1
|
Pan C, Wei C, Wang X, Jin Y, Tian F. Patulin-degrading enzymes sources, structures, and mechanisms: A review. Int J Biol Macromol 2024; 291:139148. [PMID: 39725106 DOI: 10.1016/j.ijbiomac.2024.139148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Patulin (PAT), a fungal secondary metabolite with multiple toxicities, is an unavoidable contaminant in fruit and vegetable processing, posing potential health risks to consumers and causing significant economic losses to the global food industry. Traditional control strategies, such as physical and chemical methods, face several challenges, including low efficiency, high costs, and unverified safety. In contrast, microbial degradation of patulin is considered a more efficient and environmentally friendly approach, which has become a popular research focus. However, there is still insufficient research on the key degradation enzymes involved in microorganisms. Therefore, this review comprehensively summarizes recent research progress on the biological degradation of patulin, with a focus on microbial species capable of degrading patulin, the degradation enzymes they express, potential degradation mechanisms, and the toxicity of degradation products, while providing prospects for future research. It offers valuable insights for controlling patulin in food and stimulates further investigation. Ultimately, this review aims to promote the development of efficient and eco-friendly methods to mitigate patulin contamination in fruits and vegetables.
Collapse
Affiliation(s)
- Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Chaozhi Wei
- Xianghu Laboratory, Hangzhou 311231, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Jiang Y, Wu Y, Zheng X, Yu T, Yan F. Current insights into yeast application for reduction of patulin contamination in foods: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70044. [PMID: 39437191 DOI: 10.1111/1541-4337.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Patulin, a fungal secondary metabolite with multiple toxicities, is widely existed in a variety of fruits and their products. This not only causes significant economic losses to the agricultural and food industries but also poses a serious threat to human health. Conventional techniques mainly involved physical and chemical methods present several challenges include incomplete patulin degradation, high technical cost, and fruit quality decline. In comparison, removal of mycotoxin through biodegradation is regarded as a greener and safer strategy which has become popular research. Among them, yeast has a unique advantage in detoxification effect and application, which has attracted our attention. Therefore, this review provides a comprehensive account of the yeast species that can degrade patulin, degradation mechanism, current application status, and future challenges. Yeasts can efficiently convert patulin into nontoxic or low-toxic substances through biodegradation. Alternatively, it can use physical adsorption, which has the advantages of safety, high efficiency, and environmental friendliness. Nevertheless, due to the inherent complexity of the production environment, the sole utilization of yeast as a control agent remains inherently unstable and challenging to implement on a large scale in a practical manner. Integration control, enhancement of yeast resilience, improvement of yeast cell wall adsorption capacity, and research on additional patulin-degrading enzymes will facilitate the practical application of this approach. Furthermore, we analyzed the feasibility of the yeast commercial application in patulin reduction and provided suggestions on how to enhance its commercial value, which is of great significance for the control of mycotoxins in food products.
Collapse
Affiliation(s)
- Yiwei Jiang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Iqbal SZ, Waseem M, Abdull Razis AF, Bhatti IA, Khaneghah AM, Mohammed OA, Lakshminarayanan SP, Iqbal M. Mycotoxin patulin contamination in various fruits and estimating its dietary impact on the consumers: From orchard to table. Heliyon 2024; 10:e30252. [PMID: 38778946 PMCID: PMC11109727 DOI: 10.1016/j.heliyon.2024.e30252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The present research examined patulin's presence across the whole supply chain of selected fruits. A comprehensive analysis was conducted on 442 samples of fruits (oranges, apples, apricots, lemons, and guava) to determine the presence of patulin contamination. This analysis used Liquid Chromatography (HPLC) with a UV detector. The findings indicate that 17, 23, and 28 % of selected fruit samples tested positive for patulin levels in farm, transportation, and market samples. However, the sample collected during the transportation step showed that 56 % (percentage of positive samples) of fruits have patulin levels greater than 50 μg/kg, and 41 % (percentage of positive samples) have greater levels than 50 μg/kg in market samples. The findings of the one-way analysis of variance indicated that no statistically significant variation existed between the amounts of patulin across the various stages of the food supply chain system (p > 0.05). Nevertheless, the analysis of the correlation study, namely Kendall's tau_b and Spearman's rho, denote a robust association between the levels of patulin and the food supply system. The apple samples exhibited the most significant average dietary intake of patulin, with an average value of 0.11 μg/kg bw/day. The maximum mean hazard quotient (HQ) of 0.28 was also recorded. The prevalence and incidence of patulin in specific fruits were found to be relatively high, and it was observed that market samples had elevated levels of patulin in the selected fruits.
Collapse
Affiliation(s)
- Shahzad Z. Iqbal
- Food Safety and Toxicology Lab., Department of Applied Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Waseem
- Food Safety and Toxicology Lab., Department of Applied Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ijaz A. Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University, 191002, 9 Lomonosova Street, Saint Petersburg, Russia
| | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Srimathi Priya Lakshminarayanan
- Department of Natural Resource Management, Horticultural College and Research Institute (HC & RI), Tamil Nadu Agricultural University (TNAU), Periyakulam, 625604, India
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
4
|
Wang TW, Wilson AG, Peck GM, Gibney PA, Hodge KT. Patulin contamination of hard apple cider by Paecilomyces niveus and other postharvest apple pathogens: Assessing risk factors. Int J Food Microbiol 2024; 412:110545. [PMID: 38237417 DOI: 10.1016/j.ijfoodmicro.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/21/2023] [Accepted: 12/16/2023] [Indexed: 01/28/2024]
Abstract
Hard apple cider is considered to be a low-risk product for food spoilage and mycotoxin contamination due to its alcoholic nature and associated food sanitation measures. However, the thermotolerant mycotoxin-producing fungus Paecilomyces niveus may pose a significant threat to hard cider producers. P. niveus is known to infect apples (Malus xdomestica), and previous research indicates that it can survive thermal processing and contaminate finished apple juice with the mycotoxin patulin. To determine if hard apple cider is susceptible to a similar spoilage phenomenon, cider apples were infected with P. niveus or one of three patulin-producing Penicillium species and the infected fruits underwent benchtop fermentation. Cider was made with lab inoculated Dabinett and Medaille d'Or apple cultivars, and patulin was quantified before and after fermentation. Results show that all four fungi can infect cider apples and produce patulin, some of which is lost during fermentation. Only P. niveus was able to actively grow throughout the fermentation process. To determine if apple cider can be treated to hinder P. niveus growth, selected industry-grade sanitation measures were tested, including chemical preservatives and pasteurization. High concentrations of preservatives inhibited P. niveus growth, but apple cider flash pasteurization was not found to significantly impact spore germination. This study confirms that hard apple cider is susceptible to fungal-mediated spoilage and patulin contamination. P. niveus is an important concern for hard apple cider producers due to its demonstrated thermotolerance, survival in fermentative environments, and resistance to sanitation measures.
Collapse
Affiliation(s)
- Tristan W Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA.
| | - Amanda G Wilson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA
| | - Gregory M Peck
- Horticulture Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA
| | - Kathie T Hodge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Plant Science Building, 236 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Zhang M, Liu N, Dong F, Wang L, Xu J, Wu X, Zheng Y, Pan X. The fate of mycotoxins in oranges during storage and processing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1614-1624. [PMID: 38011597 DOI: 10.1080/19440049.2023.2282555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
To evaluate the safety of orange consumption induced by mycotoxins, 'Newhall' navel oranges were artificially inoculated with P. expansum and A. tenuissima, followed by an evaluation of the distribution and migration patterns of corresponding mycotoxins (patulin [PAT], tentoxin [Ten], altenuene [ALT], alternariol monomethyl ether [AME], alternariol [AOH] and tenuazonic acid [TeA]) during orange storage and processing. The concentration of mycotoxins decreased as the increase of distance from the lesion, and mycotoxins could be detected throughout the orange when the lesion extended to 8 mm in diameter. AOH and AME pose the primary source of dietary risk with high concentrations and low thresholds of toxicological concern. Orange juice and pectin processing could remove 43.4-98.7% of mycotoxins, while tangerine peelprocessing might lead to significant enrichment of mycotoxins with the processing factors (PFs) of 2.8-3.5. The findings may offer scientific insights into mitigating the dietary risk of mycotoxin exposure from oranges and their derivatives.
Collapse
Affiliation(s)
- Mengna Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, PR China
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Liping Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
6
|
Implementation of the HACCP System for Apple Juice Concentrate Based on Patulin Prevention and Control. Foods 2023; 12:foods12040786. [PMID: 36832860 PMCID: PMC9956176 DOI: 10.3390/foods12040786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Patulin (PAT) is a toxic secondary metabolite produced by Aspergillus sp. and Penicillium sp., which acts as a contaminant of most apples and their products. The internationally recognized HACCP system is selected as the theoretical basis to more effectively reduce the PAT in apple juice concentrate (AJC). Through field investigation of apple juice concentrate (AJC) production enterprises, we collected 117 samples from 13 steps of AJC production, including whole apple, apple pulp, and apple juice. PAT contents were analyzed via high-performance liquid chromatography (HPLC) and compared with samples from the different production processes. The result demonstrated that the PAT content was significantly (p < 0.05) influenced by five processes, receipt of raw apples, sorting of raw apples, adsorption step, pasteurization, and aseptic filling. These processes were determined as the CCPs. Monitoring systems for maintaining CCPs within acceptable limits were established, and corrective actions were proposed in case a CCP was surpassed. Based on the above-identified CCPs, critical limits, and control methods (corrective actions), a HACCP plan related to the production process of AJC was established. This study provided important guidance for juice manufacturers wishing to effectively control the PAT content in their products.
Collapse
|
7
|
Heperkan ZD, Gunalan-Inci E, Ceyhan T. Unexpectedly high patulin contamination and co-occurrence of ochratoxin A in homemade vinegar. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
8
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
9
|
Lu C, Chen X, Ji Y, Liu C, Liu C. Development and validation of a label-free colorimetric aptasensor based on the HCR and hemin/G-quadruplex DNAzyme for the determination of patulin in fruits and fruit-based products from Xinjiang (China). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3375-3381. [PMID: 35975688 DOI: 10.1039/d2ay00908k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a simple, novel and practical label-free colorimetric aptasensor was successfully prepared for the ultrasensitive detection of patulin, based on the hybridization chain reaction (HCR) and hemin/G-quadruplex DNAzyme-signal amplification strategy. In this aptasensor, a detection probe was designed consisting of the aptamer sequence for the patulin and an initiator sequence to trigger the HCR. Two hairpin structures (H1 and H2) that included the G-quadruplex sequences in inactive configuration were used as functional elements. The presence of patulin triggered the opening of the hairpin structure and the beginning of the HCR. After the addition of hemin, G-rich DNA self-assembled into the peroxidase-mimicking hemin/G-quadruplex DNAzymes, which catalyzed a colorimetric reaction. Under optimized conditions, patulin was measured within a linear range of 0.1-200 ng mL-1, and the detection limit was 0.060 ng mL-1. The recovery rates ranged from 91.4 to 105% for fruits and fruit-based products. Subsequently, a total of 311 samples comprising fruits, fruit-based products and dried fruits were collected from supermarkets, production bases and farmers' markets in Xinjiang, and analyzed for patulin using the proposed aptasensor. Patulin was detected in 16 samples (5.14%) at concentrations ranging from 1.23 to 16.4 μg kg-1. None of the samples exceeded the maximal level set by the EU commission (50 μg kg-1). The positivity in fresh fruits (7.69%) was significantly higher than that of fruit-based products (4.00%) and dried fruits (1.25%). In summary, the proposed aptasensor can quickly detect patulin in food samples, thus providing a warning for mycotoxin contamination.
Collapse
Affiliation(s)
- Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, China
| | - Xia Chen
- Supervision and Testing Center Food Quality, Ministry of Agriculture and Rural Affairs (Shihezi), Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| | - Yong Ji
- Supervision and Testing Center Food Quality, Ministry of Agriculture and Rural Affairs (Shihezi), Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| | - Chengjiang Liu
- Institute of Agricultural Products Processing, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi 832000, China.
| |
Collapse
|
10
|
Lu X, Yue Z, Peng B. Preparation of TiO2-nanotube-based photocatalysts and degradation kinetics of patulin in simulated juice. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
|
12
|
Qiao N, Yu L, Zhang C, Wei C, Zhao J, Zhang H, Tian F, Zhai Q, Chen W. A comparison of the inhibitory activities of Lactobacillus and Bifidobacterium against Penicillium expansum and an analysis of potential antifungal metabolites. FEMS Microbiol Lett 2021; 367:5897356. [PMID: 32845333 DOI: 10.1093/femsle/fnaa130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023] Open
Abstract
The infection of fruits by Penicillium expansum (P. expansum) do not only cause economic loss but also potentially endanger human health, especially because few biocontrol agents against this fungus have been well studied yet. In this work, to verity the antifungal activity against P. expansum of 22 Bifidobacterium and 44 Lactobacillus, dual-culture overlay assay, microtiter plate well assay and agar spot assay were successively performed. One of the strain, Bifidobacterium adolescentis (B. adolescentis) CCFM1108 exhibited the most potent inhibition ability among all tested strains. Additionally, we showed that multiple antifungal compounds produced by tested strain synergistically inhibit the growth of P. expansum, including lactic acid, acetic acid, 3-phenyllactic acid and p-hydroxyphenyllactic acid. Those active compounds mentioned were detected in the cell-free supernatant and characterized by metabolomics analysis using GC-MS. Correspondingly, B. adolescentis CCFM1108 supernatant disrupted plasma membrane integrity of the P. expansum mycelial and drastically reduced patulin production in P. expansum. The inhibitive effects of B. adolescentis CCFM1108 were also confirmed with three other P. expansum strains. The active inhibitory properties of Bifidobacterium strains, especially B. adolescentis CCFM1108, indicate that B. adolescentis can be potentially used as a novel bioagent to prevent or delay fungal spoilage on fruit.
Collapse
Affiliation(s)
- Nanzhen Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaozhi Wei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
13
|
Transcriptomic analysis reveals the metabolic mechanism of patulin by Saccharomyces cerevisiae during fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Hernández M, Juan-García A, Moltó JC, Mañes J, Juan C. Evaluation of Mycotoxins in Infant Breast Milk and Infant Food, Reviewing the Literature Data. Toxins (Basel) 2021; 13:535. [PMID: 34437408 PMCID: PMC8402439 DOI: 10.3390/toxins13080535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
In this review, an analysis focusing on mycotoxin determination in infant breast milk and infant food has been summarised for the last fifteen years of research focused on the intended population group of 1-9 months. The objective was to know the level of exposure of the child population to an estimated daily intake (EDI) of mycotoxins from the consumption of habitual foods. The EDI was compared with the tolerable daily intake (TDI) established by EFSA to estimate risk. In breast milk, the high prevalence and levels were for samples from Africa (Egypt and Tanzania) with aflatoxin M1 (1.9 μg/L and 10%), and Asia (Iran) with ochratoxin-A (7.3 μg/L and 100%). In infant formulas, high incidences and values were for samples with aflatoxin M1 from Burkina Faso (167 samples, 84%, 87 μg/kg). In cereal products, the highest incidence was for DON from the United States (96 samples), and the highest value was an Italian sample (0.83 μg/kg of enniatin B). In fruit products, patulin was the most detected in Italian (78) and Spanish (24) samples. The highest risk was observed in breast milk during the first month of age, the highest EDI for aflatoxin M1 was reported for Egypt (344-595 ng/kg bw/day) and ochratoxin-A for Iran (97-167ng/kg bw/day), representing a public health problem.
Collapse
Affiliation(s)
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 València, Spain; (M.H.); (J.C.M.); (J.M.)
| | | | | | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 València, Spain; (M.H.); (J.C.M.); (J.M.)
| |
Collapse
|
15
|
Adsorption Mechanism of Patulin from Apple Juice by Inactivated Lactic Acid Bacteria Isolated from Kefir Grains. Toxins (Basel) 2021; 13:toxins13070434. [PMID: 34206488 PMCID: PMC8309945 DOI: 10.3390/toxins13070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 μg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C–H, and N–O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform–infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.
Collapse
|
16
|
Mahato DK, Kamle M, Sharma B, Pandhi S, Devi S, Dhawan K, Selvakumar R, Mishra D, Kumar A, Arora S, Singh NA, Kumar P. Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon 2021; 198:12-23. [PMID: 33933519 DOI: 10.1016/j.toxicon.2021.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023]
Abstract
The mycotoxin patulin is primarily produced as a secondary metabolite by numerous fungal species and predominantly by Aspergillus, Byssochlamys, and Penicillium species. It is generally associated with fungal infected food materials. Penicillium expansum is considered the only fungal species liable for patulin contamination in pome fruits, especially in apples and apple-based products. This toxin in food poses serious health concerns and economic threat, which has aroused the need to adopt effective detection and mitigation strategies. Understanding its origin sources and biosynthetic mechanism stands essential for efficiently designing a management strategy against this fungal contamination. This review aims to present an updated outline of the sources of patulin occurrence in different foods and their biosynthetic mechanisms. It further provides information regarding the detrimental effects of patulin on human and agriculture as well as its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India.
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Raman Selvakumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| | - Diwakar Mishra
- Department of Dairy Technology, Birsa Agricultural University, Dumka, 814145, Jharkhand, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India.
| | - Namita Ashish Singh
- Department of Microbiology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| |
Collapse
|
17
|
|
18
|
The characteristics of patulin detoxification by Lactobacillus plantarum 13M5. Food Chem Toxicol 2020; 146:111787. [PMID: 33031840 DOI: 10.1016/j.fct.2020.111787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Patulin (PAT) is a widespread mycotoxin that harms the health of both humans and animals. In this study, among the 17 tested Lactobacillus plantarum strains, L. plantarum 13M5, isolated from traditional Chinese fermented foods, showed the highest PAT degradation rate of up to 43.8% (PAT 5 mg/L). Evaluation of the living and dead 13M5 cells revealed that only the living cells had the ability to remove PAT and degrade it into E-ascladiol. A cell-based assay revealed that L. plantarum 13M5 administration alleviated PAT-induced injuries in Caco-2 cells, including cytotoxicity, oxidative stress, and tight junction disruption. Our results suggest that L. plantarum 13M5 has the potential to reduce PAT toxicity and can thus be used as a probiotic supplement to reduce or eliminate the toxicity of PAT ingested from diet.
Collapse
|
19
|
Yu L, Qiao N, Zhao J, Zhang H, Tian F, Zhai Q, Chen W. Postharvest control of Penicillium expansum in fruits: A review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100633] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Sengling Cebin Coppa CF, Mousavi Khaneghah A, Alvito P, Assunção R, Martins C, Eş I, Gonçalves BL, Valganon de Neeff D, Sant'Ana AS, Corassin CH, Oliveira CAF. The occurrence of mycotoxins in breast milk, fruit products and cereal-based infant formula: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
İçli N. Occurrence of patulin and 5-hydroxymethylfurfural in apple sour, which is a traditional product of Kastamonu, Turkey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:952-963. [PMID: 31021247 DOI: 10.1080/19440049.2019.1605207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Apple sour is a traditional product of Kastamonu, Turkey. It is consumed by spreading on bread or drinking after diluting with water. The aim of this study was to determine patulin (PAT) and 5-hydroxymethylfurfural (HMF) in apple sour. This study is the first to evaluate the occurrence of PAT and HMF in apple sour. The samples were extracted with ethyl acetate using liquid-liquid extraction technique. PAT and HMF were determined by HPLC with UV detection. PAT was detected in all samples, and the PAT level in 94.9% of samples was found to be equal or greater than the legal limit for juice concentrates. The mean value for PAT was found to be 284 ± 307 μg kg-1. PAT levels in 13 of 39 samples were in the range of 100 ≤ x < 200 μg kg-1, two samples were in the range of 0 ≤ x < 50 μg kg -1 and two samples were in the range of 1000 ≤ x < 1500 μg kg1. HMF levels of all samples were above the legal limit for solid molasses. The mean value for HMF was found to be 16215 ± 13317 mg kg-1. HMF levels of 10 of 39 samples were determined to be in the range of 10000 ≤ x < 20000 mg kg-1, eight samples were in the range of 20000 ≤ x < 30000 mg kg-1 and only three samples were in the range of 100 ≤ x < 1000 mg kg-1. There was a significant and inverse relationship between HMF and pH of the samples. These results indicate that consumption of apple sour is a considerable risk in terms of HMF and PAT toxicity.
Collapse
Affiliation(s)
- Nesrin İçli
- a Faculty of Health Sciences, Department of Nutrition and Dietetics , Kastamonu University , Kastamonu , Turkey.,b Central Research Laboratory Application and Research Center , Kastamonu University , Kastamonu , Turkey
| |
Collapse
|
22
|
Sajid M, Mehmood S, Yuan Y, Yue T. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies. Drug Metab Rev 2019; 51:105-120. [PMID: 30857445 DOI: 10.1080/03602532.2019.1589493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patulin is a mycotoxin produced by a number of filamentous fungal species. It is a polyketide secondary metabolite which can gravely cause human health problems and food safety issues. This review deals with the occurrence of patulin in major food commodities from 2008 to date, including historical aspects, source, occurrence, regulatory limits and its toxicity. Most importantly, an overview of the recent research progress about the biodegradation strategies for contaminated food matrices is provided. The physical and chemical approaches have some drawbacks such as safety issues, possible losses in the nutritional quality, chemical hazards, limited efficacy, and high cost. The biological decontamination based on elimination or degradation of patulin using yeast, bacteria, and fungi has shown good results and it seems to be attractive since it works under mild and environment-friendly conditions. Further studies are needed to make clear the detoxification pathways by available potential biosorbents and to determine the practical applications of these methods at a commercial level to remove patulin from food products with special reference to their effects on sensory characteristics of foods.
Collapse
Affiliation(s)
- Marina Sajid
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Sajid Mehmood
- d State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection , Northwest A&F University , Yangling , China
| | - Yahong Yuan
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| | - Tianli Yue
- a College of Food Science and Engineering , Northwest A&F University , Yangling , China.,b Laboratory of Quality & Safety Risk Assessment for Agro Products (Yangling), Ministry of Agriculture , Yangling , China.,c National Engineering Research Center of Agriculture Integration Test (Yangling) , Yangling , China
| |
Collapse
|
23
|
Erdoğan A, Ghimire D, Gürses M, Çetin B, BARAN A. Meyve Sularında Patulin Kirlenmesi ve Kontrol Önlemleri. ACTA ACUST UNITED AC 2018. [DOI: 10.31590/ejosat.434750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Zhong L, Carere J, Lu Z, Lu F, Zhou T. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 2018; 10:E475. [PMID: 30445713 PMCID: PMC6267208 DOI: 10.3390/toxins10110475] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023] Open
Abstract
Apples and apple-based products are among the most popular foods around the world for their delightful flavors and health benefits. However, the commonly found mold, Penicillium expansum invades wounded apples, causing the blue mold decay and ensuing the production of patulin, a mycotoxin that negatively affects human health. Patulin contamination in apple products has been a worldwide problem without a satisfactory solution yet. A comprehensive understanding of the factors and challenges associated with patulin accumulation in apples is essential for finding such a solution. This review will discuss the effects of the pathogenicity of Penicillium species, quality traits of apple cultivars, and environmental conditions on the severity of apple blue mold and patulin contamination. Moreover, beyond the complicated interactions of the three aforementioned factors, patulin control is also challenged by the lack of reliable detection methods in food matrices, as well as unclear degradation mechanisms and limited knowledge about the toxicities of the metabolites resulting from the degradations. As apple-based products are mainly produced with stored apples, pre- and post-harvest strategies are equally important for patulin mitigation. Before storage, disease-resistance breeding, orchard-management, and elicitor(s) application help control the patulin level by improving the storage qualities of apples and lowering fruit rot severity. From storage to processing, patulin mitigation strategies could benefit from the optimization of apple storage conditions, the elimination of rotten apples, and the safe and effective detoxification or biodegradation of patulin.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Jason Carere
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Xuanwu District, Nanjing 210095, China.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada.
| |
Collapse
|
25
|
Sajid M, Mehmood S, Niu C, Yuan Y, Yue T. Effective Adsorption of Patulin from Apple Juice by Using Non-Cytotoxic Heat-Inactivated Cells and Spores of Alicyclobacillus Strains. Toxins (Basel) 2018; 10:E344. [PMID: 30149638 PMCID: PMC6162514 DOI: 10.3390/toxins10090344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) is a major threat to many food products, especially apple and apple products, causing human health risks and economic losses. The aim of this study was to remove PAT from apple juice by using the heat-inactivated (HI) cells and spores of seven Alicyclobacillus strains under controlled conditions. The HI cells and spores of seven strains adsorbed PAT effectively, and the HI cells and spores of Alicyclobacillus acidocaldarius DSM 451 (A51) showed maximum PAT adsorption capacity of up to 12.621 μg/g by HI cells and 11.751 μg/g by HI spores at 30 °C and pH 4.0 for 24 h. Moreover, the PAT adsorption process followed the pseudo-first order kinetic model and the Freundlich isotherm model; thermodynamic parameters revealed that PAT adsorption is a spontaneous exothermic physisorption process. The results also indicated that PAT adsorption is strain-specific. The HI cells and spores of Alicyclobacillus strains are non-cytotoxic, and the bioadsorption of PAT did not affect the quality of the juice. Furthermore, the cell wall surface plays an important role in the adsorption process.
Collapse
Affiliation(s)
- Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Sajid Mehmood
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| | - Chen Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
26
|
Sadok I, Stachniuk A, Staniszewska M. Developments in the Monitoring of Patulin in Fruits Using Liquid Chromatography: an Overview. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1340-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Diao E, Wang J, Li X, Wang X, Gao D. Patulin degradation in apple juice using ozone detoxification equipment and its effects on quality. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enjie Diao
- Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation; Huaiyin Normal University; Huai'an, 223300 China
- College of Horticulture Science and Engineering; Shandong Agricultural University; Tai'an, 271018 China
| | - Jiasheng Wang
- College of Food Science & Engineering; Shandong Agricultural University; Tai'an, 271018 China
| | - Xiangyang Li
- College of Food Science & Engineering; Shandong Agricultural University; Tai'an, 271018 China
| | - Xinfeng Wang
- College of Life Science; Huaiyin Normal University; Huai'an, 223300 China
| | - Dongsheng Gao
- College of Horticulture Science and Engineering; Shandong Agricultural University; Tai'an, 271018 China
| |
Collapse
|
28
|
Liu B, Peng X, Meng X. Effective Biodegradation of Mycotoxin Patulin by Porcine Pancreatic Lipase. Front Microbiol 2018; 9:615. [PMID: 29686653 PMCID: PMC5900021 DOI: 10.3389/fmicb.2018.00615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Patulin is a common contaminant in fruits and vegetables, which is difficult to remove. In this study, the biodegradation of patulin using porcine pancreatic lipase (PPL) was investigated. The method of HPLC was used to analyze the concentration of patulin. Batch degradation experiments were performed to illustrate the effect of PPL amount, pH, temperature, contact time, and initial concentration. Besides, the degradation product of patulin was characterized by full wavelength scanning and MS technologies. The results showed that the optimum degradation conditions of PPL for patulin was observed at pH 7.5, 40°C for 48 h. The percentage of degradation could reach above 90%. The structure of degradable product of patulin was inferred by the molecular weight 159.0594, named C7H11O4+. It indicated that PPL was effective for the degradation of patulin in fruits and vegetables juice.
Collapse
Affiliation(s)
| | | | - Xianghong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
29
|
Poapolathep S, Tanhan P, Piasai O, Imsilp K, Hajslova J, Giorgi M, Kumagai S, Poapolathep A. Occurrence and Health Risk of Patulin and Pyrethroids in Fruit Juices Consumed in Bangkok, Thailand. J Food Prot 2017; 80:1415-1421. [PMID: 28762777 DOI: 10.4315/0362-028x.jfp-17-026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mycotoxin patulin (PAT) is well known as a natural contaminant of apple- and other fruit-based products. Pesticides are a group of chemicals abundantly used in agriculture to maximize productivity by protecting crops from pests and weeds. Because of their harmful health effects, PAT and pesticides are strictly monitored. The current study was undertaken to investigate the significance of PAT and pyrethroid insecticide contamination in a variety of fruit juices in Bangkok. To do this, a total of 200 fruit juice samples, consisting of 40 samples each of apple, apricot, peach, pineapple, and grape juice, were collected from supermarkets in Bangkok, Thailand. PAT contamination in a variety of fruit juices was detected using validated liquid chromatography-tandem mass spectrometry, and pyrethroid insecticides (cypermethrin, cyfluthrin, and flumethrin) were analyzed using a gas chromatography equipped with micro-electron capture detector. The survey found that PAT concentrations were lower than the maximum residue limit established by European Union. The results of the present study suggest that the risk of exposure to harmful levels of PAT, cypermethrin, cyfluthrin, and flumethrin in fruit juices is very low in urban areas of Thailand.
Collapse
Affiliation(s)
- Saranya Poapolathep
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| | - Phanwimol Tanhan
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| | - Onuma Piasai
- 3 Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Kanjana Imsilp
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| | - Jana Hajslova
- 4 Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, Institute of Chemical Technology, Technica 3, Prague 6, Czech Republic
| | - Mario Giorgi
- 5 Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), San Piero a Grado, 56122 Pisa, Italy
| | - Susumu Kumagai
- 6 Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 1138657, Japan
| | - Amnart Poapolathep
- 1 Department of Pharmacology, Faculty of Veterinary Medicine.,2 Pharmacology and Toxicology Unit, Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies (CASAF, NRU-KU)
| |
Collapse
|
30
|
Pal S, Singh N, Ansari KM. Toxicological effects of patulin mycotoxin on the mammalian system: an overview. Toxicol Res (Camb) 2017; 6:764-771. [PMID: 30090541 DOI: 10.1039/c7tx00138j] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
The mycotoxin PAT (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one) is a secondary metabolic product of molds such as Penicillium, Aspergillus, and Byssochlamys species. PAT is a common contaminant of fruit and vegetable based products, most notably apples. Despite PAT's original discovery as an antibiotic, it has come under heavy scrutiny for its potential to impart negative health effects. Studies investigating these health effects have proved its toxic potential. PAT occurrence in the food commodities poses a serious threat and necessitates novel and cost-effective mitigation methods to remove it from food products. It also creates a demand to improve handling and food processing techniques. With this being the case, several studies have been devoted to understanding the key biological and chemical attributes of PAT. While past research has elucidated a great deal, PAT contamination continues to be a challenge for the food industry. Here, we review its influence within the mammalian system, including its regulation, incidences of experimental evidence of PAT toxicity, its interaction with intracellular components, and the effects of PAT induced systemic toxicity on vital organs. Finally, key areas where future PAT research should focus to best control the PAT contamination problem within the food industry have been addressed.
Collapse
Affiliation(s)
- Saurabh Pal
- Environmental Carcinogenesis Laboratory , Food , Drug , and Chemical Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Vishvigyan Bhawan , 31 , Mahatma Gandhi Marg , P.O. Box#80 , Lucknow-226001 , Uttar Pradesh , India . ; ; Tel: +91-522-2627586 ext. 543.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-IITR , Lucknow Campus , India
| | - Neha Singh
- Environmental Carcinogenesis Laboratory , Food , Drug , and Chemical Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Vishvigyan Bhawan , 31 , Mahatma Gandhi Marg , P.O. Box#80 , Lucknow-226001 , Uttar Pradesh , India . ; ; Tel: +91-522-2627586 ext. 543.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-IITR , Lucknow Campus , India
| | - Kausar Mahmood Ansari
- Environmental Carcinogenesis Laboratory , Food , Drug , and Chemical Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Vishvigyan Bhawan , 31 , Mahatma Gandhi Marg , P.O. Box#80 , Lucknow-226001 , Uttar Pradesh , India . ; ; Tel: +91-522-2627586 ext. 543
| |
Collapse
|
31
|
Oteiza JM, Khaneghah AM, Campagnollo FB, Granato D, Mahmoudi MR, Sant’Ana AS, Gianuzzi L. Influence of production on the presence of patulin and ochratoxin A in fruit juices and wines of Argentina. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.02.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Tannous J, Keller NP, Atoui A, El Khoury A, Lteif R, Oswald IP, Puel O. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research. Crit Rev Food Sci Nutr 2017; 58:2082-2098. [DOI: 10.1080/10408398.2017.1305945] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joanna Tannous
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin, USA
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Atoui
- Laboratory of Microorganisms and Food Irradiation, Lebanese Atomic Energy Commission-CNRS, Riad El Solh, Beirut, Lebanon
- Laboratory of Microbiology, Department of Biology, Faculty of Sciences, Lebanese University, Hadath Campus, Beirut, Lebanon
| | - André El Khoury
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Roger Lteif
- Université Saint-Joseph, Centre d'Analyses et de Recherche, Unité de Technologie et Valorisation Alimentaire, Campus des Sciences et Technologies, Mar Roukos, Mkallès, Riad El Solh, Beirut, Lebanon
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
33
|
Ioi JD, Zhou T, Tsao R, F Marcone M. Mitigation of Patulin in Fresh and Processed Foods and Beverages. Toxins (Basel) 2017; 9:E157. [PMID: 28492465 PMCID: PMC5450705 DOI: 10.3390/toxins9050157] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Patulin is a mycotoxin of food safety concern. It is produced by numerous species of fungi growing on fruits and vegetables. Exposure to the toxin is connected to issues neurological, immunological, and gastrointestinal in nature. Regulatory agencies worldwide have established maximum allowable levels of 50 µg/kg in foods. Despite regulations, surveys continue to find patulin in commercial food and beverage products, in some cases, to exceed the maximum limits. Patulin content in food can be mitigated throughout the food processing chain. Proper handling, storage, and transportation of food can limit fungal growth and patulin production. Common processing techniques including pasteurisation, filtration, and fermentation all have an effect on patulin content in food but individually are not sufficient safety measures. Novel methods to remove or detoxify patulin have been reviewed. Non-thermal processing techniques such as high hydrostatic pressure, UV radiation, enzymatic degradation, binding to microorganisms, and chemical degradation all have potential but have not been optimised. Until further refinement of these methods, the hurdle approach to processing should be used where food safety is concerned. Future development should focus on determining the nature and safety of chemicals produced from the breakdown of patulin in treatment techniques.
Collapse
Affiliation(s)
- J David Ioi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
34
|
Li X, Li H, Li X, Zhang Q. Determination of trace patulin in apple-based food matrices. Food Chem 2017; 233:290-301. [PMID: 28530578 DOI: 10.1016/j.foodchem.2017.04.117] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Patulin is a toxic metabolite of a number of fungi; its toxicity is serious and its contamination in food is a worldwide problem, especially in apple-based food. Effective control of patulin contamination strongly depends on reliable analytical methods. In this review, various analytical methods, especially those that have appeared in the last ten years, are summarized, including the highly reproducible chromatography and mass-spectrometry-based methods, highly selective sensor-based methods and indirect quantitative PCR methods. This review also summarizes the promising features of novel materials in sample preparation for patulin determination.
Collapse
Affiliation(s)
- Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Hongmei Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Xiaomin Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Qinghe Zhang
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| |
Collapse
|
35
|
Yang Y, Yang Y, Shao B, Zhang J. A Simple and Rapid Method for Determination of Patulin in Juice by High Performance Liquid Chromatography Tandem Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0859-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Zheng X, Yang Q, Zhang H, Cao J, Zhang X, Apaliya MT. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica. Toxins (Basel) 2016; 8:toxins8100289. [PMID: 27735830 PMCID: PMC5086649 DOI: 10.3390/toxins8100289] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/15/2023] Open
Abstract
In this work, we examined the mechanisms involved in the degradation of patulin by Pichia caribbica. Our results indicate that cell-free filtrate of P. caribbica reduced patutlin content. The heat-killed cells could not degrade patulin. However, the live cells significantly reduced the concentration of the patulin. In furtherance to this, it was observed that patulin was not detected in the broken yeast cells and cell wall. The addition of cycloheximide to the P. caribbica cells decreased the capacity of degradation of patulin. Proteomics analyses revealed that patulin treatment resulted in an upregulated protein which was involved in metabolism and stress response processes. Our results suggested that the mechanism of degradation of patulin by P. caribbica was not absorption; the presence of patulin can induce P. caribbica to produce associated intracellular and extracellular enzymes, both of which have the ability to degrade patulin. The result provides a new possible method that used the enzymes produced by yeast to detoxify patulin in food and feed.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Jing Cao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Maurice Tibiru Apaliya
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
37
|
Zhu R, Feussner K, Wu T, Yan F, Karlovsky P, Zheng X. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum. Food Chem 2015; 179:1-5. [DOI: 10.1016/j.foodchem.2015.01.066] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 11/25/2022]
|
38
|
Zouaoui N, Sbaii N, Bacha H, Abid-Essefi S. Occurrence of patulin in various fruit juice marketed in Tunisia. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.09.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Tannous J, Atoui A, El Khoury A, Kantar S, Chdid N, Oswald IP, Puel O, Lteif R. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiol 2015; 50:28-37. [PMID: 25998812 DOI: 10.1016/j.fm.2015.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/19/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Due to the occurrence and spread of the fungal contaminants in food and the difficulties to remove their resulting mycotoxins, rapid and accurate methods are needed for early detection of these mycotoxigenic fungi. The polymerase chain reaction and the real time PCR have been widely used for this purpose. Apples are suitable substrates for fungal colonization mostly caused by Penicillium expansum, which produces the mycotoxin patulin during fruit infection. This study describes the development of a real-time PCR assay incorporating an internal amplification control (IAC) to specifically detect and quantify P. expansum. A specific primer pair was designed from the patF gene, involved in patulin biosynthesis. The selected primer set showed a high specificity for P. expansum and was successfully employed in a standardized real-time PCR for the direct quantification of this fungus in apples. Using the developed system, twenty eight apples were analyzed for their DNA content. Apples were also analyzed for patulin content by HPLC. Interestingly, a positive correlation (R(2) = 0.701) was found between P. expansum DNA content and patulin concentration. This work offers an alternative to conventional methods of patulin quantification and mycological detection of P. expansum and could be very useful for the screening of patulin in fruits through the application of industrial quality control.
Collapse
Affiliation(s)
- Joanna Tannous
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon; INRA, UMR 1331 Toxalim, Research Centre in Food Toxicology, 180 Chemin de Tournefeuille, F-31027 Toulouse, Cedex, France; Université de Toulouse III, ENVT, INP, UMR 1331, Toxalim, F-31076, Toulouse, France
| | - Ali Atoui
- Laboratory of Microorganisms and Food Irradiation, Lebanese Atomic Energy Commission-CNRS, P.O. Box 11-8281, Riad El Solh, 1107 2260 Beirut, Lebanon.
| | - André El Khoury
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| | - Sally Kantar
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| | - Nader Chdid
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| | - Isabelle P Oswald
- INRA, UMR 1331 Toxalim, Research Centre in Food Toxicology, 180 Chemin de Tournefeuille, F-31027 Toulouse, Cedex, France; Université de Toulouse III, ENVT, INP, UMR 1331, Toxalim, F-31076, Toulouse, France
| | - Olivier Puel
- INRA, UMR 1331 Toxalim, Research Centre in Food Toxicology, 180 Chemin de Tournefeuille, F-31027 Toulouse, Cedex, France; Université de Toulouse III, ENVT, INP, UMR 1331, Toxalim, F-31076, Toulouse, France
| | - Roger Lteif
- Université Saint-Joseph, Centre d'Analyses et de Recherche (Faculté des Sciences), Campus des Sciences et Technologies, Mar Roukos, Mkallès, P.O Box 11-514, Riad El Solh, 1107 2050 Beirut, Lebanon
| |
Collapse
|
40
|
Selvaraj JN, Wang Y, Zhou L, Zhao Y, Xing F, Dai X, Liu Y. Recent mycotoxin survey data and advanced mycotoxin detection techniques reported from China: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:440-52. [PMID: 25604871 DOI: 10.1080/19440049.2015.1010185] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mycotoxin contamination in agro-food systems has been a serious concern over the last few decades in China, where the Ministry of Health has set maximum limits for mycotoxins in different agro-products. Overall survey data show that aflatoxin contamination in infant cereals, edible oils, raw milk, ginger and its related products are far below Chinese regulatory limits. The absence of aflatoxin M1 contamination in infant milk powders indicates a high standard of control. Aflatoxins in liquorice roots and lotus seeds have been reported for the first time. For deoxynivalenol, high levels were found in wheat grown in the Yangtze Delta region, which is more prone to rainfall, supporting Fusarium infection. The emerging mycotoxins beauvericins and enniatins have been reported in the medicinal herbs in China. Ochratoxin A in wine was below the European Union regulatory limits, but fumonisins in maize need to be monitored and future regulatory control considered. Overall from all the survey data analysed in this review, it can be concluded that 92% of the samples analysed had mycotoxin levels below the Chinese regulatory limits. In terms of detection techniques in recent years, immuno-based assays have been developed largely due to their excellent sensitivity and ease of use. Assays targeting multiple mycotoxins like aflatoxins, ochratoxin A, zearalenone and deoxynivalenol have been reported using microarrays and suspension arrays targeting in particular maize, rice and peanuts. Aptamer-based assays against ochratoxin A and aflatoxins B1 and B2 have been developed involving fluorescence detection; and surface plasmon resonance immunosensors have been developed targeting wine, maize, wheat, wild rye, hay and peanut oil with high sensitivity (> 0.025 ng l(-1)). Commercialisation of these technologies is much needed for wider usage in the coming years.
Collapse
Affiliation(s)
- Jonathan Nimal Selvaraj
- a Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing , Ministry of Agriculture , Beijing , China
| | | | | | | | | | | | | |
Collapse
|
41
|
Rahimi E, Rezapoor Jeiran M. Patulin and its dietary intake by fruit juice consumption in Iran. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2014; 8:40-3. [DOI: 10.1080/19393210.2014.967814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Yang J, Li J, Jiang Y, Duan X, Qu H, Yang B, Chen F, Sivakumar D. Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products. Crit Rev Food Sci Nutr 2014; 54:64-83. [PMID: 24188233 DOI: 10.1080/10408398.2011.569860] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycotoxins are small toxic chemical products formed as the secondary metabolites by fungi that readily contaminate foods with toxins in the field or after harvest. The presence of mycotoxins, such as aflatoxins, ochratoxin A, and patulin, in fruits and their processed products is of high concern for human health due to their properties to induce severe acute and chronic toxicity at low-dose levels. Currently, a broad range of detection techniques used for practical analysis and detection of a wide spectrum of mycotoxins are available. Many analytical methods have been developed for the determination of each group of these mycotoxins in different food matrices, but new methods are still required to achieve higher sensitivity and address other challenges that are posed by these mycotoxins. Effective technologies are needed to reduce or even eliminate the presence of the mycotoxins in fruits and their processed products. Preventive measures aimed at the inhibition of mycotoxin formation in fruits and their processed products are the most effective approach. Detoxification of mycotoxins by different physical, chemical, and biological methods are less effective and sometimes restricted because of concerns of safety, possible losses in nutritional quality of the treated commodities and cost implications. This article reviewed the available information on the major mycotoxins found in foods and feeds, with an emphasis of fruits and their processed products, and the analytical methods used for their determination. Based on the current knowledge, the major strategies to prevent or even eliminate the presence of the mycotoxins in fruits and their processed products were proposed.
Collapse
Affiliation(s)
- Jinyi Yang
- a Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Zaied C, Abid S, Hlel W, Bacha H. Occurrence of patulin in apple-based-foods largely consumed in Tunisia. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
|