Fu L, Xu H, Mao X, Huang L. Non-destructive prediction of isoflavone and starch by hyperspectral imaging and deep learning in Puerariae Thomsonii Radix. FRONTIERS IN PLANT SCIENCE 2023; 14:1271320. [PMID: 37954990 PMCID: PMC10634472 DOI: 10.3389/fpls.2023.1271320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Accurate assessment of isoflavone and starch content in Puerariae Thomsonii Radix (PTR) is crucial for ensuring its quality. However, conventional measurement methods often suffer from time-consuming and labor-intensive procedures. In this study, we propose an innovative and efficient approach that harnesses hyperspectral imaging (HSI) technology and deep learning (DL) to predict the content of isoflavones (puerarin, puerarin apioside, daidzin, daidzein) and starch in PTR. Specifically, we develop a one-dimensional convolutional neural network (1DCNN) model and compare its predictive performance with traditional methods, including partial least squares regression (PLSR), support vector regression (SVR), and CatBoost. To optimize the prediction process, we employ various spectral preprocessing techniques and wavelength selection algorithms. Experimental results unequivocally demonstrate the superior performance of the DL model, achieving exceptional performance with mean coefficient of determination (R2) values surpassing 0.9 for all components. This research underscores the potential of integrating HSI technology with DL methods, thereby establishing the feasibility of HSI as an efficient and non-destructive tool for predicting the content of isoflavones and starch in PTR. Moreover, this methodology holds great promise for enhancing efficiency in quality control within the food industry.
Collapse
Affiliation(s)
- Huiqiang Hu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingting Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yunpeng Wei
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Shiyu Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaxing Xu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaobo Mao
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Luqi Huang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
- Research Center for Intelligent Science and Engineering Technology of Traditional Chinese Medicine, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Qi H, Huang Z, Sun Z, Tang Q, Zhao G, Zhu X, Zhang C. Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning. FRONTIERS IN PLANT SCIENCE 2023; 14:1283921. [PMID: 37936942 PMCID: PMC10627025 DOI: 10.3389/fpls.2023.1283921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Vigor is one of the important factors that affects rice yield and quality. Rapid and accurate detection of rice seed vigor is of great importance for rice production. In this study, near-infrared hyperspectral imaging technique and transfer learning were combined to detect rice seed vigor. Four varieties of artificial-aged rice seeds (Yongyou12, Yongyou1540, Suxiangjing100, and Longjingyou1212) were studied. Different convolutional neural network (CNN) models were built to detect the vigor of the rice seeds. Two transfer strategies, fine-tuning and MixStyle, were used to transfer knowledge among different rice varieties for vigor detection. The experimental results showed that the convolutional neural network model of Yongyou12 classified the vigor of Yongyou1540, Suxiangjing100, and Longjingyou1212 through MixStyle transfer knowledge, and the accuracy reached 90.00%, 80.33%, and 85.00% in validation sets, respectively, which was better or close to the initial modeling performances of each variety. MixStyle statistics are based on probabilistic mixed instance-level features of cross-source domain training samples. When training instances, new domains can be synthesized, which increases the domain diversity of the source domain, thereby improving the generalization ability of the trained model. This study would help rapid and accurate detection of a large varieties of crop seeds.
Collapse
Affiliation(s)
- Hengnian Qi
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Zihong Huang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Zeyu Sun
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Qizhe Tang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Guangwu Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin’an, China
| | - Xuhua Zhu
- Smart Agriculture Research Institute, Zhejiang Top Cloud-agri Technology Co., Ltd., Hangzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
13
|
Jiang Z, Lv A, Zhong L, Yang J, Xu X, Li Y, Liu Y, Fan Q, Shao Q, Zhang A. Rapid Prediction of Adulteration Content in Atractylodis rhizoma Based on Data and Image Features Fusions from Near-Infrared Spectroscopy and Hyperspectral Imaging Techniques. Foods 2023; 12:2904. [PMID: 37569173 PMCID: PMC10417609 DOI: 10.3390/foods12152904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Atractylodis rhizoma (AR) is an herb and food source with great economic, medicinal, and ecological value. Atractylodes chinensis (DC.) Koidz. (AC) and Atractylodes lancea (Thunb.) DC. (AL) are its two botanical sources. The commercial fraud of AR adulterated with Atractylodes japonica Koidz. ex Kitam (AJ) frequently occurs in pursuit of higher profit. To quickly determine the content of adulteration in AC and AL powder, two spectroscopic techniques, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI), were introduced. The partial least squares regression (PLSR) algorithm was selected for predictive modeling of AR adulteration levels. Preprocessing and feature variable extraction were used to optimize the prediction model. Then data and image feature fusions were developed to obtain the best predictive model. The results showed that if only single-spectral techniques were considered, NIRS was more suitable for both tasks than HSI techniques. In addition, by comparing the models built after the data fusion of NIRS and HSI with those built by the single spectrum, we found that the mid-level fusion strategy obtained the best models in both tasks. On this basis, combined with the color-texture features, the prediction ability of the model was further optimized. Among them, for the adulteration level prediction task of AC, the best strategy was combining MLF data (at CARS level) and color-texture features (C-TF), at which time the R2T, RMSET, R2P, and RMSEP were 99.85%, 1.25%, 98.61%, and 5.06%, respectively. For AL, the best approach was combining MLF data (at SPA level) and C-TF, with the highest R2T (99.92%) and R2P (99.00%), as well as the lowest RMSET (1.16%) and RMSEP (2.16%). Therefore, combining data and image features from NIRS and HSI is a potential strategy to predict the adulteration content quickly, non-destructively, and accurately.
Collapse
Affiliation(s)
- Zhiwei Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lingjiao Zhong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingjing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaowei Xu
- Wenzhou Forestry Technology Promotion and Wildlife Protection Management Station, Wenzhou 325027, China
| | - Yuchan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Yuchen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Qiuju Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Y.L.); (Q.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|