1
|
Sun YX, Ji BT, Chen JH, Liu LP, Gao LL, Deng ZP, Sun Y, Wang JJ, Zhao B, Li JG. A smartphone-integrated bimetallic ratiometric fluorescent probe for specific visual detection of tetracycline antibiotics in food samples and latent fingerprinting. Food Chem 2025; 464:141782. [PMID: 39486281 DOI: 10.1016/j.foodchem.2024.141782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Designing and preparing highly sensitive and accurate fluorescent chemosensors for monitoring tetracycline antibiotics remains a challenge. Herein, a fluorescent chemosensor based on lanthanide metal-organic frameworks (Ln-MOFs) is proposed to realize high-precision monitoring by adjusting the ratio of lanthanide ions. Ln-MOFs with good aqueous stability were prepared by a solvothermal method using Eu3+, Tb3+ and the ligand 4,4',4″-s-triazine-2,4,6-triyltribenzoic acid (H3TATB) in DMF/NMP/H2O. The Ln-MOFs could recognize oxytetracycline (OTC) and doxycycline (DOX), and the detection limits of OTC and DOX were as low as 8.6 and 4.8 nM, respectively. In particular, Eu(1.4 μM)-Tb-MOF sensors were used for visual detection of OTC and DOX in combination with smartphones with detection lines as low as 9.8 nM and 14.2 nM, respectively. Meanwhile, Eu-MOF, Tb-MOF and Eu(1.4 μM)-Tb-MOF can be used for latent fingerprint (LFP) visualization, demonstrating their potential applications in the field of criminal case investigation. The developed probes were successfully applied to determining OTC and DOX in milk, beef and pork with recoveries ranging from 92.0 % to 109.63 % and relative standard deviations (RSDs) ranging from 1.83 % to 4.56 %. Eu(1.4 μM)-Tb-MOF is believed to utilize its lanthanide metal ion coordination and photoinduced electron transfer (PET) mechanism to achieve highly selective and accurate OTC and DOX detection, which is supported by experimental and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jiang-Hai Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Li-Ping Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | | | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
2
|
Lv T, Liu F, Xiao M, Liu Y, Wang L, Gao G. Synthesis of reusable hierarchical Pore PVDF-MIL-101(Cr) foam for Solid phase extraction of fluoroquinolones from water and its adsorption behavior for anionic and cationic dyes. J Chromatogr A 2025; 1740:465577. [PMID: 39637615 DOI: 10.1016/j.chroma.2024.465577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In this study, a novel hierarchical pore MIL-101(Cr) foam (HPF-MIL-101) was designed and prepared using the sacrificial template method with NaCl as the sacrificial template. This method involved grinding, heating, and washing the NaCl template to produce HPF-MIL-101, with PVDF as the binder and MIL-101(Cr) as the adsorbent. This preparation process is both straightforward and cost-effective, avoiding the use or generation of any organic reagents, thereby offering an environmentally sustainable approach for producing metal-organic framework (MOF) composites. The prepared HPF-MIL-101 exhibited excellent adsorption capabilities for both anionic dye (methyl orange, MO) and cationic dye (methylene blue, MB). The adsorption process followed a pseudo-second-order kinetic model and Friedrich isotherm model, indicating a multilayer adsorption. This is further supported by the Weber-Morris intraparticle diffusion model, which divided the adsorption process into three stages. Furthermore, the adsorption process was consistent with the Freundlich isotherm model, with a correlation coefficient (r) greater than 0.96. HPF-MIL-101 can also be used as an adsorbent for solid phase extraction (SPE). Therefore, an SPE method combined with high-performance liquid chromatography (HPLC) was developed using HPF-MIL-101 as the adsorbent to analyze five fluoroquinolones (FQs) in water samples. This analytical method showed good linearity in the range of 30-2000 ng·mL-1, with excellent linear correlation coefficient (r = 0.9991-0.9999), reasonable extraction recoveries ranging from 80.39 to 112.7 % (RSD ≤ 7.9 %), and low limits of detection (8-30 ng·mL-1). Overall, the results indicated that HPF-MIL-101 not only had a simple, environment-friendly, and pollution-free preparation process but also can be reused for enrichment and detection of trace FQs in water. Thus, HPF-MIL-101 exhibits immense application potential in environmental pollutant removal and also provides a valuable reference for the preparation and application of other MOF composites.
Collapse
Affiliation(s)
- Tianci Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355 Shandong Province, PR China
| | - Fubin Liu
- School of Pharmacy, Jining Medical University, Rizhao 276826 Shandong Province, PR China
| | - Mengqian Xiao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355 Shandong Province, PR China
| | - Ying Liu
- School of Pharmacy, Jining Medical University, Rizhao 276826 Shandong Province, PR China
| | - Litao Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826 Shandong Province, PR China
| | - Guihua Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355 Shandong Province, PR China; School of Pharmacy, Jining Medical University, Rizhao 276826 Shandong Province, PR China.
| |
Collapse
|
3
|
Yu Y, Zhao L, Xu N, Liu X, Li L, Xu N, Bai X. A smartphone-based enhanced colorimetric immunoassay for the detection of Trichinella spiralis infection. Vet Parasitol 2025; 333:110213. [PMID: 38782651 DOI: 10.1016/j.vetpar.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Trichinellosis is a serious foodborne and zoonotic parasitic disease caused by Trichinella family. At present, the main on-site detection method for Trichinella spiralis (T. spiralis) infection is the lateral flow assay (LFA). Other diagnostic techniques for this parasite cannot be applied to on-site testing due to their reliance on special instruments. Here, we established an ELISA smartphone-based method for detecting anti-T. spiralis antibodies in pig serum. The use of horseradish peroxidase-labeled goat anti-pig IgG-modified gold nanoparticle (AuNPs@HRP-IgG) effectively increased the sensitivity of the method. The entire reaction was carried out at room temperature without the need for special instruments. A low-cost and portable device for imaging and processing experimental data was also developed. Validation analysis revealed that the specificity of the test was 98.89 %, while its sensitivity was 100.00 %. T. spiralis antibodies could be detected in pig serum beginning at 25 dpi after infection with the muscle larvae. This visual immunosensor facilitates on-site detection of T. spiralis, especially in regions lacking specialized laboratory equipment.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lianjing Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nuo Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xue Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Zhang LL, Li L, Wang D, Hong Y, Tang K, Hong J, Chen Z, Yang W, Lu L, Duan LY. Rapid redox-response featured visual ascorbic acid sensor based on simple-assembled europium metal-organic framework. Food Chem 2024; 459:140339. [PMID: 38986206 DOI: 10.1016/j.foodchem.2024.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 μs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zeng Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Jie M, Lan S, Zhu B, Zhu A, Yue X, Xiang Q, Bai Y. Europium functionalized porphyrin-based metal-organic framework heterostructure and hydrogel for visual ratiometric fluorescence sensing of sulfonamides in foods. Food Chem 2024; 458:140304. [PMID: 38970961 DOI: 10.1016/j.foodchem.2024.140304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Protecting human health and ensuring food security require the swift and accurate detection of sulfonamides (SAs) residues in foods. Herein, we proposed an Eu-postfunctionalized bimetallic porphyrin metal-organic framework (PCN-221(Zr/Ce)@Eu-DPA-H4btec) synthesized solvothermally for fluorescence sensing. The PCN-221(Zr/Ce)@Eu-DPA-H4btec fluorescent sensor demonstrated excellent stability and high selectivity to SAs, and the detection limits of sulfamethazine (SM2), sulfamerazine (SMR), and sulfamethoxydiazine (SMD) were as low as 56 nmol/L, 45 nmol/L, and 56 nmol/L, respectively. The PCN-221(Zr/Ce)@Eu-DPA-H4btec fluorescent sensor was successfully applied for the detection of SM2, SMR, and SMD in real pork and milk samples, with satisfactory recoveries (81.2-118.3%) and high precisions (RSDs <8.2, n = 3). Combining the optical properties of the nanohybrids, PCN-221(Zr/Ce)@Eu-DPA-H4btec integrated fluorescent hydrogels were innovatively prepared for visual sensing of SM2, SMR, and SMD. This study provides an uncomplicated and sensitive method for SAs detection in food matrices.
Collapse
Affiliation(s)
- Mingsha Jie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Shengkai Lan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Bing Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Amei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
He J, Wen G, Peng Q, Hou X. The design, synthesis and application of metal-organic framework-based fluorescence sensors. Chem Commun (Camb) 2024; 60:11237-11252. [PMID: 39258376 DOI: 10.1039/d4cc03453h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Fluorescence-based chemical sensors have garnered significant attention due to their rapid response, high sensitivity, cost-effectiveness and ease of operation. Recently, metal-organic frameworks (MOFs) have been extensively utilized as platforms for constructing fluorescence sensors, owing to their ultra-high porosity, flexible tunability, and excellent luminescent properties. This feature article summarizes the progress made mainly by our research group in recent years in the construction strategies, principles, and types of MOF sensors, as well as their applications in quantitative sensing, qualitative identification analysis, and multimodal/multifunctional analysis. In addition, the challenges and an outlook on the future progression of MOF-based sensors are discussed, highlighting how these studies can contribute to addressing these issues. Hopefully, this feature article can provide some valuable guidance for the construction and application of MOFs in fluorescence sensing, thereby broadening their practical applications.
Collapse
Affiliation(s)
- Juan He
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Guijiao Wen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Qianqian Peng
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
7
|
Liu Q, Hu X, Dong X, Liu P, Zhang N, Gao Z, Wang W, Li H, Wang S, Liu X, Tang Y. A reliable fluorescence "turn-on" aptasensor based on dual-emitting europium metal-organic frameworks for ultrasensitive and selective detection of sulfamethazine. Food Chem 2024; 454:139756. [PMID: 38797097 DOI: 10.1016/j.foodchem.2024.139756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
A high-performance fluorescent "turn-on" aptasensor (Eu-MOFs@SMZ-Apt) for sulfamethazine (SMZ) determination was designed using dual-emitting europium metal-organic frameworks (Eu-MOFs) as a signal transducer and an amplifier. Eu-MOFs featuring dual emission peaks (430 nm and 620 nm) were first prepared via a facile self-assembly strategy employing Eu (III) ions and 2-aminoterephthalic acid as precursors. The high-affinity aptamer was bonded with Eu-MOFs to form Eu-MOFs@SMZ-Apt through the amidation reaction. Benefiting from the integration of inherent virtues from Eu-MOFs and aptamer, the Eu-MOFs@SMZ-Apt-based sensor allowed sensitive and selective determination of SMZ with good linear relationships in a range of 1.4-40 ng mL-1 and a low detection line (0.379 ng mL-1). This sensor was successfully applied to the determination of trace SMZ in real samples with satisfactory recoveries (86.47-113.52%) and a relative standard deviation (<6.51). Consequently, the Eu-MOFs@SMZ-Apt ratiometric fluorescence sensor furnishes new possibilities for the accurate detection of various pollutants in food.
Collapse
Affiliation(s)
- Qingxiang Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoxiao Dong
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Peng Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ning Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhe Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Huiling Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Zhao B, Liu X, Cheng Z, Liu X, Zhang X, Feng X. A portable Eu-MOF-loaded paper-based probe integrated with smartphone for the visual and on-site detection of Cr 2O 72- in aqueous media. Talanta 2024; 278:126462. [PMID: 38917552 DOI: 10.1016/j.talanta.2024.126462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
The high toxicity of dichromate anion (Cr2O72-) its accurate necessitates its sensitive and effective detection to safeguard human health. The study introduces a Eu-MOF fluorescent probe, named as Eu-TDCA, synthesized using 2,5-thiophenedicarboxylic acid (H2TDCA) as a bridging ligand for the detection of Cr2O72- in aqueous media. The probe suspension can detect Cr2O72- through fluorescence quenching, and the detection process exhibits a wide linear range (0-85 and 85-230 mg/L), low limit of detection (LOD, 5.1 μg/L) and rapid response speed (2 min). Furthermore, a portable Eu-TDCA-loaded paper-based probe, integrated with a smartphone color recognition app, was developed for the visual, sensitive and quantitative detection of Cr2O72- in real lake and river water samples, achieving satisfactory recoveries of 99.72%-103.75 %. Additionally, an advanced logic gate device was designed to simplify the detection process, providing a new direction for intelligent on-line detection of analytes.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China.
| | - Zheng Cheng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xu Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| |
Collapse
|
9
|
Zhou Y, Jiang Y, Chen X, Long H, Zhang M, Tang Z, He Y, Zhang L, Le T. Enhanced Sensitivity and Accuracy of Tb 3+-Functionalized Zirconium-Based Bimetallic MOF for Visual Detection of Malachite Green in Fish. Foods 2024; 13:2855. [PMID: 39272620 PMCID: PMC11395321 DOI: 10.3390/foods13172855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The ratiometric fluorescent probe UiO-OH@Tb, a zirconium-based MOF functionalized with Tb3+, was synthesized using a hydrothermal method. This probe employs the fluorescence resonance energy transfer (FRET) mechanism between Tb3+ and malachite green (MG) for the double-inverse signal ratiometric fluorescence detection of MG. The probe's color shifts from lime green to blue with an increasing concentration of MG. In contrast, the monometallic MOFs' (UiO-OH) probe shows only blue fluorescence quenching due to the inner filter effect (IFE) after interacting with MG. Additionally, the composite fluorescent probe (UiO-OH@Tb) exhibits superior sensitivity, with a detection limit (LOD) of 0.19 μM, which is significantly lower than that of the monometallic MOFs (25 μM). Moreover, the content of MG can be detected on-site (LOD = 0.94 μM) using the RGB function of smartphones. Hence, the UiO-OH@Tb probe is proven to be an ideal material for MG detection, demonstrating significant practical value in real-world applications.
Collapse
Affiliation(s)
- Yue Zhou
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuanyuan Jiang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiangyu Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Hongchen Long
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mao Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zili Tang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yufang He
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lei Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
10
|
Fan YJ, Dong JX, Liu T, Chang YQ, Zhao YS, Li YL, Zhang SM, Cao SY, Su M, Shen SG, Gao ZF. Heterometallic Eu/Zn-MOF-based ratiometric sensing platform: Highly sensitive fluorescence / second-order scattering identification of tetracycline analogs and its molecular informatization applications. Anal Chim Acta 2024; 1319:342980. [PMID: 39122289 DOI: 10.1016/j.aca.2024.342980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
The traditional preparation method of ratiometric probes faces challenges such as cumbersome preparation and low sensitivity. Thus, there is an urgent need to provide a simple method of preparing a highly sensitive ratiometric probe. Here, Eu3+-doped zinc-based organic framework (Eu/Zn-MOF) was prepared through hydrothermal method for the detection of tetracycline analogs (TCs). Under the same excitation conditions, the probe can simultaneously display valuable fluorescence and second-order scattering signals. The developed probe enabled specific identification and fast detection (1 min) of TCs, including tetracycline, oxytetracycline, doxycycline, and chlortetracycline. The linear detection ranges of tetracycline, oxytetracycline, doxycycline and chlortetracycline were respectively 100 nM - 200 μM, 100 nM - 200 μM, 98 nM - 195 μM, and 97 nM - 291 μM, and the corresponding detection limits were respectively 15.79 nM, 20.83 nM, 15.31 nM, and 28.30 nM. The developed sensor was successfully applied to detect TCs in real samples, and the recovery rate was from 92.54 % to 109.69 % and the relative standard deviation was from 0.04 % to 2.97 %. Moreover, the heterometallic Eu/Zn-MOF was designed as a ratiometric neuron for Boolean logic computing and information encryption based on the specific identification of TCs. As a proof of concept, molecular steganography was successfully employed to encode, store, and conceal information by transforming the specific identification patterns of Eu/Zn-MOF into binary strings. This study is anticipated to advance the application of metal-organic frameworks in logic detection and information security, and bridging the gap between molecular sensors and the realm of information.
Collapse
Affiliation(s)
- Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Tan Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yan Qing Chang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yong Sen Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Sai Mei Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Song Yun Cao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Shi Gang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
11
|
Sun YX, Ji BT, Chen JH, Gao LL, Sun Y, Deng ZP, Zhao B, Li JG. Ratiometric emission of Tb(III)-functionalized Cd-based layered MOFs for portable visual detection of trace amounts of diquat in apples, potatoes and corn. Food Chem 2024; 449:139259. [PMID: 38626667 DOI: 10.1016/j.foodchem.2024.139259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
Diquat (DQ) is a typical bipyridine herbicide widely used to control weeds in fields and orchards. The severe toxicity of diquat poses a serious threat to the environment and human health. Metal-organic frameworks (MOFs) have received widespread attention due to their unique physical and chemical properties and applications in the detection of toxic and harmful substances. In this work, a two-dimensional (2D) Tb(III) functionalized MOF Tb(III)@1 (1 = [Cd(HTATB)(bimb)]n·H2O (Cd-MOF), H3TATB = 4,4',4″-triazine-2,4,6-tribenzoicacid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene) has been prepared and characterized. Tb(III)@1 has excellent optical properties and high water and chemical stability. After the Tb(III) is fixed by the uncoordinated -COO- in the 1 framework, Tb(III)@1 emits the typical green fluorescence of the lanthanide ion Tb(III) through the "antenna effect". It is worth noting that Tb(III)@1 can be used as a dual emission fluorescence chemical sensor for the ratio fluorescence detection of pesticide DQ, exhibiting a relatively low detection limit of 0.06 nM and a wide detection range of 0-50 nM. After the addition of DQ, a rapid color change of Tb(III)@1 fluorescence from green to blue was observed due to the combined effects of IFE, FRET and dynamic quenching. Therefore, a simple test paper box has been designed for direct on-site determination of pesticide DQ. In addition, the developed sensor has been successfully applied to the detection of DQ in real samples (fruits a Yin-Xia Sun and Bo-Tao Ji contributed equally to this work and should be considered co-first authors.nd vegetables) with satisfactory results. The results indicate that the probe developed in this study has broad application prospects in both real sample detection and actual on-site testing.
Collapse
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Bo-Tao Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jiang-Hai Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Lu-Lu Gao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Yu Sun
- Experimental Teaching Department of Northwest Minzu University, Lanzhou 730030, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China.
| | - Biao Zhao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
12
|
Zhang Z, Zhang Y, Jayan H, Gao S, Zhou R, Yosri N, Zou X, Guo Z. Recent and emerging trends of metal-organic frameworks (MOFs)-based sensors for detecting food contaminants: A critical and comprehensive review. Food Chem 2024; 448:139051. [PMID: 38522300 DOI: 10.1016/j.foodchem.2024.139051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Interest in the use of sensors based on metal-organic frameworks (MOFs) to detect food pollutants has been growing recently due to the desirable characteristics of MOFs, including uniform structures, large surface area, ultrahigh porosity and easy-to-functionalize surface. Fundamentally, this review offers an excellent solution using MOFs-based sensors (e.g., fluorescent, electrochemical, electrochemiluminescence, surface-enhanced Raman spectroscopy, and colorimetric sensors) to detect food contaminants such as pesticide residues, mycotoxins, antibiotics, food additives, and other hazardous candidates. More importantly, their application scenarios and advantages in food detection are also introduced in more detail. Therefore, this systematic review analyzes detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles utilized in preparing MOFs-based sensors. Additionally, the main limitations of each sensing type, along with the enhancement mechanisms of MOFs in addressing efficient sensing are discussed. Finally, the limitations and potential trends of MOFs-based materials in food contaminant detection are also highlighted.
Collapse
Affiliation(s)
- Zhepeng Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Zhang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shipeng Gao
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruiyun Zhou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nermeen Yosri
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing of Jiangsu Province, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Mohammed Ameen SS, Omer KM. Recent Advances of Bimetallic-Metal Organic Frameworks: Preparation, Properties, and Fluorescence-Based Biochemical Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31895-31921. [PMID: 38869081 DOI: 10.1021/acsami.4c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bimetallic-metal organic frameworks (BiM-MOFs) or bimetallic organic frameworks represent an innovative and promising class of porous materials, distinguished from traditional monometallic MOFs by their incorporation of two metal ions alongside organic linkers. BiM-MOFs, with their unique crystal structure, physicochemical properties, and composition, demonstrate distinct advantages in the realm of biochemical sensing applications, displaying improvements in optical properties, stability, selectivity, and sensitivity. This comprehensive review explores into recent advancements in leveraging BiM-MOFs for fluorescence-based biochemical sensing, providing insights into their design, synthesis, and practical applications in both chemical and biological sensing. Emphasizing fluorescence emission as a transduction mechanism, the review aims to guide researchers in maximizing the potential of BiM-MOFs across a broader spectrum of investigations. Furthermore, it explores prospective research directions and addresses challenges, offering valuable perspectives on the evolving landscape of fluorescence-based probes rooted in BiM-MOFs.
Collapse
Affiliation(s)
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qlisan Street, Sulaymaniyah, 46002 Kurdistan Region, Iraq
| |
Collapse
|
14
|
Kadian P, Singh A, Kumar M, Kumari K, Sharma D, Randhawa JK. Synthesis of highly luminescent core-shell nanoprobes in a single pot for ofloxacin detection in blood serum and water. Dalton Trans 2024; 53:8958-8968. [PMID: 38747069 DOI: 10.1039/d3dt04295b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Antibiotics are commonly used as antibacterial medications due to their extensive and potent therapeutic properties. However, the overconsumption of these chemicals leads to their accumulation in the human body via the food chain, amplifying drug resistance and compromising immunity, thus presenting a significant hazard to human health. Antibiotics are classified as organic pollutants. Therefore, it is crucial to conduct research on precise methodologies for detecting antibiotics in many substances, including food, pharmaceutical waste, and biological samples like serum and urine. The methodology described in this research paper introduces an innovative technique for producing nanoparticles using silica as the shell material, iron oxide as the core material, and carbon as the shell dopant. By integrating a carbon-doped silica shell, this substance acquires exceptional fluorescence characteristics and a substantial quantum yield value of 80%. By capitalising on this characteristic of the substance, we have effectively constructed a fluorescent sensor that enables accurate ofloxacin analysis, with a detection limit of 1.3 × 10-6 M and a linear range of concentrations from 0 to 120 × 10-6 M. We also evaluated the potential of CSIONPs for OLF detection in blood serum and tap water analysis. The obtained relative standard deviation values were below 3.5%. The percentage of ofloxacin recovery from blood serum ranged from 95.52% to 103.28%, and from 89.9% to 96.0% from tap water.
Collapse
Affiliation(s)
- Pallavi Kadian
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Astha Singh
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Manish Kumar
- School of Materials and Mechanical Engineering, Indian Institute of Technology, Mandi, India.
| | - Kanchan Kumari
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Deepika Sharma
- School of Chemical Sciences, Indian Institute of Technology, Mandi, India
| | - Jaspreet Kaur Randhawa
- School of Materials and Mechanical Engineering, Indian Institute of Technology, Mandi, India.
| |
Collapse
|
15
|
Zhao B, Liu X, Cheng Z, Liu X, Zhang X, Feng X. Smartphone-integrated paper-based sensing platform for the visualization and quantitative detection of pymetrozine. Food Chem 2024; 440:138269. [PMID: 38157705 DOI: 10.1016/j.foodchem.2023.138269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Pymetrozine (PYM) is an effective pyridine insecticide for controlling aphids, while its residues pose a serious threat to human health. Herein, a europium complex (Eu-DBPA, DBPA represents deprotonated 2,5-dibromoterephthalic acid ligand) probe was prepared for the detection of PYM via fluorescence quenching. The detection process has the advantages of short response time (2 min), wide linear range (0-4 and 4-45 mg/kg) and low detection limit (2.2 μg/kg). Furthermore, a portable detection platform was designed by integrating Eu-DBPA-based paper strip with smartphone and applied for the visual detection of PYM in real cucumber, tomato, cabbage and apple samples, obtaining satisfactory recovery (99.00 %-107.00 %) and low standard deviation (RSD < 3.4 %). In addition, a logic gate device was designed to simplify the detection process. The smartphone-integrated paper-based probe detection platform provides a new strategy for intelligent and online identification of hazards in environmental and biological samples.
Collapse
Affiliation(s)
- Beibei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Zheng Cheng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xu Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
16
|
Liu Y, Xia G, Xu R, Chen X, Yao C. Eu 3+-based InP/ZnS quantum dot fluorescence platform for multi-color and sensitive visualization of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124167. [PMID: 38498963 DOI: 10.1016/j.saa.2024.124167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
A turn-on type ratiometric fluorescence sensing system of blue quantum dot Eu-MPA-InP/ZnS was established for multi-color visualization determination of tetracycline (TC). Mercaptopropionic acid (MPA)-capped InP/ZnS quantum dots (MPA-InP/ZnS QDs) both modify the hydrophilicity of InP/ZnS QDs and serve as a scaffold for coordinating of Eu3+ ions. The blue fluorescence of Eu-MPA-InP/ZnS at 478 nm is reduced by the TC through the inner filter effect (IFE) under a single excitation wavelength of 365 nm. Rich colour gradients and a highly discriminative colour change were features of this multicolour response to TC, which allowed visual quantification of TC in a dose-dependent manner. Furthermore, by cross-linking Eu-MPA-InP/ZnS with agarose (Aga.), a mouldable Eu-MPA-InP/ZnS@Aga 96-well gel sensing device was designed to serve as a handheld sensor for on-site detection of TC. This probe expands the use of InP QDs in analytical sensing and has been effectively applied to the visual detection of tetracycline in milk and the environment.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Guopeng Xia
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Rentao Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Xiong Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
17
|
Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP. Ln-MOF-Based Hydrogel Films with Tunable Luminescence and Afterglow Behavior for Visual Detection of Ofloxacin and Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311939. [PMID: 38275004 DOI: 10.1002/adma.202311939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Highly selective and sensitive quantitative detection of ofloxacin (OFX) at ultralow concentrations in aqueous media and development of new afterglow materials remains a challenge. Herein, a new 2D water-stable lanthanide metal-organic framework (NIIC-2-Tb) is proposed, which exhibits high selectivity towards OFX through the luminescence quenching with the lowest detection limit (1.1 × 10-9 M) reported to date and a fast response within 6 s. In addition, the luminescent detection of OFX by NIIC-2-Tb is not affected by typical components of blood plasma and urine. The excellent sensing effect of NIIC-2-Tb is further utilized to prepare a composite functional sensing carrageenan hydrogel material for the rapid detection of OFX in meat in real time and the first discovery of impressive afterglow in MOF-based hydrogels. This study not only presents novel Ln-MOF materials and Ln-MOF-based hydrogel films for luminescent sensing of OFX, but also demonstrates color-tunable luminescent films with afterglow, which expands the application of composite luminescent materials for detection and anti-counterfeiting.
Collapse
Affiliation(s)
- Xiaolin Yu
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Dmitry I Pavlov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Tatiana Y Guselnikova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Andrei S Potapov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Vladimir P Fedin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk, 630090, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., Novosibirsk, 630090, Russia
| |
Collapse
|