1
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
2
|
Lakicevic B, Jankovic V, Pietzka A, Ruppitsch W. Wholegenome sequencing as the gold standard approach for control of Listeria monocytogenes in the food chain. J Food Prot 2023; 86:100003. [PMID: 36916580 DOI: 10.1016/j.jfp.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
Listeria monocytogenes has been implicated in numerous outbreaks and related deaths of listeriosis. In food production, L. monocytogenes occurs in raw food material and above all, through postprocessing contamination. The use of next-generation sequencing technologies such as whole-genome sequencing (WGS) facilitates foodborne outbreak investigations, pathogen source tracking and tracing geographic distributions of different clonal complexes, routine microbiological/epidemiological surveillance of listeriosis, and quantitative microbial risk assessment. WGS can also be used to predict various genetic traits related to virulence, stress, or antimicrobial resistance, which can be of great benefit for improving food safety management as well as public health.
Collapse
Affiliation(s)
- Brankica Lakicevic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia.
| | - Vesna Jankovic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene Division for Public Health, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
3
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyze the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance wasn't clearly defined. Further, viable but non-culturable (VBNC) form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.,Present Address: Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
4
|
Bland R, Brown SRB, Waite-Cusic J, Kovacevic J. Probing antimicrobial resistance and sanitizer tolerance themes and their implications for the food industry through the Listeria monocytogenes lens. Compr Rev Food Sci Food Saf 2022; 21:1777-1802. [PMID: 35212132 DOI: 10.1111/1541-4337.12910] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
The development of antibiotic resistance is a serious public health crisis, reducing our ability to effectively combat infectious bacterial diseases. The parallel study of reduced susceptibility to sanitizers is growing, particularly for environmental foodborne pathogens, such as Listeria monocytogenes. As regulations demand a seek-and-destroy approach for L. monocytogenes, understanding sanitizer efficacy and its uses are critical for the food industry. Studies have reported the ability of L. monocytogenes to survive in sanitizer concentrations 10-1000 times lower than the manufacturer-recommended concentration (MRC). Notably, data show that at MRC and when applied according to the label instructions, sanitizers remain largely effective. Studies also report that variables such as the presence of organic material, application time/temperature, and bacterial attachment to surfaces can impact sanitizer effectiveness. Due to the lack of standardization in the methodology and definitions of sanitizer resistance, tolerance, and susceptibility, different messages are conveyed in different studies. In this review, we examine the diversity of definitions, terminology, and methodologies used in studies examining L. monocytogenes resistance and susceptibility to antimicrobials. Research available to date fails to demonstrate "resistance" of L. monocytogenes to recommended sanitizer treatments as prescribed by the label. As such, sanitizer tolerance would be a more accurate description of L. monocytogenes response to low sanitizer concentrations (i.e., sub-MRC). Conservative use of word "resistance" will reduce confusion and allow for concise messaging as sanitizer research findings are communicated to industry and regulators.
Collapse
Affiliation(s)
- Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Stephanie R B Brown
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Joy Waite-Cusic
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, Oregon, USA.,Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
6
|
|
7
|
Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. ACTA ACUST UNITED AC 2020; 87:e1-e20. [PMID: 33054262 PMCID: PMC7565150 DOI: 10.4102/ojvr.v87i1.1869] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a zoonotic food-borne pathogen that is associated with serious public health and economic implications. In animals, L. monocytogenes can be associated with clinical listeriosis, which is characterised by symptoms such as abortion, encephalitis and septicaemia. In human beings, listeriosis symptoms include encephalitis, septicaemia and meningitis. In addition, listeriosis may cause gastroenteric symptoms in human beings and still births or spontaneous abortions in pregnant women. In the last few years, a number of reported outbreaks and sporadic cases associated with consumption of contaminated meat and meat products with L. monocytogenes have increased in developing countries. A variety of virulence factors play a role in the pathogenicity of L. monocytogenes. This zoonotic pathogen can be diagnosed using both classical microbiological techniques and molecular-based methods. There is limited information about L. monocytogenes recovered from meat and meat products in African countries. This review strives to: (1) provide information on prevalence and control measures of L. monocytogenes along the meat value chain, (2) describe the epidemiology of L. monocytogenes (3) provide an overview of different methods for detection and typing of L. monocytogenes for epidemiological, regulatory and trading purposes and (4) discuss the pathogenicity, virulence traits and antimicrobial resistance profiles of L. monocytogenes.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council - Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida.
| | | | | |
Collapse
|
8
|
Dygico LK, Gahan CGM, Grogan H, Burgess CM. Examining the efficacy of mushroom industry biocides on Listeria monocytogenes biofilm. J Appl Microbiol 2020; 130:1106-1116. [PMID: 32350966 DOI: 10.1111/jam.14681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
AIMS The aim of this study was to test the efficacy of new and currently used biocides in the mushroom industry for inactivating Listeria monocytogenes biofilm. METHODS AND RESULTS A laboratory-scale study was initially carried out to test the efficacy of eleven biocidal products against a cocktail of five L. monocytogenes strains that were grown to 3-day biofilms on stainless steel coupons. Biocidal efficacy was then tested under clean and dirty conditions based on the EN 13697:2015 method. The results for the biocides tested ranged between 1·7-log and 6-log reduction of biofilm, with only the efficacy of the sodium hypochlorite-based biocide being significantly reduced in dirty conditions. A pilot-scale trial was then carried out on a subset of biocides against L. monocytogenes on concrete floors in a mushroom growing room and it was found that biocide efficacy in laboratory-scale did not translate well in pilot-scale. CONCLUSIONS Biocides that are used in the mushroom industry and potential alternative biocides were determined to be effective against L. monocytogenes biofilm in both laboratory-scale and pilot-scale experiments. SIGNIFICANCE AND IMPACT OF THE STUDY This study has direct impact for the industry as it provides information on the efficacy of currently used biocides and other biocidal products against L. monocytogenes, an added benefit to their primary use.
Collapse
Affiliation(s)
- L K Dygico
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - C G M Gahan
- School of Microbiology, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - H Grogan
- Horticulture Development Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - C M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
9
|
Pennone V, Lehardy A, Coffey A, Mcauliffe O, Jordan K. Diversity of Listeria monocytogenes strains isolated from Agaricus bisporus mushroom production. J Appl Microbiol 2018; 125:586-595. [PMID: 29624851 DOI: 10.1111/jam.13773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
AIMS The aims of this study were to characterize the genetic diversity of Listeria monocytogenes isolates obtained from commercial mushroom production, to establish the persistence, recontamination and the risk of cross-contamination from the working environment to the final products, creating awareness about the presence of L. monocytogenes thus helping to prevent the possibility of cross-contamination. METHODS AND RESULTS From an extensive analysis of commercial mushroom production, analysed with BS EN ISO 11290-1:1996/Amd 1:2004 and BS EN ISO 11290-2:1998/Amd 1:2004, 279 L. monocytogenes isolates were obtained. All of the isolates were characterized by pulsed-field gel electrophoresis, species PCR and serogroup PCR. All the isolates were confirmed as L. monocytogenes; 30·1% were serogroup 1/2b-3b-7, 40·8% were serogroup 1/2a-3a and 29·1% were serogroup 4b-4d-4e. There were 77 pulsotypes from the 279 isolates, 40 of the pulsotypes had only one strain and 37 had two or more strains, indicating great diversity in the isolates. CONCLUSIONS The high genetic diversity is indicative of the fact that current hygiene practices are successful at removing L. monocytogenes but that recontamination of the production environment is frequent. SIGNIFICANCE AND IMPACT OF THE STUDY The results obtained are very valuable in creating awareness of L. monocytogenes in mushroom production and for the improvement of hygiene practices.
Collapse
Affiliation(s)
- V Pennone
- Food Safety Department, Teagasc, Fermoy, Ireland.,Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - A Lehardy
- Food Safety Department, Teagasc, Fermoy, Ireland
| | - A Coffey
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - O Mcauliffe
- Food Biosciences Department, Teagasc, Fermoy, Ireland
| | - K Jordan
- Food Safety Department, Teagasc, Fermoy, Ireland
| |
Collapse
|
10
|
Overney A, Jacques-André-Coquin J, Ng P, Carpentier B, Guillier L, Firmesse O. Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants. Int J Food Microbiol 2016; 244:74-81. [PMID: 28073080 DOI: 10.1016/j.ijfoodmicro.2016.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
The ability of Listeria monocytogenes to adhere to and persist on surfaces for months or even years may be responsible for its transmission from contaminated surfaces to food products. Hence the necessity to find effective means to prevent the establishment of L. monocytogenes in food processing environments. The aim of this study was to assess, through a fractional experimental design, the environmental factors that could affect the survival of L. monocytogenes cells on surfaces to thereby prevent the persistence of this pathogen in conditions mimicking those encountered in food processing plants: culture with smoked salmon juice or meat exudate, use of two materials with different hygiene status, biofilm of L. monocytogenes in pure-culture or dual-culture with a Pseudomonas fluorescens strain, application of a drying step after cleaning and disinfection (C&D) and comparison of two strains of L. monocytogenes. Bacterial survival was assessed by culture, qPCR to quantify total cells, and propidium monoazide coupled with qPCR to quantify viable cells and highlight viable but non-culturable (VBNC) cells. Our results showed that failure to apply C&D causes cell persistence on surfaces. Moreover, the sanitation procedure leads only to a loss of culturability and appearance of VBNC populations. However, an additional daily drying step after C&D optimises the effectiveness of these procedures to reduce culturable populations. Our results reinforce the importance to use molecular tools to monitor viable pathogens in food processing plants to avoid underestimating the amounts of cells using only methods based on cell culture.
Collapse
Affiliation(s)
- Anaïs Overney
- Université Paris-Est, Anses, Laboratory for Food Safety, 94701 Maisons-Alfort, France
| | | | - Patricia Ng
- Université Paris-Est, Anses, Laboratory for Food Safety, 94701 Maisons-Alfort, France
| | - Brigitte Carpentier
- Université Paris-Est, Anses, Laboratory for Food Safety, 94701 Maisons-Alfort, France
| | - Laurent Guillier
- Université Paris-Est, Anses, Laboratory for Food Safety, 94701 Maisons-Alfort, France
| | - Olivier Firmesse
- Université Paris-Est, Anses, Laboratory for Food Safety, 94701 Maisons-Alfort, France.
| |
Collapse
|
11
|
Magalhães R, Ferreira V, Brandão TRS, Palencia RC, Almeida G, Teixeira P. Persistent and non-persistent strains of Listeria monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. Food Microbiol 2016; 57:103-8. [PMID: 27052708 DOI: 10.1016/j.fm.2016.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/25/2016] [Accepted: 02/15/2016] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate the effect of different conditions, including temperature (37 °C, 22 °C, and 4 °C), NaCl concentrations (2.5%, 4%, and 8%), and acidity (pH = 5), on the growth response of persistent and non-persistent isolates of Listeria monocytogenes. The resistance to two common sanitizers (benzalkonium chloride and hydrogen peroxide) was also investigated. A selected group of 41 persistent and non-persistent L. monocytogenes isolates recovered from three cheese processing plants during a previous longitudinal study was assembled. Average lag time was similar for persistent and non-persistent isolates grown at 37 °C, 22 °C and 4 °C but significantly shorter (p < 0.05) for persistent isolates grown at 2.5%, 4% and 8% NaCl, and at pH 5. Average growth rates were significantly higher (p < 0.05) for persistent than for non-persistent isolates when grown at 22 °C, 2.5%, 4% and 8% NaCl, and at pH 5. These results suggest that persistent strains may be better adapted to grow under stressful conditions frequently encountered in food processing environments than non-persistent strains. No relation between persistence and resistance to the tested sanitizers was found.
Collapse
Affiliation(s)
- R Magalhães
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - V Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - T R S Brandão
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - R Casquete Palencia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - G Almeida
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - P Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
12
|
Piet J, Kieran J, Dara L, Avelino AOONE. Listeria monocytogenes in food: Control by monitoring the food processing environment. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2015.7832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Wang J, Ray AJ, Hammons SR, Oliver HF. Persistent and TransientListeria monocytogenesStrains from Retail Deli Environments Vary in Their Ability to Adhere and Form Biofilms and Rarely HaveinlAPremature Stop Codons. Foodborne Pathog Dis 2015; 12:151-8. [PMID: 25569840 DOI: 10.1089/fpd.2014.1837] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jingjin Wang
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
| | - Andrea J. Ray
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana
| | - Susan R. Hammons
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
| | - Haley F. Oliver
- Department of Food Science, College of Agriculture, Purdue University, West Lafayette, Indiana
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana
| |
Collapse
|
14
|
Ortiz S, López V, Martínez-Suárez JV. The influence of subminimal inhibitory concentrations of benzalkonium chloride on biofilm formation by Listeria monocytogenes. Int J Food Microbiol 2014; 189:106-12. [PMID: 25136789 DOI: 10.1016/j.ijfoodmicro.2014.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/19/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
Abstract
Disinfectants, such as benzalkonium chloride (BAC), are commonly used to control Listeria monocytogenes and other pathogens in food processing plants. Prior studies have demonstrated that the resistance to BAC of L. monocytogenes was associated with the prolonged survival of three strains of molecular serotype 1/2a in an Iberian pork processing plant. Because survival in such environments is related to biofilm formation, we hypothesised that the influence of BAC on the biofilm formation potential of L. monocytogenes might differ between BAC-resistant strains (BAC-R, MIC≥10mg/L) and BAC-sensitive strains (BAC-S, MIC≤2.5mg/L). To evaluate this possibility, three BAC-R strains and eight BAC-S strains, which represented all of the molecular serotype 1/2a strains detected in the sampled plant, were compared. Biofilm production was measured using the crystal violet staining method in 96-well microtitre plates. The BAC-R strains produced significantly (p<0.05) less biofilm than the BAC-S in the absence of BAC, independent of the rate of planktonic growth. In contrast, when the biofilm values were measured in the presence of BAC, one BAC-R strain (S10-1) was able to form biofilm at 5mg/L of BAC, which prevented biofilm formation among the rest of the strains. A genetic determinant of BAC resistance recently described in L. monocytogenes (Tn6188) was detected in S10-1. When a BAC-S strain and its spontaneous mutant BAC-R derivative were compared, resistance to BAC led to biofilm formation at 5mg/L of BAC and to a significant (p<0.05) stimulation of biofilm formation at 1.25mg/L of BAC, which significantly (p<0.05) reduced the biofilm level in the parent BAC-S strain. Our results suggest that the effect of subminimal inhibitory concentrations of BAC on biofilm production by L. monocytogenes might differ between strains with different MICs and even between resistant strains with similar MICs but different genetic determinants of BAC resistance. For BAC-R strains similar to S10-1, subminimal inhibitory BAC may represent an advantage, compensating for the weak biofilm formation level that might be associated with resistance. Biofilm formation in the presence of increased subminimal inhibitory concentrations of the disinfectant may represent an important attribute among certain resistant and persistent strains of L. monocytogenes.
Collapse
Affiliation(s)
- Sagrario Ortiz
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Victoria López
- Departamento de Bioinformática y Salud Pública, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Joaquín V Martínez-Suárez
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.
| |
Collapse
|
15
|
Orgaz B, Puga C, Martínez-Suárez J, SanJose C. Biofilm recovery from chitosan action: A possible clue to understand Listeria monocytogenes persistence in food plants. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Saá Ibusquiza P, Herrera JJR, Vázquez-Sánchez D, Parada A, Cabo ML. A new and efficient method to obtain benzalkonium chloride adapted cells of Listeria monocytogenes. J Microbiol Methods 2012; 91:57-61. [PMID: 22841739 DOI: 10.1016/j.mimet.2012.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 11/25/2022]
Abstract
A new method to obtain benzalkonium chloride (BAC) adapted L. monocytogenes cells was developed. A factorial design was used to assess the effects of the inoculum size and BAC concentration on the adaptation (measured in terms of lethal dose 50 -LD50-) of 6 strains of Listeria monocytogenes after only one exposure. The proposed method could be applied successfully in the L. monocytogenes strains with higher adaptive capacity to BAC. In those cases, a significant empirical equation was obtained showing a positive effect of the inoculum size and a positive interaction between the effects of BAC and inoculum size on the level of adaptation achieved. However, a slight negative effect of BAC, due to the biocide, was also significant. The proposed method improves the classical method based on successive stationary phase cultures in sublethal BAC concentrations because it is less time-consuming and more effective. For the laboratory strain L. monocytogenes 5873, by applying the new procedure it was possible to increase BAC-adaptation 3.69-fold in only 33 h, whereas using the classical procedure 2.61-fold of increase was reached after 5 days. Moreover, with the new method, the maximum level of adaptation was determined for all the strains reaching surprisingly almost the same concentration of BAC (mg/l) for 5 out 6 strains. Thus, a good reference for establishing the effective concentrations of biocides to ensure the maximum level of adaptation was also determined.
Collapse
Affiliation(s)
- Paula Saá Ibusquiza
- Instituto de Investigaciones Marinas, Eduardo Cabello, 6. 36208 Vigo, Pontevedra, Spain
| | | | | | | | | |
Collapse
|
17
|
Lourenço A, Machado H, Brito L. Biofilms of Listeria monocytogenes produced at 12 °C either in pure culture or in co-culture with Pseudomonas aeruginosa showed reduced susceptibility to sanitizers. J Food Sci 2011; 76:M143-8. [PMID: 21535778 DOI: 10.1111/j.1750-3841.2010.02011.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED The biofilm-forming ability of 21 Listeria monocytogenes isolates, previously pulsotyped and corresponding to 16 strains, from different origins was evaluated using the Calgary Biofilm Device, at 37 °C. Biofilms of 4 selected strains were also produced either on pure cultures or on co-cultures with Pseudomonas aeruginosa (PAO1), at 12 °C and at 37 °C. For these biofilms, the minimum biofilm eradication concentrations (MBECs) of 4 commercial dairy sanitizers (1 alkyl amine acetate based--T99, 2 chlorine based--T66 and DD, and 1 phosphoric acid based--BP) were determined. Listeria monocytogenes biofilms grown, either at 37 °C or 12 °C, were able to achieve similar cell densities by using different incubation periods (24 h and 7 d, respectively). In co-culture biofilms, P. aeruginosa was the dominant species, either at 37 °C or at 12 °C, representing 99% of a total biofilm population of 6 to 7 log CFU/peg. Co-culture biofilms were generally less susceptible than L. monocytogenes pure cultures. More interestingly, the biofilms produced at 12 °C were usually less susceptible to the sanitizers than when produced at 37 °C. Single or co-culture biofilms of L. monocytogenes and PAO1, particularly produced at 12 °C, retrieved MBEC values for agents T99 and BP that were, at times, above the maximum in-use recommended concentrations for these agents. The results presented here reinforce the importance of the temperature used for biofilm formation, when susceptibility to sanitizers is being assessed. PRACTICAL APPLICATION Since most food plants have cold wet growth niches in production and storage areas, susceptibility testing should be performed on biofilms produced at refrigeration temperatures. Moreover, the efficiency of the sanitizers used in food industries should be performed on mixed culture biofilms, since in field conditions these will predominate. The results presented here highlight the importance of the temperature used for biofilm formation, when susceptibility to disinfectants is being assessed, as biofilms produced at lower temperature were less susceptible to sanitizers.
Collapse
Affiliation(s)
- António Lourenço
- CBAA, Laboratório de Microbiologia, Inst Superior de Agronomia, Technical Univ of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|