1
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
2
|
Živančev J, Bulut S, Kocić-Tanackov S, Jović D, Fišteš A, Antić I, Djordjevic A. The impact of fullerenol nanoparticles on the growth of toxigenic Aspergillus flavus and aflatoxins production in vitro and in corn flour. J Food Sci 2024; 89:1814-1827. [PMID: 38317383 DOI: 10.1111/1750-3841.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/16/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Antifungal and antimycotoxigenic activity of fullerenol nanoparticles (FNPs) were investigated on Aspergillus flavus growth isolated from a real food sample and aflatoxins (AFs) (AFB1 and AFB2 ) production. The final FNPs concentrations in in vitro and in commercial corn flour after the stationary incubation period of 7 and 14 days were in the range 0.16-80 µg/mL and 0.16-80 µg/g, respectively. Nanocharacterization of FNPs revealed an average size of 5-20 nm and a zeta potential of -35 mV. The highest degree of A. flavus mycelium growth inhibition (28%) after 7 days was observed for applied FNP concentration of 8.0 µg/mL, while after 14 days FNP concentration of 0.32 µg/mL led to the maximal inhibition of A. flavus mycelium growth (36%). Spearman's correlations analysis revealed a strong positive correlation between AFB1 and AFB2 concentrations in YES broth after 7 (R = 0.994, p < 0.05) and 14 days (R = 0.976), as well as between AFs concentrations and A. flavus mycelium mass after 7 (R = 0.786 for AFB1 and R = 0.766 for AFB2 ) and 14 days (R = 0.810 for AFB1 and R = 0.833 for AFB2 ). Paired samples t-test showed the existence of a statistically significant difference (p < 0.05) between the produced AFs concentrations after the incubation of 7 and 14 days. Regarding the artificially inoculated corn flour the lower applied FNP concentrations (0.16-0.8 µg/g) achieved a reduction of AFB1 up to 42% and 60% after 7 and 14 days, respectively.
Collapse
Affiliation(s)
- Jelena Živančev
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Sandra Bulut
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | | | - Danica Jović
- Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Fišteš
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Igor Antić
- Faculty of Technology Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandar Djordjevic
- Faculty of Sciences, Department of Chemistry, Biochemistry, and Environmental Protection, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
3
|
Ding L, Han M, Wang X, Guo Y. Ochratoxin A: Overview of Prevention, Removal, and Detoxification Methods. Toxins (Basel) 2023; 15:565. [PMID: 37755991 PMCID: PMC10534725 DOI: 10.3390/toxins15090565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Ochratoxins are the secondary metabolites of Penicillium and Aspergillus, among which ochratoxin A (OTA) is the most toxic molecule. OTA is widely found in food and agricultural products. Due to its severe nephrotoxicity, immunotoxicity, neurotoxicity, and teratogenic mutagenesis, it is essential to develop effective, economical, and environmentally friendly methods for OTA decontamination and detoxification. This review mainly summarizes the application of technology in OTA prevention, removal, and detoxification from physical, chemical, and biological aspects, depending on the properties of OTA, and describes the advantages and disadvantages of each method from an objective perspective. Overall, biological methods have the greatest potential to degrade OTA. This review provides some ideas for searching for new strains and degrading enzymes.
Collapse
Affiliation(s)
| | | | | | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (L.D.); (M.H.); (X.W.)
| |
Collapse
|
4
|
La Placa L, Tsitsigiannis D, Camardo Leggieri M, Battilani P. From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination. Foods 2023; 12:260. [PMID: 36673352 PMCID: PMC9858051 DOI: 10.3390/foods12020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.
Collapse
Affiliation(s)
- Laura La Placa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Dimitrios Tsitsigiannis
- Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
5
|
Removal of Ochratoxin A from Grape Juice by Clarification: A Response Surface Methodology Study. Foods 2022; 11:foods11101432. [PMID: 35627005 PMCID: PMC9141085 DOI: 10.3390/foods11101432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023] Open
Abstract
This study achieved maximum removal of ochratoxin A (OTA) during the grape juice clarification process with minimal reduction in antioxidant compounds (phenolic acid, flavonoids, and antioxidant capacity by FRAP) by the RSM method. Independent variables included three types of clarifiers—gelatin, bentonite, and diatomite (diatomaceous earth)—at a concentration level of 0.25–0.75% and clarification time of 1–3 h. OTA was measured by high-performance liquid chromatography with fluorescence detection. Clarifying agent concentration and clarification time affected the reduction amount of OTA and antioxidant compounds in grape juice. There was a direct linear correlation between the reduction amounts of OTA and antioxidant compounds and capacity with the concentration of bentonite, gelatin, and diatomite, and the clarification time. The reduction amount of OTA and antioxidant capacity followed the linear mode. However, the decreased phenolic acid and flavonoid values followed the quadratic model. The study results showed that if the concentrations of bentonite, gelatin, and diatomite and clarification time were 0.45, 0.62, 0.25%, and 1 h, respectively, the maximum amount of OTA reduction (41.67%) occurred. Furthermore, the phenolic acid, flavonoid, and antioxidant activity decrease amounts were at their lowest levels, i.e., 23.86, 7.20, and 17.27%, respectively.
Collapse
|
6
|
Nan MN, Bi Y, Qiang Y, Xue HL, Yang L, Feng LD, Pu LM, Long HT, Prusky D. Electrostatic adsorption and removal mechanism of ochratoxin A in wine via a positively charged nano-MgO microporous ceramic membrane. Food Chem 2022; 371:131157. [PMID: 34583180 DOI: 10.1016/j.foodchem.2021.131157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/04/2022]
Abstract
Ochratoxin A (OTA) is a very important mycotoxin. However, there are few studies on the removal of OTA in wine because of the great influence on product quality and difficulty in practical application. A nano-MgO-modified diatomite ceramic membrane (MCM) with a high positive charge was prepared and applied to remove OTA in wine. The isotherm adsorption between the positively charged membrane and OTA was in accordance with the Langmuir model, with a maximum adsorption capacity of 806 ng/g at 25 °C. All of the changes in adsorption enthalpy (ΔH), adsorption free energy (ΔG) and adsorption entropy (ΔS) were negative, which indicated that the combination of nano-MgO MCM and OTA was a spontaneous exothermic and nonspecific physical adsorption process. The concentrations of OTA in adsorption-treated wines were lower than 2 μg/kg, and the removal rates exceeded 92%. After OTA removal, the composition of wines was preserved to some extent.
Collapse
Affiliation(s)
- Mi-Na Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China; Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yao Qiang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130012, PR China
| | - Hua-Li Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Lan Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Li-Dan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lu-Mei Pu
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Hai-Tao Long
- College of Science, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Postharvest Science of Fresh Produce, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| |
Collapse
|
7
|
Wang L, Hua X, Shi J, Jing N, Ji T, Lv B, Liu L, Chen Y. Ochratoxin A: Occurrence and recent advances in detoxification. Toxicon 2022; 210:11-18. [PMID: 35181402 DOI: 10.1016/j.toxicon.2022.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022]
Abstract
Ochratoxin A (OTA), one of the most important mycotoxins, is mainly produced by fungi in the genera Aspergillus and Penicillium, and commonly found in food and agricultural products. In addition to causing significant economic losses, the occurrence of OTA in foods poses a serious threat to human health. Therefore, it is very important to develop approaches to control or detoxify OTA contamination and thus ensure food safety. In this paper, we review the source and occurrence of OTA in food and agricultural products and the latest achievements in the removal and detoxification of OTA using physical, chemical, and biological methods, with specific attention to influencing factors and mechanisms related to the biodetoxification of OTA. Moreover, the advantages and disadvantages of these methods and their potential application prospect were also discussed.
Collapse
Affiliation(s)
- Lan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xia Hua
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jie Shi
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ninghao Jing
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Bing Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yun Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Mohos V, Faisal Z, Fliszár-Nyúl E, Szente L, Poór M. Testing the extraction of 12 mycotoxins from aqueous solutions by insoluble beta-cyclodextrin bead polymer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:210-221. [PMID: 34322792 PMCID: PMC8724181 DOI: 10.1007/s11356-021-15628-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Mycotoxins are toxic metabolites of filamentous fungi; they are common contaminants in numerous foods and beverages. Cyclodextrins are ring-shaped oligosaccharides, which can form host-guest type complexes with certain mycotoxins. Insoluble beta-cyclodextrin bead polymer (BBP) extracted successfully some mycotoxins (e.g., alternariol and zearalenone) from aqueous solutions, including beverages. Therefore, in this study, we aimed to examine the ability of BBP to remove other 12 mycotoxins (including aflatoxin B1, aflatoxin M1, citrinin, dihydrocitrinone, cyclopiazonic acid, deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, zearalanone, α-zearalanol, and β-zearalanol) from different buffers (pH 3.0, 5.0, and 7.0). Our results showed that BBP can effectively extract citrinin, dihydrocitrinone, sterigmatocystin, zearalanone, α-zearalanol, and β-zearalanol at each pH tested. However, for the removal of ochratoxin A, BBP was far the most effective at pH 3.0. Based on these observations, BBP may be a suitable mycotoxin binder to extract certain mycotoxins from aqueous solutions for decontamination and/or for analytical purposes.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, Budapest, H-1097 Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs, H-7624 Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs, H-7624 Hungary
| |
Collapse
|
9
|
Senturk S, Karaca H. First report on the presence of aflatoxins in fig seed oil and the efficacy of adsorbents in reducing aflatoxin levels in aqueous and oily media. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1937226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Cosme F, Inês A, Silva D, Filipe-Ribeiro L, Abrunhosa L, Nunes FM. Elimination of ochratoxin A from white and red wines: Critical characteristics of activated carbons and impact on wine quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Xu H, Wang L, Sun J, Wang L, Guo H, Ye Y, Sun X. Microbial detoxification of mycotoxins in food and feed. Crit Rev Food Sci Nutr 2021; 62:4951-4969. [PMID: 33663294 DOI: 10.1080/10408398.2021.1879730] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mycotoxins are metabolites produced by fungi growing in food or feed, which can produce toxic effects and seriously threaten the health of humans and animals. Mycotoxins are commonly found in food and feed, and are of significant concern due to their hepatotoxicity, nephrotoxicity, carcinogenicity, mutagenicity, and ability to damage the immune and reproductive systems. Traditional physical and chemical detoxification methods to treat mycotoxins in food and feed products have limitations, such as loss of nutrients, reagent residues, and secondary pollution to the environment. Thus, there is an urgent need for new detoxification methods to effectively control mycotoxins and treat mycotoxin pollution. In recent years, microbial detoxification technology has been widely used for the degradation of mycotoxins in food and feed because this approach offers the potential for treatment with high efficiency, low toxicity, and strong specificity, without damage to nutrients. This article reviews the application of microbial detoxification technology for removal of common mycotoxins such as Aflatoxin, Ochratoxin, Zearalenone, Deoxynivalenol, and Fumonisins, and discusses the development trend of this important technology.
Collapse
Affiliation(s)
- Hongwen Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Liangzhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Liping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
12
|
|
13
|
Loffredo E, Scarcia Y, Parlavecchia M. Removal of ochratoxin A from liquid media using novel low-cost biosorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34484-34494. [PMID: 32557031 DOI: 10.1007/s11356-020-09544-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Ground shells of almonds (ALM), hazelnuts (HAZ), walnuts (WAL), and chestnuts (CHE), coconut fiber (COC), spent coffee grounds (COF), and clementine peel (CLE) were used to remove ochratoxin A (OTA) from both water and an ethanol/water mixture (14:86, v/v). Other very efficient adsorbents like wood biochar (BC) and hydrochar (HC) and a humic acid (HA) were also adopted as a comparison. In batch experiments, sorption of OTA from water followed the trend BC (100% removed) > HA > CLE > COC > HC > COF > ALM > HAZ > CHE > WAL (8% removed), whereas sorption of OTA from ethanol/water mixture (14:86, v/v) onto only the raw materials was COC (54% removed) > CLE > HAZ > ALM > COF > CHE > WAL (0.4% removed). The desorption of the toxin from all materials in water was rather low. Afterwards, sorption kinetics and isotherms of OTA onto CLE, COC, and COF were performed. The three materials adsorbed OTA in about 2 h according to a pseudo-second-order kinetic model, thus indicating the occurrence of a chemisorption mechanism. Equilibrium sorption data of OTA onto CLE followed preferentially the Freundlich model, whereas those on COC and COF fitted well both Freundlich and Langmuir isotherms (r > 0.996). The values of Freundlich sorption constants, KFads, for CLE, COC, and COF were 313, 202, and 98 L kg-1, respectively. OTA desorption from each of the three materials showed hysteretic effects. Overall findings of this work suggest that raw plant wastes could be effectively used as biosorbents to abate the level of OTA in liquid media.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy.
| | - Ylenia Scarcia
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Marco Parlavecchia
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
14
|
Li P, Su R, Yin R, Lai D, Wang M, Liu Y, Zhou L. Detoxification of Mycotoxins through Biotransformation. Toxins (Basel) 2020; 12:toxins12020121. [PMID: 32075201 PMCID: PMC7076809 DOI: 10.3390/toxins12020121] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 01/18/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolites that pose a major threat to the safety of food and feed. Mycotoxins are usually converted into less toxic or non-toxic metabolites through biotransformation that are often made by living organisms as well as the isolated enzymes. The conversions mainly include hydroxylation, oxidation, hydrogenation, de-epoxidation, methylation, glycosylation and glucuronidation, esterification, hydrolysis, sulfation, demethylation and deamination. Biotransformations of some notorious mycotoxins such as alfatoxins, alternariol, citrinin, fomannoxin, ochratoxins, patulin, trichothecenes and zearalenone analogues are reviewed in detail. The recent development and applications of mycotoxins detoxification through biotransformation are also discussed.
Collapse
Affiliation(s)
- Peng Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Ruixue Su
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Ruya Yin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Mingan Wang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China;
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
- Correspondence: ; Tel.: +86-10-6273-1199
| |
Collapse
|
15
|
Heshmati A, Ghadimi S, Ranjbar A, Mousavi Khaneghah A. Assessment of processing impacts and type of clarifier on the concentration of ochratoxin A in pekmez as a conventional grape-based product. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Bajpai VK, Shukla S, Khan I, Kang SM, Haldorai Y, Tripathi KM, Jung S, Chen L, Kim T, Huh YS, Han YK. A Sustainable Graphene Aerogel Capable of the Adsorptive Elimination of Biogenic Amines and Bacteria from Soy Sauce and Highly Efficient Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43949-43963. [PMID: 31684721 DOI: 10.1021/acsami.9b16989] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A graphene aerogel (GA) with a three-dimensional (3D) structure, ultra-lightweight nature, and high hydrophobicity was simply fabricated by the one-step pyrolysis of glucose and ammonium chloride. The as-synthesized GA exhibited a 3D interconnected microporous architecture with a high surface area of ∼2860 m2 g-1 and pore volume of 2.24 cm3 g-1. The hydrophobic GA (10 mg 100 mL-1) demonstrated rapid and excellent adsorption performance for the removal of food toxins such as various biogenic amines (histamine, cadaverine, and spermine) and the hazardous bacterium Staphylococcus aureus (a food contaminant and a cause of poor wound healing) from a liquid matrix with a maximum simultaneous adsorption capacity for multiple biogenic amines of >85.19% (histamine), 74.1% (cadaverine), and 70.11% (spermidine) and a 100% reduction in the viable cell count of S. aureus within 80 min of interaction. The outstanding adsorption capacity can be attributed to a highly interconnected porous network in the 3D architecture and a high surface-to-volume ratio. A case study using soy sauce spiked with multiple biogenic amines showed successful removal of toxins with excellent recyclability without any loss in absorption performance. Biocompatibility of the GA in terms of cell viability was observed even at high concentrations (83.46% and 75.28% at 25 and 50 mg mL-1, respectively). Confirmatory biocompatibility testing was conducted via live/dead cell evaluation, and the morphology of normal lung epithelial cells was examined via scanning electron microscopy showed no cellular shrinkage. Moreover, GA showed excellent removal of live colonies of S. aureus from the food matrix and immunoblotting analysis showed elevated protein expression levels of β-catenin and α-SMA (α-smooth muscle actin). The biocompatible sugar-based GA could simultaneously adsorb multiple biogenic amines and live bacteria and was easy to regenerate via simple separation due to its high floatability, hydrophobicity, surface area, and porosity without any structural and functional loss, making it especially relevant for food safety and biomedical applications.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering , Dongguk University - Seoul , 30 Pildong-ro 1-gil, Seoul 04620 , Republic of Korea
| | - Shruti Shukla
- Department of Food Science and Technology , National Institute of Food Technology Entrepreneurship and Management (NIFTEM) , Sonipat , Haryana 131028 , India
| | - Imran Khan
- Department of Chemical Engineering , Inha University , 100 Inha-ro, Nam-gu, Incheon 22212 , Republic of Korea
| | - Sung-Min Kang
- Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology , Bharathiar University , Coimbatore 641046 , Tamil Nadu , India
| | - Kumud Malika Tripathi
- Department of Bionanotechnology , Gachon University , 1342 Seongnam-daero, Sujeong-gu, Seongnam-si , Gyeonggi-do 461-701 , Republic of Korea
| | - SungHoon Jung
- Department of Bionanotechnology , Gachon University , 1342 Seongnam-daero, Sujeong-gu, Seongnam-si , Gyeonggi-do 461-701 , Republic of Korea
| | - Lei Chen
- College of Food Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - TaeYoung Kim
- Department of Bionanotechnology , Gachon University , 1342 Seongnam-daero, Sujeong-gu, Seongnam-si , Gyeonggi-do 461-701 , Republic of Korea
| | - Yun Suk Huh
- Department of Chemical Engineering , Inha University , 100 Inha-ro, Nam-gu, Incheon 22212 , Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering , Dongguk University - Seoul , 30 Pildong-ro 1-gil, Seoul 04620 , Republic of Korea
| |
Collapse
|
17
|
Nora NS, Feltrin ACP, Sibaja KVM, Furlong EB, Garda-Buffon J. Ochratoxin A reduction by peroxidase in a model system and grape juice. Braz J Microbiol 2019; 50:1075-1082. [PMID: 31338707 DOI: 10.1007/s42770-019-00112-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/29/2018] [Indexed: 02/02/2023] Open
Abstract
This study aimed at evaluating the potential of the peroxidase (PO) enzyme to reduce ochratoxin A (OTA) levels and its application to grape juice. Both commercial PO and PO extracted from rice bran were evaluated, respectively, regarding their activity towards OTA in a model system. The affinity between PO and OTA was verified by the Michaelis-Menton constant and the maximum velocity parameters, resulting in 0.27 μM and 0.015 μM min-1 for the commercial enzyme, and 6.5 μM and 0.031 μM min-1 for PO extracted from rice bran, respectively. The lowest residual OTA levels occurred when 0.063 U mL-1 of the enzyme was applied. Under these conditions, the OTA reduction was 41% in 5 h for the commercial enzyme, and 59% in 24 h, for PO extracted from rice bran. When the extracted PO, with the activity of 0.063 U mL-1, was applied to whole grape juice, the OTA levels decreased to 17%, at 24 h. The capacity shown by PO for reducing OTA levels was confirmed in whole white grape juice, as a model system. This study may assist the wine industry to offer healthier products and add value to rice bran. Graphical abstract.
Collapse
Affiliation(s)
- Náthali Saião Nora
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Ana Carla Penteado Feltrin
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Karen Vanessa Marimón Sibaja
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Eliana Badiale Furlong
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil
| | - Jaqueline Garda-Buffon
- Escola de Química e Alimentos, Laboratório de Micotoxinas e Ciência de Alimentos, Universidade Federal de Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
18
|
Heshmati A, Ghadimi S, Ranjbar A, Khaneghah AM. Changes in aflatoxins content during processing of pekmez as a traditional product of grape. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Das AB, Goud VV, Das C. Adsorption/desorption, diffusion, and thermodynamic properties of anthocyanin from purple rice bran extract on various adsorbents. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Baran Das
- Department of Food Engineering and Technology; Tezpur University; Assam India
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Assam India
| | - V. V. Goud
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Assam India
| | - Chandan Das
- Department of Chemical Engineering; Indian Institute of Technology Guwahati; Assam India
| |
Collapse
|
20
|
El Khoury R, Choque E, El Khoury A, Snini SP, Cairns R, Andriantsiferana C, Mathieu F. OTA Prevention and Detoxification by Actinobacterial Strains and Activated Carbon Fibers: Preliminary Results. Toxins (Basel) 2018; 10:toxins10040137. [PMID: 29587362 PMCID: PMC5923303 DOI: 10.3390/toxins10040137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/26/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by several species of Aspergillus and Penicillium that contaminate food and feed raw materials. To reduce OTA contamination, we first tested in vitro, actinobacterial strains as potential biocontrol agents and afterward, through a physical decontamination method using activated carbon fibers (ACFs). Actinobacterial strains were screened for their ability to reduce OTA in solid co-culture with A. carbonarius, which is the major OTA-producing species in European vineyards. Four strains showed a high affinity for removing OTA (67%–83%) with no significant effect on fungal growth (<20%). The mechanism of action was first studied by analyzing the expression of OTA cluster genes (acOTApks, acOTAnrps, acOTAhal) by RT-qPCR showing a drastic reduction in all genes (7–15 times). Second, the ability of these strains to degrade OTA was assessed in vitro on ISP2 solid medium supplemented with OTA (100 µg/L). Two strains reduced OTA to undetectable levels. As for the physical method, high adsorption rates were obtained for ACFs at 0.8 g/L with a 50% adsorption of OTA in red wine by AC15 and 52% in grape juice by AC20 within 24 h. These promising methods could be complementarily applied toward reducing OTA contamination in food chains, which promotes food safety and quality.
Collapse
Affiliation(s)
- Rhoda El Khoury
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Elodie Choque
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI-EA 3900), Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens CEDEX, France.
| | - Anthony El Khoury
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Selma P Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Robbie Cairns
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Caroline Andriantsiferana
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, Toulouse, France; Avenue de l'Agrobiopole-BP 32607-Auzeville-Tolosane 31326 CASTANET-TOLOSAN CEDEX.
| |
Collapse
|
21
|
|
22
|
Pirouz AA, Selamat J, Iqbal SZ, Mirhosseini H, Karjiban RA, Bakar FA. The use of innovative and efficient nanocomposite (magnetic graphene oxide) for the reduction on of Fusarium mycotoxins in palm kernel cake. Sci Rep 2017; 7:12453. [PMID: 28963539 PMCID: PMC5622098 DOI: 10.1038/s41598-017-12341-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 09/07/2017] [Indexed: 11/09/2022] Open
Abstract
Adsorption plays an important role in the removal of mycotoxins from feedstuffs. The main objective of this study was to investigate the efficacy of using magnetic graphene oxide nanocomposites (MGO) as an adsorbent for the reduction of Fusarium mycotoxins in naturally contaminated palm kernel cake (PKC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the mycotoxins in animal feed. Target mycotoxins included the zearalenone (ZEA), the fumonisins (FB1 and FB2) and trichothecenes (deoxynivalenol (DON), HT-2 and T-2 toxin). Response surface methodology (RSM) was applied to investigate the effects of time (3-7 h), temperature (30-50 °C) and pH (3-7) on the reduction. The response surface models with (R2 = 0.94-0.99) were significantly fitted to predict mycotoxins in contaminated PKC. Furthermore, the method ensured a satisfactory adjustment of the polynomial regression models with the experimental data except for fumonisin B1 and B2, which decrease the adsorption of magnetic graphene oxide (MGO). The optimum reduction was performed at pH 6.2 for 5.2 h at of 40.6 °C. Under these optimum conditions, reduced levels of 69.57, 67.28, 57.40 and 37.17%, were achieved for DON, ZEA, HT-2, and T-2, respectively.
Collapse
Affiliation(s)
- A A Pirouz
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, Universit Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, UPM, 43400, Serdang, Selangor, Malaysia
| | - J Selamat
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, Universit Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Food Safety and Food Integrity (FOSFI), Institute of Tropical Agriculture and Food Security, UPM, 43400, Serdang, Selangor, Malaysia.
| | - S Z Iqbal
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, Universit Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - H Mirhosseini
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Abedi Karjiban
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - F Abu Bakar
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, Universit Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
23
|
Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Abdel-Wahhab MA, El-Kady AA, Hassan AM, Abd El-Moneim OM, Abdel-Aziem SH. Effectiveness of activated carbon and Egyptian montmorillonite in the protection against deoxynivalenol-induced cytotoxicity and genotoxicity in rats. Food Chem Toxicol 2015; 83:174-182. [PMID: 26115597 DOI: 10.1016/j.fct.2015.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/28/2022]
Abstract
This study was conducted to prepare and characterize activated carbon (AC) and to evaluate its protective effect against deoxynivalenol (DON) toxicity in rats compared to Egyptian montmorillonite (EM). AC was prepared using a single-step chemical activation with phosphoric acid (H3PO4). The resulted AC has a high surface area and a high total pore volume. Male Sprague-Dawley rats were divided into 6 groups (n = 10) and treated for 3 weeks as follow: the control group, the groups fed AC or EM-supplemented diet (0.5% w/w), the group treated orally with DON (5 mg/kg b.w.) and the groups fed AC or EM-supplemented diet and treated with DON. Blood and liver samples were collected for different analyses. Treatment with DON increased liver function enzymes, lipid peroxidation, tumor necrosis factor α, DNA fragmentation, decreased hepatic glutathione content, up regulating mRNA Fas and TNF-α genes expression and increased micronucleated polychromatic erythrocytes and normochromatic erythrocytes in bone marrow. Co-treatment of DON plus AC or EM succeeded to normalize the levels of the biochemical parameters, reduced the cytotoxicity of bone marrow and ameliorated the hepatic genotoxicity. Moreover, AC was more effective than EM and has a high affinity to adsorb DON and to reduce its cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| | - Ahmed A El-Kady
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Aziza M Hassan
- Cell Biology Department, National Research Center, Dokki, Cairo, Egypt; Biotechnology Department, College of Science, Taif University, Saudi Arabia
| | | | | |
Collapse
|
25
|
Inhibition of the growth and ochratoxin A production by Aspergillus carbonarius and Aspergillus ochraceus in vitro and in vivo through antagonistic yeasts. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.08.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Jiang C, Shi J, Chen X, Liu Y. Effect of sulfur dioxide and ethanol concentration on fungal profile and ochratoxin a production by Aspergillus carbonarius during wine making. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
González-Arias C, Piquer-Garcia I, Marin S, Sanchis V, Ramos A. Bioaccessibility of ochratoxin A from red wine in an in vitro dynamic gastrointestinal model. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium species with immunosuppressive, teratogenic, and carcinogenic properties. It has been determined that wine is the second largest source of OTA (10% of total OTA intake) in the European diet and that its presence, even in small doses, can be a problem in terms of long-term toxicity. In this paper, we evaluated the bioaccessibility of OTA in a spiked red wine sample under human fasting conditions using an in vitro dynamic digestion model that includes a continuous-flow dialysis system to simulate intestinal passage. To the best of our knowledge, this report is the first examining the bioaccessibility of OTA in wine. A liquid-liquid method was used to extract the OTA and ochratoxin alpha (OTα) from gastrointestinal juices, and the extracts were analysed by HPLC with a fluorescence detector. The bioaccessibility of OTA from the spiked red wine (1.0, 2.0 and 4 μg/l) was high in the gastric compartment (102.8, 128.3 and 122.3%, respectively), whereas in the simulated intestine, it did not exceed 26%, and the amount of OTA that crossed the dialysis membrane was very low (<3.3%). The amount of OTα in gastric chyme ranged from 5.1 to 19.1% of the spiked OTA, whereas in the intestinal compartment it did not exceed 5%. In conclusion, in the in vitro system assayed, OTA exhibited a high bioaccessibility in the simulated stomach, but it decreased after the intestinal digestion and passage through the dialysis membrane.
Collapse
Affiliation(s)
- C.A. González-Arias
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - I. Piquer-Garcia
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - S. Marin
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - V. Sanchis
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida, Spain
| | - A.J. Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida, Spain
| |
Collapse
|
28
|
Yue T, Guo C, Yuan Y, Wang Z, Luo Y, Wang L. Adsorptive removal of patulin from apple juice using Ca-alginate-activated carbon beads. J Food Sci 2013; 78:T1629-T1635. [PMID: 24032606 DOI: 10.1111/1750-3841.12254] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/21/2013] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the adsorption of patulin from apple juice by Ca-alginate-activated carbon (Ca-alginate-AC) beads. The capacity of patulin was determined by high-performance liquid chromatography. The results showed that Ca-alginate-AC beads have significant ability to reduce patulin from contaminated apple juice. Furthermore, the adsorption process did not affect the quality of apple juice. The effects of contact time, initial patulin concentration, adsorbent dose, and temperature were assessed. The removal percentage of patulin increased with contact time, adsorbent dose, and temperature. A reduction was also noted to bind patulin at increased levels of contamination. The equilibrium data were fitted to Langmuir, Freundlich, and Temkin isotherm models and the isotherm constants were calculated at different temperatures. The adsorption equilibrium was best described by the Freundlich isotherm (R(2) > 0.990). The pseudo 1st-order model was found to describe the kinetic data satisfactorily. Thermodynamic parameters such as standard Gibbs free energy (ΔG◦◦), standard enthalpy (ΔH◦), and standard entropy (ΔS◦) were evaluated. The results showed that the adsorption was spontaneous and endothermic nature.
Collapse
Affiliation(s)
- Tianli Yue
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Caixia Guo
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China.,Shanxi Univ., College of Life Science and Technology, Taiyuan 030006, China
| | - Yahong Yuan
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Zhouli Wang
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Ying Luo
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| | - Ling Wang
- Northwest A&F Univ., College of Food Science and Engineering, Yangling 712100, China
| |
Collapse
|
29
|
Steel CC, Blackman JW, Schmidtke LM. Grapevine bunch rots: impacts on wine composition, quality, and potential procedures for the removal of wine faults. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5189-206. [PMID: 23675852 DOI: 10.1021/jf400641r] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bunch rot of grape berries causes economic loss to grape and wine production worldwide. The organisms responsible are largely filamentous fungi, the most common of these being Botrytis cinerea (gray mold); however, there are a range of other fungi responsible for the rotting of grapes such as Aspergillus spp., Penicillium spp., and fungi found in subtropical climates (e.g., Colletotrichum spp. (ripe rot) and Greeneria uvicola (bitter rot)). A further group more commonly associated with diseases of the vegetative tissues of the vine can also infect grape berries (e.g., Botryosphaeriaceae, Phomopsis viticola ). The impact these fungi have on wine quality is poorly understood as are remedial practices in the winery to minimize wine faults. Compounds found in bunch rot affected grapes and wine are typically described as having mushroom, earthy odors and include geosmin, 2-methylisoborneol, 1-octen-3-ol, 2-octen-1-ol, fenchol, and fenchone. This review examines the current state of knowledge about bunch rot of grapes and how this plant disease complex affects wine chemistry. Current wine industry practices to minimize wine faults and gaps in our understanding of how grape bunch rot diseases affect wine production and quality are also identified.
Collapse
Affiliation(s)
- Christopher C Steel
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University , Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | | | | |
Collapse
|
30
|
Quintela S, Villarán MC, López de Armentia I, Elejalde E. Ochratoxin A removal in wine: A review. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.08.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Anli RE, Vural N, Bayram M. Removal of Ochratoxin A (OTA) from Naturally Contaminated Wines During the Vinification Process. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00493.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Heperkan D, Güler FK, Oktay H. Mycoflora and natural occurrence of aflatoxin, cyclopiazonic acid, fumonisin and ochratoxin A in dried figs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:277-86. [DOI: 10.1080/19440049.2011.597037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Kolosova A, Stroka J. Substances for reduction of the contamination of feed by mycotoxins: a review. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1288] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The global occurrence of mycotoxins is considered to be a major risk factor for human and animal health. Contamination of different agricultural commodities with mycotoxins still occurs despite the most strenuous prevention efforts. As a result, mycotoxin contaminated feed can cause serious disorders and diseases in farm animals. A number of approaches, such as physical and chemical detoxification procedures, have been used to counteract mycotoxins. However, only a few of them have practical application. A recent and promising approach to protect animals against the harmful effects of mycotoxin contaminated feed is the use of substances for reduction of the contamination of feed by mycotoxins. These substances, so-called mycotoxin binders (MB), are added to the diet in order to reduce the absorption of mycotoxins from the gastrointestinal tract and their distribution to blood and target organs, thus preventing or reducing mycotoxicosis in livestock. Recently, the use of such substances as technological feed additives has been officially allowed in the European Union. The efficacy of MB appears to depend on the properties of both the binder and the mycotoxin. Depending on their mode of action, these feed additives may act either by binding mycotoxins to their surface (adsorption), or by degrading or transforming them into less toxic metabolites (biotransformation). Biotransformation can be achieved by mycotoxin-degrading enzymes or by microorganisms producing such enzymes. Various inorganic adsorbents, such as hydrated sodium calcium aluminosilicate, zeolites, bentonites, clays, and activated carbons, have been tested and used as MB. An interesting alternative to inorganic adsorbents for the detoxification of mycotoxins is the use of organic binders, such as yeast cell wall components, synthetic polymers (cholestyramine, polyvinylpyrrolidone), humic substances and dietary fibres. This paper gives an overview of the current knowledge and situation in the field of MB. The most important types of MB, mechanism of their action, and their application as a part of general strategy to counteract mycotoxins are described in this review. Recent advances in the use and study of MB, as well as data of their in vitro and in vivo effectiveness are given. Problems, potential, current trends and perspectives associated with the use of MB are discussed as well in the review.
Collapse
Affiliation(s)
- A. Kolosova
- Institute for Reference Materials and Measurements, European Commission, Joint Research Center, Retieseweg 111, 2440 Geel, Belgium
| | - J. Stroka
- Institute for Reference Materials and Measurements, European Commission, Joint Research Center, Retieseweg 111, 2440 Geel, Belgium
| |
Collapse
|
34
|
Jalili M, Jinap S, Son R. The effect of chemical treatment on reduction of aflatoxins and ochratoxin A in black and white pepper during washing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:485-93. [PMID: 21416415 DOI: 10.1080/19440049.2010.551300] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of 18 different chemicals, which included acidic compounds (sulfuric acid, chloridric acid, phosphoric acid, benzoic acid, citric acid, acetic acid), alkaline compounds (ammonia, sodium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide), salts (acetate ammonium, sodium bisulfite, sodium hydrosulfite, sodium chloride, sodium sulfate) and oxidising agents (hydrogen peroxide, sodium hypochlorite), on the reduction of aflatoxins B(1), B(2), G(1) and G(2) and ochratoxin A (OTA) was investigated in black and white pepper. OTA and aflatoxins were determined using HPLC after immunoaffinity column clean-up. Almost all of the applied chemicals showed a significant degree of reduction on mycotoxins (p < 0.05). The lowest and highest reduction of aflatoxin B(1), which is the most dangerous aflatoxin, was 20.5% ± 2.7% using benzoic acid and 54.5% ± 2.7% using sodium hydroxide. There was no significant difference between black and white peppers (p < 0.05).
Collapse
Affiliation(s)
- M Jalili
- Centre of Excellence for Food Safety Research, Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | |
Collapse
|
35
|
Varga J, Kocsubé S, Péteri Z, Vágvölgyi C, Tóth B. Chemical, physical and biological approaches to prevent ochratoxin induced toxicoses in humans and animals. Toxins (Basel) 2010; 2:1718-50. [PMID: 22069658 PMCID: PMC3153271 DOI: 10.3390/toxins2071718] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 12/01/2022] Open
Abstract
Ochratoxins are polyketide derived fungal secondary metabolites with nephrotoxic, immunosuppressive, teratogenic, and carcinogenic properties. Ochratoxin-producing fungi may contaminate agricultural products in the field (preharvest spoilage), during storage (postharvest spoilage), or during processing. Ochratoxin contamination of foods and feeds poses a serious health hazard to animals and humans. Several strategies have been investigated for lowering the ochratoxin content in agricultural products. These strategies can be classified into three main categories: prevention of ochratoxin contamination, decontamination or detoxification of foods contaminated with ochratoxins, and inhibition of the absorption of consumed ochratoxins in the gastrointestinal tract. This paper gives an overview of the strategies that are promising with regard to lowering the ochratoxin burden of animals and humans.
Collapse
Affiliation(s)
- János Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (S.K.); (Z.P.); (C.V.)
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (S.K.); (Z.P.); (C.V.)
| | - Zsanett Péteri
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (S.K.); (Z.P.); (C.V.)
- PannonPharma Company, Mária dűlő 36, H-7634 Pécs, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (S.K.); (Z.P.); (C.V.)
| | - Beáta Tóth
- Cereal Research Non-Profit Limited Company, Alsókikötő sor 9, H-6726 Szeged, Hungary; (B.T.)
| |
Collapse
|
36
|
BOUDERGUE C, BUREL C, DRAGACCI S, FAVROT M, FREMY J, MASSIMI C, PRIGENT P, DEBONGNIE P, PUSSEMIER L, BOUDRA H, MORGAVI D, OSWALD I, PEREZ A, AVANTAGGIATO G. Review of mycotoxin‐detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. ACTA ACUST UNITED AC 2009. [DOI: 10.2903/sp.efsa.2009.en-22] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Espejo FJ, Armada S. Effect of activated carbon on ochratoxin A reduction in “Pedro Ximenez” sweet wine made from off-vine dried grapes. Eur Food Res Technol 2009. [DOI: 10.1007/s00217-009-1055-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Cserháti T. Carbon-based sorbents in chromatography. New achievements. Biomed Chromatogr 2009; 23:111-8. [DOI: 10.1002/bmc.1168] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|