1
|
Liu W, Yuan J, Gao J, Tong P, Li X, Wang J, Yang Q, Wang Z, Min F, Wu Y, Chen H. Precision risk assessment in wheat allergy: Leveraging advanced quantitative models for safer food consumption. J Food Sci 2024; 89:10181-10190. [PMID: 39656652 DOI: 10.1111/1750-3841.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
Food allergy is a significant public health concern and food safety issue. Deriving from classical toxicology principle, the food allergen risk assessment has been considered a science-based strategy to identify, quantify, and manage the food allergy risks as such risk represent a significant food safety. Moreover, the implication of the precautionary allergen labeling in most jurisdictions is voluntary, resulting potential risk to allergic consumers. In this study, a quantitative risk assessment technique was employed to evaluate the risk of wheat allergy in prepackaged foods. The assessment utilized probabilistic models, including the lognormal, Weibull, Gamma distributions, and Bayesian model averaging. The predicted allergic reactions were determined to be 682, 854, 677, and 721 incidents per 10,000 eating occasions within wheat allergic population, respectively. The findings of this study revealed that the consumption of prepackaged foods containing gluten without wheat/gluten summary (i.e., ingredient) labeling would potentially pose the risk of allergic reactions to wheat allergic individuals. The utilization of quantitative risk assessment methodology at different points of the food system facilitates alleviating unnecessary concerns to stakeholders while maintaining a reasonable knowledge of allergy risk and providing valuable guidance in formulating effective management strategies to mitigate the risk of food allergies, thereby contributing to the overall safety of the sustainable food system.
Collapse
Affiliation(s)
- Wenfeng Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Qian Yang
- School of Food Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Cubero-Leon E, Madsen CB, Scherf KA, Colgrave ML, Nørgaard JV, Anthoni M, Rizou K, Walker MJ, Sollid LM. Barley based gluten free beer - A blessing or an uncontrollable risk? Food Chem Toxicol 2024; 193:115019. [PMID: 39307344 PMCID: PMC11581983 DOI: 10.1016/j.fct.2024.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Recent reports have highlighted that beer labelled "gluten-free", crafted with enzymatic treatments to remove gluten, may contain polypeptides that could be immunotoxic to individuals with coeliac disease. As strict adherence to a gluten-free diet is the only way to manage this condition, accurate labelling is crucial to those with coeliac disease. This paper aims to discuss the presence, levels and immunogenicity of gluten peptides found in gluten-reduced barley beers. While advances have been made in the detection and quantification of gluten peptides in beer, there are still challenges to the interpretation of gluten measurements as well as to assess whether peptides are immunotoxic in vivo. To make progress, future efforts should involve a combination of in vivo toxicity assessment of the degraded proteins, development of standardised gluten-free production strategies to minimise variability in gluten fragment presence, guidance on how to control the outcome as well as to develop appropriate reference materials and calibrators.
Collapse
Affiliation(s)
| | - Charlotte B Madsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Katharina A Scherf
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany; Technical University of Munich, TUM School of Life Sciences, Professorship of Food Biopolymer Systems, Freising, Germany
| | | | | | - Minna Anthoni
- Finnish Food Authority, Mustialankatu 3, 00790, Helsinki, Finland
| | - Katerina Rizou
- General Chemical State Laboratory (GCSL), Athens, Greece
| | - Michael J Walker
- Institute for Global Food Security, The Queen's University of Belfast, Belfast, BT9 5HN, Northern Ireland, UK
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Norway and Department of Immunology, Oslo, University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
3
|
Yang S, Lin H, Yang P, Meng J, Abdallah MF, Shencheng Y, Li R, Li J, Liu S, Li Q, Lu P, Zhang R, Li Y. Advancing High-Throughput MS-Based Protein Quantification: A Case Study on Quantifying 10 Major Food Allergens by LC-MS/MS Using a One-Sample Multipoint External Calibration Curve. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6625-6637. [PMID: 38494953 DOI: 10.1021/acs.jafc.3c08362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The LC-MS-based method has emerged as the preferred approach for quantifying food allergens. However, the preparation of a traditional calibration curve (MSCC) is labor-intensive and error-prone. Here, a sensitive and robust LC-MS/MS method for quantifying 10 major food allergens was developed and validated, where the one-sample multipoint external calibration curve (OSCC) was employed instead of MSCC. By employing the multiple isotopologue reaction monitoring (MIRM) technique with only one spiked level in the blank, OSCC can be effectively established. Results demonstrate that the proposed method exhibits excellent performance in selectivity, sensitivity, accuracy, and precision, comparable to that of the traditional MSCC. Additionally, this strategy allows for isotope sample dilution by monitoring the less abundant MIRM channel. Moreover, the developed method was successfully applied to investigate the contamination of 10 food allergens in commercial food products. With its high throughput and robustness, the MIRM-OSCC-LC-MS/MS methodology has many potential applications, especially in the MS-based protein quantification analysis.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Haopeng Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peijie Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Junhong Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Yingnan Shencheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Ruohan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peng Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|