1
|
Chen Y, Li T, Li T, Luo Y, Zhang W. Insight into the oxidation mechanism of coconut globulin by atmospheric cold plasma focusing on side chain amino acids. Food Chem 2025; 464:141647. [PMID: 39426269 DOI: 10.1016/j.foodchem.2024.141647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/27/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Atmospheric cold plasma (ACP), a novel non-thermal processing technology, generates active substances that stimulate protein oxidation in protein-based foods. Nevertheless, the precise mechanism through which ACP initiates amino acid oxidation on protein side chains remains ambiguous. This study primarily aimed to elucidate the mechanism of ACP-induced oxidation of coconut globulin, focusing on the process of amino acid oxidation. Analysis of protein oxidation products indicated a positive correlation between the extent of protein oxidation and the voltage and duration of ACP treatment. By analyzing the composition of amino acids and active ingredients, the study identified that the most significant changes amino acids were methionine, cysteine, and arginine, and •OH was the primary free radicals. The findings from oxidation kinetics and dynamic simulation indicated that •OH predominantly oxidized methionine, followed by L-cysteine and L-arginine. These results offer theoretical framework for understanding protein oxidation by ACP and suggest potential applications in protein-based food.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Tong Li
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Tian Li
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| |
Collapse
|
2
|
Feng J, Wang Z, Huang W, Zhao X, Xu L, Teng C, Li Y. Hyaluronic acid-decorated lipid nanocarriers as novel vehicles for curcumin: Improved stability, cellular absorption, and anti-inflammatory effects. Food Chem 2025; 463:141420. [PMID: 39369603 DOI: 10.1016/j.foodchem.2024.141420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to investigate how hyaluronic acid interfacial decoration affects the stability, cellular absorption, and anti-inflammatory effects of curcumin-loaded nanostructured lipid carriers. Nanocarriers were synthesized with an ovalbumin single layer and ovalbumin/hyaluronic acid double, mixed, or conjugated layers. All nanocarriers were spherical (200-300 nm diameter), and their encapsulation efficiency exceeded 95 %. Among the layers, the conjugated one exhibited the highest elastic surface dilatational modulus of approximately 40 mN/m, and the longest curcumin half-life of 186.07 days at 4 °C. Spearman's correlation analysis showed a negative correlation (r = -0.6698) between the recrystallization index and curcumin stability. The layer's mechanical strength improved curcumin stability by preventing crystal transition. Hyaluronic acid decoration enhanced the curcumin uptake of Caco-2 cells by 1.96-2.48 folds. Among the layers, the conjugate one was the most effective because of its strong binding constant with the receptor. Hyaluronic acid decoration improved the anti-inflammatory effects of curcumin.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Zhen Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xingyu Zhao
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lujing Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
3
|
Liu Y, Guo X, Fan X, Yu X, Liu T, Zhang J. Improving the emulsifying properties and oil-water interfacial behaviors of chickpea protein isolates through Maillard reaction with citrus pectin. Int J Biol Macromol 2024; 283:137671. [PMID: 39566780 DOI: 10.1016/j.ijbiomac.2024.137671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
The limited adsorption capability of chickpea protein isolates (CPI) at the oil-water interface restricts its application in emulsions. This study aimed to improve the emulsifying properties and interfacial behaviors of CPI through Maillard reaction with citrus pectin (CP). The research findings showed that the covalent linking of CP with CPI caused the unfolding of the molecular structure of CPI, exposing more hydrophobic groups. Consequently, the CPI-CP conjugates exhibited improved emulsifying properties. Emulsions stabilized by CPI-CP conjugates after 12 h of glycosylation demonstrated the smallest droplet sizes (1.73 μm) and the highest negative zeta potentials (-54.7 mV). Glycosylation also improved the storage and environmental stability of these emulsions. Interfacial adsorption kinetics analysis revealed the lower interfacial tension (13.94 mN/m) and faster diffusion rates of the CPI-CP conjugates. Furthermore, interfacial dilatational rheology analysis indicated that the CPI-CP conjugates formed an interfacial layer with a higher viscoelastic modulus (33.214 mN/m) and predominant elastic behavior. The interfacial film of CPI-CP conjugates showed excellent resistance to amplitude and frequency variations, enhancing emulsion stability. Thus, this study demonstrates that moderate glycosylation enhances interfacial performances and improves emulsion stability of CPI, providing new insights into the mechanisms by which CPI stabilizes emulsions.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
4
|
Chen Y, Li T, Jiang L, Huang Z, Zhang W, Luo Y. The composition, extraction, functional property, quality, and health benefits of coconut protein: A review. Int J Biol Macromol 2024; 280:135905. [PMID: 39332551 DOI: 10.1016/j.ijbiomac.2024.135905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Coconut is widely appreciated for its distinctive flavor and is commonly utilized in the production of a variety of goods. Coconut protein, a by-product derived from coconut oil and coconut milk cake, is frequently underutilized or discarded. This study provides a comprehensive overview of the distribution and composition of coconut protein. Analyses reveal that coconut protein, specifically 11S globulin and 7S globulin, is predominantly found in coconut flesh. Furthermore, various extraction techniques for coconut protein, such as chemical, enzymatic, and physical methods, are discussed. The alkali dissolution and acid precipitation methods are widely utilized for extracting coconut protein, with the potential for enhancement through the incorporation of physical methods such as ultrasound. The evaluation of functional properties, quality, and health benefits of coconut protein is essential, given the limitations imposed by its solubility. Modification may be necessary to optimize its functional properties. Coconut presents a promising source of food protein, characterized by balanced amino acid composition, high digestibility, and low allergenic potential. In conclusion, this study provides a comprehensive overview of the extraction methods, functional properties, quality, and nutritional benefits of coconut protein, offering insights for potential future research directions in the field. Additionally, the information presented may serve as a valuable reference for incorporating coconut protein into plant-based food products.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
5
|
Wang Y, Huang Y, Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Xia G, Shen X. Effect of non-covalent binding of tannins to sodium caseinate on the stability of high-internal-phase fish oil emulsions. Int J Biol Macromol 2024; 277:134171. [PMID: 39067727 DOI: 10.1016/j.ijbiomac.2024.134171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, we designed the noncovalent binding of sodium caseinate (SC) to tannic acid (TA) to stabilize high internal phase emulsions (HIPEs) used as fish oil delivery systems. Hydrogen bonding was the dominant binding force, followed by weak hydrophobic interaction and weak van der Waals forces, as demonstrated by FTIR, fluorescence spectroscopy, and molecular docking experiments, with a binding constant of 3.25 × 106, a binding site of 1.2, and a static quenching of the binding. Increasing SC:TA from SC to 2:1 decreased the particle size from 107.37 ± 10.66 to 76.07 ± 2.77 nm and the zeta potential from -6.99 ± 2.71 to -22 ± 2.42 mV. TA increased the interfacial tension of SC, decreased the surface hydrophobicity from 1.3 × 104 to 1.6 × 103 and improved the oxidation resistance of SC. The particle size of high internal phase emulsions stabilized by complexes with different mass ratios (SC:TA from 1:0 to 2:1) increased from 4.9 ± 0.02 to 12.9 μm, the potential increased from -32.37 ± 2.7 to -35.07 ± 2.58 mV, and the instability index decreased from 0.75 to 0.02. Thicker interfacial layers could be observed by laser confocal microscopy, and an increase in the storage modulus indicated a formation of a stronger gel network. SC:TA of 1:0 showed emulsion breakage after 14 d of storage at room temperature. SC:TA of 2:1 showed the lowest degree of oil-water separation after freeze-thaw treatment. Especially, the most stable high endo-phase emulsion (at SC:TA of 2:1) prepared at each mass ratio was selected for further stability exploration. The emulsion particle size increased only from 15.63 ± 0.06 to 22.27 ± 0.35 μm at salt ion concentrations of 50-200 mM and to 249.33 ± 31.79 μm at 300 mM. The instability index and storage modulus of the high endo-phase emulsions increased gradually with increasing salt ion concentrations. At different heating temperatures (55-85 °C), the instability index of the high internal phase emulsion gradually decreased and the storage modulus gradually increased. Meanwhile, at 50 °C for 15 d of accelerated oxidation, the content of hydroperoxide decreased from 53.32 ± 0.18 to 37.48 ± 0.77 nmol/g, about 29.7 %, and the thiobarbituric acid value decreased from 1.06 × 103 to 0.8 × 103, about 24.5 %, in the high endo-phase emulsions prepared by 2:1 SC:TA compared to the fish oils, and the SC-stabilized high endo-phase only emulsion broke at the sixth day of oxidation. From the above findings, it was concluded that the high internal phase emulsion prepared with SC:TA of 2:1 can be used as a good delivery system for fish oil.
Collapse
Affiliation(s)
- Yanchen Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yikai Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Ying Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mantong Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yongqiang Zhao
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
6
|
Chen Y, Wei Q, Chen Y, Feng A, Zhang W. Enhancement of hydrogen bonds between proteins and polyphenols through magnetic field treatment: Structure, interfacial properties, and emulsifying properties. Food Res Int 2024; 192:114822. [PMID: 39147514 DOI: 10.1016/j.foodres.2024.114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
In food systems, proteins and polyphenols typically coexist in a non-covalent manner. However, the inherent rigid structure of proteins may hinder the binding sites of polyphenols, thereby limiting the strength of their interaction. In the study, magnetic field (MF) treatment was used to enhance non-covalent interactions between coconut globulin (CG) and tannic acid (TA) to improve protein flexibility, enhancing their functional properties without causing oxidation of polyphenols. Based on protein structure results, the interaction between CG and TA caused protein structure to unfold, exposing hydrophobic groups. Treatment with a MF, particularly at 3 mT, further promoted protein unfolding, as evidenced by a decrease in α-helix structure and an increase in coil random. These structural transformations led to the exposure of the internal binding site bound to TA and strengthening the CG-TA interaction (polyphenol binding degree increased from 62.3 to 68.2%). The characterization of molecular forces indicated that MF treatment strengthened hydrogen bonding-dominated non-covalent interactions between CG and TA, leading to improved molecular flexibility of the protein. Specifically, at a MF treatment at 3 mT, CG-TA colloidal particles with small size and high surface hydrophobicity exhibited optimal interfacial activity and wettability (as evidenced by a three-phase contact angle of 89.0°). Consequently, CG-TA-stabilized high internal phase Pickering emulsions (HIPPEs) with uniform droplets and dense gel networks at 3 mT. Furthermore, the utilization of HIPPEs in 3D printing resulted in consistent geometric shapes, uniform surface textures, and distinct printed layers, demonstrating superior printing stability. As a result, MF treatment at 3 mT was identified as the most favorable. This research provides novel insights into how proteins and polyphenols interact, thereby enabling natural proteins to be utilized in a variety of food applications.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qiaozhu Wei
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Aiguo Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| |
Collapse
|
7
|
Zhu Q, Wang H, Li Y, Yu H, Pei J, Chen H, Chen W. Dynamic interfacial adsorption and emulsifying performance of self-assembled coconut protein and fucoidan mixtures. Int J Biol Macromol 2024; 276:133928. [PMID: 39038582 DOI: 10.1016/j.ijbiomac.2024.133928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
The functional properties of protein are affected by their aggregation behavior and morphology. In this study, the self-assembled coconut protein aggregates with specific morphology, including small amorphous aggregates (WLA), spherical-like aggregates (SLA) and rod-like aggregates (RLA), were regulated to form. The self-assembled process resulted in a decrease in fluorescence intensity and an increase in the surface hydrophobicity of coconut protein. Fucoidan was added to improve the stability of protein solutions, and the interfacial adsorption behavior was evaluated by dilatational rheology analysis. The results showed that the aggregation state of coconut protein affected its ability to reduce surface tension, and the interfacial layers mainly exhibited elastic property at oil-water interface (tanφ < 0.5). For macroscale analysis, the emulsions based on self-assembled coconut protein exhibited smaller droplet size, better rheological properties and centrifugal stability, especially WLA and RLA. This study may provide a reference to inspire the utilization of self-assembled coconut protein in the food industry.
Collapse
Affiliation(s)
- Qianqian Zhu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hao Wang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Yang Li
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hanhan Yu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jianfei Pei
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
8
|
Lu Y, Jiang Y, Liu J, Yang X, Zhao Y, Fan F. Preparation and Properties of Walnut Protein Isolate-Whey Protein Isolate Nanoparticles Stabilizing High Internal Phase Pickering Emulsions. Foods 2024; 13:2389. [PMID: 39123580 PMCID: PMC11311381 DOI: 10.3390/foods13152389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
To enhance the functional properties of walnut protein isolate (WalPI), hydrophilic whey protein isolate (WPI) was selected to formulate WalPI-WPI nanoparticles (nano-WalPI-WPI) via a pH cycling technique. These nano-WalPI-WPI particles were subsequently employed to stabilize high internal phase Pickering emulsions (HIPEs). By adjusting the mass ratio of WalPI to WPI from 9:1 to 1:1, the resultant nano-WalPI-WPI exhibited sizes ranging from 70.98 to 124.57 nm, with a polydispersity index of less than 0.326. When the mass ratio of WalPI to WPI was 7:3, there were significant enhancements in various functional properties: the solubility, denaturation peak temperature, emulsifying activity index, and emulsifying stability index increased by 6.09 times, 0.54 °C, 318.94 m2/g, and 552.95 min, respectively, and the surface hydrophobicity decreased by 59.23%, compared with that of WalPI nanoparticles (nano-WalPI), with the best overall performance. The nano-WalPI-WPI were held together by hydrophobic interactions, hydrogen bonding, and electrostatic forces, which preserved the intact primary structure and improved resistance to structural changes during the neutralization process. The HIPEs stabilized by nano-WalPI-WPI exhibited an average droplet size of less than 30 μm, with droplets uniformly dispersed and maintaining an intact spherical structure, demonstrating superior storage stability. All HIPEs exhibited pseudoplastic behavior with good thixotropic properties. This study provides a theoretical foundation for enhancing the functional properties of hydrophobic proteins and introduces a novel approach for constructing emulsion systems stabilized by composite proteins as emulsifiers.
Collapse
Affiliation(s)
- Yanling Lu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Yuxin Jiang
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Jiongna Liu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Xiaoqin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China;
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yueliang Zhao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China;
| | - Fangyu Fan
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China;
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
9
|
Niu H, Chen X, Chen X, Chen H, Dou Z, Wang W, Fu X. Interfacial Behavior and Long-Term Stability of the Emulsions Stabilized by Sugar Beet Pectin-Ca 2+ Complexes with Different Cross-Linking Degrees. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38329064 DOI: 10.1021/acs.langmuir.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Recent studies showed that sugar beet pectin exhibited more excellent emulsifying properties than traditional citrus peel pectin and apple pectin ascribed to the higher content of neutral sugar, protein, ferulic acid, and acetyl groups. It is precisely because of the extremely complex molecular structure of pectin that the emulsifying properties of the pectin-Ca2+ complex are still unclear. In this study, SBP-Ca2+ complexes with different cross-linking degrees were prepared. Subsequently, their interfacial adsorption kinetics, the resistance of interfacial films to external perturbances, and the long-term stability of the emulsions formed by these SBP-Ca2+ complexes were measured. The results indicated that the highly cross-linked SBP-Ca2+ complex exhibited slower interfacial adsorption kinetics than SBP alone. Moreover, compared with SBP alone, the oil-water interfacial film loaded by the highly cross-linked SBP-Ca2+ complex exhibited a lower elasticity and a poorer resistance to external perturbances. This resulted in a larger droplet size, a lower ζ-potential value, a larger continuous viscosity, and a worse long-term stability of the emulsion formed by the highly cross-linked SBP-Ca2+ complex. This study has very important guiding significance for deeply understanding the emulsification mechanism of the pectin-Ca2+ complex.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, P. R. China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, P. R. China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, P. R. China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, P. R. China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, P. R. China
| |
Collapse
|