1
|
Teng J, Xu C, Lu Z, Li T. Different types of anions mediated the formation of rice glutelin fibrils: Aggregation behaviors and structural characteristics. Food Chem 2025; 471:142760. [PMID: 39788003 DOI: 10.1016/j.foodchem.2025.142760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Anions have more pronounced effect on the aggregation power of proteins than cations. Herein, the effect of different types of anions on rice glutelin (RG) based fibrils formation was investigated. The fibrils yield and growth rate of RG were enhanced with various anions, due to the specific ions effect and intermolecular interaction. It was observed that the fibrillization rate of RG followed the specific order: Br- > I- > F- > NO3- > Cl- > CH3COO- > ClO-. In addition, the chaotropes (e.g., I-) interacted more favorably with hydrophobic residues to form needle-like periodic structure, whereas the kosmotropes (e.g., CH3COO-) preferred to form larger fibrils clusters due to the stronger shielding effect. Consequently, various anions profoundly influenced the unfolding, dimerization, reorganization of protein, as well as the formation of crucial β-sheet structure. This study helps to understand how the structure of fibrils can be tuned through different anions.
Collapse
Affiliation(s)
- Jie Teng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Chaole Xu
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Zekai Lu
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Ting Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
2
|
Liang Y, Zhang P, Liu M, Liu H, He B, Zhu Y, Wang J. Plant-based protein amyloid fibrils: Origins, formation, extraction, applications, and safety. Food Chem 2025; 469:142559. [PMID: 39732075 DOI: 10.1016/j.foodchem.2024.142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Amyloid fibrils (AFs) are highly ordered nanostructures formed through the self-assembly of proteins under specific conditions. Due to their unique properties, AFs have garnered significant attention as biomaterials over the past decade. Nevertheless, the increasing reliance on animal proteins for AFs production raises sustainability concerns, highlighting the need for a transition to plant-based proteins as more environmentally friendly feedstocks. This review summarizes the conditions, mechanisms, and factors influencing the fibrillisation of over 20 plant-based protein amyloid fibrils (PAFs). The effectiveness of enzymatic extraction and membrane separation for isolating PAFs was also evaluated. Additionally, the review discusses the potential for enhancing PAFs' suitability through cross-linking with external agents. In the future, PAFs may be developed as advanced nanomaterials for a range of applications, including food hydrogels, cell-cultured meat scaffolds, and food detection sensors. However, thorough investigation of safety concerns and process improvements remain the primary challenges for the development of PAFs.
Collapse
Affiliation(s)
- Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Penghui Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Hao Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Baoshan He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou R&D Center for high-quality innovation of Green Food (Green Premium Agricultural Products), Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Yu Y, Li S, Wang W, Yong S, Yu Z, Du Z. Assembly complexes of egg yolk low-density lipoprotein and Auricularia auricula polysaccharide stabilized high internal phase Pickering emulsions: Insights into the stabilization mechanism via fluid-fluid interaction between water and oil phases. Int J Biol Macromol 2025; 305:141027. [PMID: 39954883 DOI: 10.1016/j.ijbiomac.2025.141027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The interfacial stabilization mechanisms have been thoroughly researched in high internal phase Pickering emulsion (HIPPE), yet the role of fluid-fluid interaction between the water and oil phases at the interfaces in determining HIPPE stability has attracted comparatively less attention. Thus, this study adopted an assembly strategy to prepare egg yolk low-density lipoprotein (LDL) complexes with Auricularia auricula polysaccharide (AAP), aiming to enhance the functionality while regulating the fluid-fluid interaction strength at the oil-water interface by tuning the proteoglycan ratio to modulate HIPPE stability. AAP was assembled with LDL via hydrogen bonding and electrostatic interactions, with a higher protein ratio enhancing these intermolecular interactions. According to the Raman spectroscopy, stronger fluid-fluid interactions were observed with increasing protein concentrations. AAP-LDL assembly complexes provided superior physical stability to HIPPE than that of LDL. HIPPE stabilized by the assembly complexes successfully delivered quercetin and enhanced lipid digestion. This research augments the HIPPE stability theoretical system and contributes to the improved physical stability of HIPPE-based functional foods in industrial applications.
Collapse
Affiliation(s)
- Yiding Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Weiyi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Shuhan Yong
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
4
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
5
|
Richter-Bisson ZW, Nie HY, Hedberg YS. Serum protein albumin and chromium: Mechanistic insights into the interaction between ions, nanoparticles, and protein. Int J Biol Macromol 2024; 278:134845. [PMID: 39159799 DOI: 10.1016/j.ijbiomac.2024.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The interaction of human proteins and metal species, both ions and nanoparticles, is poorly understood despite their growing importance. These materials are the by-products of corrosion processes and are of relevance for food and drug manufacturing, nanomedicine, and biomedical implant corrosion. Here, we study the interaction of Cr(III) ions and chromium oxide nanoparticles with bovine serum albumin in physiological conditions. This study combined electrophoretic mobility measurements, spectroscopy, and time-of-flight secondary ion mass spectrometry with principal component analysis. It was determined that neither metal species resulted in global albumin unfolding. The Cr(III) ions interacted strongly with amino acids found in previously discovered metal binding sites, but also were most strongly implicated in the interaction with negatively charged acid residues, suggesting an electrostatic interaction. Bovine serum albumin (BSA) was found to bind to the Cr2O3 nanoparticles in a preferential orientation, due to electrostatic interactions between the positive amino acid residues and the negative chromium oxide nanoparticle surface. These findings ameliorate our understanding of the interaction between trivalent chromium ions and nanoparticles, and biological macromolecules.
Collapse
Affiliation(s)
| | - Heng-Yong Nie
- Surface Science Western, Western University, London, ON N6G 0J3, Canada; Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Yolanda Susanne Hedberg
- Department of Chemistry, Western University, London, ON N6A 5B7, Canada; Surface Science Western, Western University, London, ON N6G 0J3, Canada; Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
6
|
Zhao H, Xu X, Yuan B, Qi B, Li Y. Fibrillation of soy protein isolate in the presence of metal ions: Structure and gelation behavior. Food Chem 2024; 453:139672. [PMID: 38805941 DOI: 10.1016/j.foodchem.2024.139672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
The structure and functional properties of protein fibrils are closely related to environmental factors in fibrillation. Herein, soy protein isolate fibrils (SPIFs, 22 mg/mL) were prepared under acid-heating conditions in the presence of 100 mM metal ions (K+, Na+, Ca2+, Mg2+, and Fe3+). Except for Fe3+, fibrillation and subsequent larger fibril aggregates were promoted, ultimately leading to gel formation. Compared with K+ or Na+, the addition of Ca2+ or Mg2+ resulted in more organized SPIF structures with increased β-sheet contents and higher ThT fluorescence intensities. Furthermore, both of them resulted in longer fibrils with an average contour length of 700-800 nm, which significantly enhanced the storage modulus. However, the presence of Fe3+ accelerated protein hydrolysis and inhibited SPIF formation, resulting in samples consistently exhibited liquid behavior. These findings provide a foundation for understanding the influence of metal ions on regulating the fibrillation and gelling properties of SPIFs.
Collapse
Affiliation(s)
- Hekai Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinru Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bingbing Yuan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Chongnqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
7
|
Chen Y, Gao F, Liu Q, Yuan S, Yu H, Guo Y, Cheng Y, Qian H, Li G, Yao W. Preparation and Formation Mechanism Study of Antibiofilm Coating Based on Phase Transition of Glutenin. Biomacromolecules 2024; 25:5008-5018. [PMID: 38956952 DOI: 10.1021/acs.biomac.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The surface of food processing equipment is easily affected by biofilm-forming bacteria, leading to cross-contamination and food safety hazards. The critical issue is how to endow the surface of contact materials with antibacterial and antibiofilm abilities. A sustainable, stable, and antibiofilm coating was prepared by phase transition of glutenin. The disulfide bonds in glutenin were reduced by tris(2-carboxyethyl)phosphine, triggering the phase transition of glutenin. Hydrophobic interactions and intermolecular disulfide bonds may be the primary forces. Furthermore, the phase-transited products formed a nanoscale coating on the surface of stainless steel and glass under their own adhesion force and gravity. The coating exhibited good stability in harsh environments. More importantly, after 3 h of direct contact, the colony of Escherichia coli and Staphylococcus aureus decreased by one logarithm. The amount of biofilm was observed to be significantly decreased through optical microscopy and scanning electron microscopy. This article provides a foundational module for developing novel coatings.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Fang Gao
- Agricultural Product Quality and Safety Center, Ministry of Agriculture and Rural Affairs of China, Beijing 100125, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Gang Li
- Agricultural and Livestock Product Quality and Safety Center of Inner Mongolia, Inner Mongolia 750306, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
8
|
Li T, Wang D, Zhang X, Chen Z, Wang L. Specific ions effect on aggregation behaviors and structural changes of amyloid fibrils from rice glutelin. Food Chem 2024; 441:138351. [PMID: 38218147 DOI: 10.1016/j.foodchem.2023.138351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024]
Abstract
Metal ions have been considered as an important factor on fibrils assembly. Herein, a comprehensive analysis of specific ions effect on fibril formation and structural changes was investigated. The addition of ions (except Zn2+) accelerated the aggregation kinetics of rice glutelin fibrils (RGFs) from 0.93 to 1.28-2.19 h-1. In addition, the fibrillization rate followed the order of NH4+ > Li+ > Na+ > K+ > Cu2+ > Mg2+ > Ca2+ > Zn2+. The highest yield and length of fibrils were observed with Ca2+, probably due to the ionic bridging effect and hydrated capacity of Ca2+. However, Cu2+ reduced the fibrils yield, which was attributable to the fact that Cu2+ disrupted β-sheet structure and inhibited the transition of monomer to fibrils. The polymorphism of fibrils was observed with different salts, and the light metals presented a superior effect on fibrils formation than heavy metals. Overall, this work will provide a further information into how to tune the structure of RGFs using various ions.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Dong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|