1
|
Upadhyay P, Zubair M, Roopesh MS, Ullah A. An Overview of Advanced Antimicrobial Food Packaging: Emphasizing Antimicrobial Agents and Polymer-Based Films. Polymers (Basel) 2024; 16:2007. [PMID: 39065324 PMCID: PMC11281112 DOI: 10.3390/polym16142007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The food industry is increasingly focused on maintaining the quality and safety of food products as consumers are becoming more health conscious and seeking fresh, minimally processed foods. However, deterioration and spoilage caused by foodborne pathogens continue to pose significant challenges, leading to decreased shelf life and quality. To overcome this issue, the food industry and researchers are exploring new approaches to prevent microbial growth in food, while preserving its nutritional value and safety. Active packaging, including antimicrobial packaging, has gained considerable attention among current food packaging methods owing to the wide range of materials used, application methods, and their ability to protect various food products. Both direct and indirect methods can be used to improve food safety and quality by incorporating antimicrobial compounds into the food packaging materials. This comprehensive review focuses on natural and synthetic antimicrobial substances and polymer-based films, and their mechanisms and applications in packaging systems. The properties of these materials are compared, and the persistent challenges in the field of active packaging are emphasized. Specifically, there is a need to achieve the controlled release of antimicrobial agents and develop active packaging materials that possess the necessary mechanical and barrier properties, as well as other characteristics essential for ensuring food protection and safety, particularly bio-based packaging materials.
Collapse
Affiliation(s)
| | | | | | - Aman Ullah
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (P.U.); (M.Z.); (M.S.R.)
| |
Collapse
|
2
|
Zhou X, Zhou X, Zhou L, Jia M, Xiong Y. Nanofillers in Novel Food Packaging Systems and Their Toxicity Issues. Foods 2024; 13:2014. [PMID: 38998521 PMCID: PMC11241462 DOI: 10.3390/foods13132014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China;
| | - Xiaoyu Zhou
- The Fine Arts Academy, Hunan Normal University, Changsha 410012, China;
| | - Longli Zhou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Ming Jia
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Xiong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Yan T, Wang X, Qiao Y. Strategy to Antibacterial, High-Mechanical, and Degradable Polylactic Acid/Chitosan Composite Film through Reactive Compatibilization via Epoxy Chain Extender. ACS OMEGA 2024; 9:27312-27320. [PMID: 38947826 PMCID: PMC11209879 DOI: 10.1021/acsomega.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/13/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Research into the production of antibacterial, high strength, and environmentally friendly biobased films for use in food packaging is crucial due to growing concerns about food safety. Herein, the preparation of antibacterial, high mechanical, and degradable Polylactic acid/chitosan (PLA/CS) composite films with exceptional interfacial compatibility through reactive compatibilization via the epoxy chain extender ADR4468 is reported. A strong bond, in the form of a chemical bond between PLA and CS, is established by the cycloaddition opening reaction of ADR, which induces cross-linking between hydroxyl and carboxyl groups on the molecular chains. As a result, the elongation at break increased by 31.8% compared to the composite film without ADR. In addition, the composite films exhibited good compost degradability, with a mass reduction of 42-45% after 100 days of degradation.
Collapse
Affiliation(s)
- Tingqiang Yan
- College of Material Science
and Chemical Engineering, Harbin Engineering
University, Harbin 150001, China
| | - Xiaodong Wang
- College of Material Science
and Chemical Engineering, Harbin Engineering
University, Harbin 150001, China
| | - Yingjie Qiao
- College of Material Science
and Chemical Engineering, Harbin Engineering
University, Harbin 150001, China
| |
Collapse
|
4
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
5
|
Ulfadillah SA, Chang SH. Antibacterial effects of various molecular weight chitosans against Alicyclobacillus acidoterrestris in orange juice. Int J Biol Macromol 2024; 262:130214. [PMID: 38367781 DOI: 10.1016/j.ijbiomac.2024.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Alicyclobacillus acidoterrestris has been gaining attention due to its unique thermo-acidophilic properties and being associated with the deterioration of pasteurized beverages. The objective of this study was to evaluate the antibacterial activity of chitosan with various molecular weights (MWs) (164, 85, 29.2, and 7.1 kDa) and concentrations (0-100 μg/mL) against A. acidoterrestris and its effect on guaiacol production. Various chitosan MWs were co-incubated for 7 days, and the bacterial growth, guaiacol, and vanillic acid contents during storage were determined. The chitosans performed antibacterial effects against A. acidoterrestris. Further, 164 kDa chitosan showed excellent results in controlling the growth and guaiacol formation in A. acidoterrestris. These findings demonstrated the efficacy of chitosan antibacterial activity against A. acidoterrestris and mitigating the guaiacol formation. Chitosan's antibacterial properties are attributed to the elimination of cells and suppression of guaiacol production. This study introduces a new approach for reducing A. acidoterrestris contamination in fruit juices, with potential product quality and safety advantages.
Collapse
Affiliation(s)
- Siti Ayu Ulfadillah
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Shun-Hsien Chang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, ROC; Center for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, ROC.
| |
Collapse
|
6
|
Lee HJ, Lee HJ, Ismail A, Sethukali AK, Park D, Baek KH, Jo C. Effect of plasma-activated organic acids on different chicken cuts inoculated with Salmonella Typhimurium and Campylobacter jejuni and their antioxidant activity. Poult Sci 2023; 102:103126. [PMID: 37832189 PMCID: PMC10585309 DOI: 10.1016/j.psj.2023.103126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Lactic acid, gallic acid, and their mixture (1% each) were prepared (LA, GA, and LGA) and plasma-activated organic acids (PAOA) were produced through exposure to plasma for 1 h (PAL, PAG, and PLGA). Chicken breast and drumstick were immersed in the prepared solutions for 10 min and analyzed their antibacterial effect against Salmonella Typhimurium and Campylobacter jejuni and antioxidant activity during 12 d of storage. As a result, PAOA inactivated approximately 6.37 log CFU/mL against S. Typhimurium and 2.76, 1.86, and 3.04 log CFU/mL against C. jejuni (PAL, PAG, and PLGA, respectively). Moreover, PAOA had bactericidal effect in both chicken parts inoculated with pathogens, with PAL and PLGA displaying higher antibacterial activity compared to PAG. Meanwhile, PAOA inhibited lipid oxidation in chicken meats, and PAG and PLGA had higher oxidative stability during storage compared to PAL. This can be attributed to the superior antioxidant properties of GA and LGA, including higher total phenolic contents, ABTS+ reducing activity, and DPPH radical scavenging activity, when compared to LA. In particular, when combined with plasma treatment, LGA showed the greatest improvement in antioxidant activity compared to other organic acids. In summary, PLGA not only had a synergistic bactericidal effect against pathogens on chicken, but also improved oxidative stability during storage. Therefore, PLGA can be an effective method for controlling microorganisms without adverse effect on lipid oxidation for different chicken cuts.
Collapse
Affiliation(s)
- Hag Ju Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Azfar Ismail
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Anand Kumar Sethukali
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Dongbin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea
| | - Ki Ho Baek
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, Changwon 51508, South Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, South Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| |
Collapse
|
7
|
Varamogianni-Mamatsi D, Nunes MJ, Marques V, Anastasiou TI, Kagiampaki E, Vernadou E, Dailianis T, Kalogerakis N, Branco LC, Rodrigues CMP, Sobral RG, Gaudêncio SP, Mandalakis M. Comparative Chemical Profiling and Antimicrobial/Anticancer Evaluation of Extracts from Farmed versus Wild Agelas oroides and Sarcotragus foetidus Sponges. Mar Drugs 2023; 21:612. [PMID: 38132933 PMCID: PMC10744379 DOI: 10.3390/md21120612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Marine sponges are highly efficient in removing organic pollutants and their cultivation, adjacent to fish farms, is increasingly considered as a strategy for improving seawater quality. Moreover, these invertebrates produce a plethora of bioactive metabolites, which could translate into an extra profit for the aquaculture sector. Here, we investigated the chemical profile and bioactivity of two Mediterranean species (i.e., Agelas oroides and Sarcotragus foetidus) and we assessed whether cultivated sponges differed substantially from their wild counterparts. Metabolomic analysis of crude sponge extracts revealed species-specific chemical patterns, with A. oroides and S. foetidus dominated by alkaloids and lipids, respectively. More importantly, farmed and wild explants of each species demonstrated similar chemical fingerprints, with the majority of the metabolites showing modest differences on a sponge mass-normalized basis. Furthermore, farmed sponge extracts presented similar or slightly lower antibacterial activity against methicillin-resistant Staphylococcus aureus, compared to the extracts resulting from wild sponges. Anticancer assays against human colorectal carcinoma cells (HCT-116) revealed marginally active extracts from both wild and farmed S. foetidus populations. Our study highlights that, besides mitigating organic pollution in fish aquaculture, sponge farming can serve as a valuable resource of biomolecules, with promising potential in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Despoina Varamogianni-Mamatsi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Maria João Nunes
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Thekla I. Anastasiou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Eirini Kagiampaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Emmanouela Vernadou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Thanos Dailianis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
| | - Luís C. Branco
- LAQV, REQUIMTE, Associated Laboratory for Green Chemistry, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal; (M.J.N.); (L.C.B.)
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (V.M.); (C.M.P.R.)
| | - Rita G. Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2819-516 Caparica, Portugal
| | - Manolis Mandalakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion Crete, Greece; (D.V.-M.); (T.I.A.); (E.K.); (E.V.); (T.D.)
| |
Collapse
|
8
|
Hiremani VD, Goudar N, Khanapure S, Gasti T, Eelager MP, Narasagoudr SS, Masti SP, Chougale RB. Physicochemical and antimicrobial properties of Phyllanthus reticulatus fruit extract doped chitosan/poly (vinyl alcohol) blend films for food packaging applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Unraveling the malate biosynthesis during development of Torreya grandis nuts. Curr Res Food Sci 2022; 5:2309-2315. [DOI: 10.1016/j.crfs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
|
10
|
Lipatova I, Yusova A, Makarova L. Functional films based on mechanoactivated starch with prolonged release of preservative. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Sadat Razavi M, Golmohammadi A, Nematollahzadeh A, Ghanbari A, Davari M, Carullo D, Farris S. Production of Innovative Essential Oil-Based Emulsion Coatings for Fungal Growth Control on Postharvest Fruits. Foods 2022; 11:foods11111602. [PMID: 35681352 PMCID: PMC9180006 DOI: 10.3390/foods11111602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022] Open
Abstract
This work assessed the antimicrobial potential of natural essential oils (EOs) from cinnamon (CEO), zataria (ZEO), and satureja (SEO), applied natively or as coatings against Penicillium expansum and Botrytis cinerea during both in vitro and in vivo (on apple fruits) experiments. The induced inhibitory effect towards fungal growth, as a function of both EO type and concentration (75–1200 μL/L), was preliminarily investigated to select the most suitable EO for producing bacterial cellulose nanocrystals (BCNCs)/fish gelatin (GelA)-based emulsions. CEO and ZEO exhibited the best performances against P. expansum and B. cinerea, respectively. None of the pristine EOs completely inhibited the fungal growth and “disease severity”, properly quantified via size measurements of lesions formed on fruit surfaces. As compared to pristine CEO, coating emulsions with variable CEO concentration (75–2400 µL/L) curbed lesion spreading on apples, owing to the controlled CEO release during a 21-day temporal window. The strongest effect was displayed by BCNCs/GelA-CEO emulsions at the highest CEO concentration, upon which lesions on fruit skins were barely detectable. This work demonstrated the capability of EOs embedded in BCNCs/GelA-based nanocapsules to efficiently slow down microbial spoilage on postharvest fruits, thus offering viable opportunities for developing innovative antimicrobial packaging systems.
Collapse
Affiliation(s)
- Mahsa Sadat Razavi
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Abdollah Golmohammadi
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
- Correspondence: (A.G.); (S.F.); Tel.: +98-04515517500 (A.G.); +39-0250316805 (S.F.); Fax: +98-04515520567 (A.G.); +39-0250316672 (S.F.)
| | - Ali Nematollahzadeh
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Alireza Ghanbari
- Department of Horticulture, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Mahdi Davari
- Department of Plant Protection, University of Mohaghegh Ardabili, Daneshgah Street, Ardabil 56199-11367, Iran;
| | - Daniele Carullo
- Food Packaging Lab, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, I-20133 Milan, Italy;
| | - Stefano Farris
- Food Packaging Lab, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, I-20133 Milan, Italy;
- Correspondence: (A.G.); (S.F.); Tel.: +98-04515517500 (A.G.); +39-0250316805 (S.F.); Fax: +98-04515520567 (A.G.); +39-0250316672 (S.F.)
| |
Collapse
|
12
|
Suvarna V, Nair A, Mallya R, Khan T, Omri A. Antimicrobial Nanomaterials for Food Packaging. Antibiotics (Basel) 2022; 11:729. [PMID: 35740136 PMCID: PMC9219644 DOI: 10.3390/antibiotics11060729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Arya Nair
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (A.N.); (R.M.)
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (A.N.); (R.M.)
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
13
|
Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Mohammadi S, Babaei A. Poly (vinyl alcohol)/chitosan/polyethylene glycol-assembled graphene oxide bio-nanocomposites as a prosperous candidate for biomedical applications and drug/food packaging industry. Int J Biol Macromol 2022; 201:528-538. [PMID: 35051501 DOI: 10.1016/j.ijbiomac.2022.01.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/05/2022]
Abstract
The graphene oxide (GO) nanoplates and polyethylene glycol-decorated GO (GO-PEG nano-hybrid) were synthesized and characterized by FTIR, Raman, XRD, AFM, FE-SEM-EDAX and MTT assay. Obtained results confirmed the graphite oxidation and also assembly of PEG upon GO plates. The MTT assay indicated that GO-PEG nanohybrid enhanced biocompatibility to cells compared to the GO. The GO-PEG nanohybrid was introduced to the polyvinyl alcohol/chitosan carbohydrate (PVA/CS) blends. The bio-nanocomposite were prepared by simple casting method. The GO-PEG nanohybrids demonstrated a significant role in improving thermal, mechanical and antibacterial properties. Accordingly, bio-nanocomposites containing modified GO (PVA/CS/GO-PEG) exhibited higher glass transition temperature (Tg), Young's modulus, tensile strength, elongation at break and antibacterial properties than nanocomposites containing pure GO (PVA/CS/GO). The biodegradation outcomes indicated that the highest weight loss and degradability is related to the bio-nanocomposite containing modified GO (PVA/CS/GO-PEG), which was also confirmed by FE-SEM micrographs. Therefore, PVA/CS/GO-PEG bio-nanocomposites can be a suitable candidate for biomedical applications (tissue engineering, wound dressing) and food-drug packaging industry.
Collapse
Affiliation(s)
- Saeid Mohammadi
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| |
Collapse
|
15
|
Antimicrobial PLA-PVA multilayer films containing phenolic compounds. Food Chem 2021; 375:131861. [PMID: 34942501 DOI: 10.1016/j.foodchem.2021.131861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Multilayer materials with good interlayer-adhesion were obtained by thermocompression for laminating an internal poly (vinyl alcohol) (PVA) layer with two external poly (lactic acid) (PLA) layers. Carvacrol or ferulic acid were incorporated into the PVA sheet to obtain active materials. The multilayer films were characterised as to their microstructure, thermal behaviour, tensile and barrier properties. Furthermore, the antimicrobial capacity of the materials was analysed in packaged beef meat samples for 17 days at 5 °C. The laminates exhibited tensile properties close to those of the PLA films, but with enhanced stretchability. Compared to the monolayers, the barrier capacity of multilayers was much improved by combining polyester and PVA layers, which provide the laminate with water vapour and oxygen barrier capacity, respectively. Active multilayers were effective at controlling microbial growth in beef meat during cold storage. Therefore, the materials developed were functionally adequate for food packaging purposes and successfully promoted the meat preservation.
Collapse
|
16
|
Sullivan D, O’Mahony TF, Cruz-Romero MC, Cummins E, Kerry JP, Morris MA. The Use of Porous Silica Particles as Carriers for a Smart Delivery of Antimicrobial Essential Oils in Food Applications. ACS OMEGA 2021; 6:30376-30385. [PMID: 34805669 PMCID: PMC8603183 DOI: 10.1021/acsomega.1c03549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 05/15/2023]
Abstract
The objective of this study was to design, develop, and quantify the effectiveness of a simple method to facilitate the smart delivery of antimicrobial essential oils (EOs) via their absorption into a chemically bound high surface area support material. To this end, Santa Barbara Amorphous 15 (SBA-15) was functionalized by means of a post-synthetic reaction using (3-aminopropyl)triethoxysilane (APTES) to create an amine-terminated SBA-15 (SBA-APTES), and functionalization was confirmed by FTIR, TGA, and N2 isotherm analysis. Amine-modified SBA-15 was then grafted to a 3-glycidyloxypropyltrimethoxysilane (GPTS)-modified silicon (Si) surface (Si-GPTS), and subsequent attachment to the GPTS-modified surface was confirmed through XPS, dynamic contact angle, and SEM analysis. The smart delivery devices (SBA-15 and SBA-APTES) were then loaded with antimicrobial oregano essential oil (OEO) and the antimicrobial activity was assessed against common food spoilage microorganisms Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Pseudomonas fluorescens. Antimicrobial activity results indicate that both SBA-OEO and SBA-APTES-OEO have good antimicrobial activity and that functionalization of bare SBA-15 with APTES has no effect on antimicrobial activity (P > 0.05) compared to SBA-OEO. Moreover, it appears that direct surface coating of the modified SBA to a surface substrate may not provide a significant quantity of oil needed to elicit an antimicrobial response. Nevertheless, given the strong absorption properties of SBA materials, good antimicrobial activity, and the GRAS nature of SBA-OEO and SBA-APTES-OEO, the results found in this study open potential applications of the functionalized carrier materials.
Collapse
Affiliation(s)
- David
J. Sullivan
- AMBER
Research Centre and the School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Tom F. O’Mahony
- AMBER
Research Centre and the School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Malco C. Cruz-Romero
- Food
Packaging Group, School of Food & Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Enda Cummins
- UCD
School of Biosystems and Food Engineering, Agriculture and Food Science
Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joseph P. Kerry
- Food
Packaging Group, School of Food & Nutritional Sciences, University College Cork, Cork T12 K8AF, Ireland
| | - Michael A. Morris
- AMBER
Research Centre and the School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
17
|
Green Silver Nanoparticles Embedded in Cellulosic Network for Fresh Food Packaging. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The demand for increasing the shelf life of fresh food as well as the need for protecting the food against foodborne infections warrant the demand for increasing the shelf life of fresh food. The incorporation of nanoparticles into the packaging material can enhance the preservation of perishable foods. Silver nanoparticles (AgNPs), in particular, have antibacterial, anti-mold, anti-yeast, and anti-viral activities can be embedded into the biodegradable packaging materials for this purpose. This study focuses on antimicrobial packaging materials for food by mixing the extracts of different plants with silver nitrate and depositing this mixture as a layer on the blotting papers, which are thick sheets of paper made of cellulose. Because the blotting papers are highly absorbent and porous, silver nitrate solution along with the plant extracts can be easily applied and allowed for in situ synthesis of AgNPs. Subsequently, these papers were analyzed and characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and energy dispersive X-ray analysis. The coated paper exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the coated paper when used as a packaging material for tomatoes and coriander leaf, the shelf life was extended to about 30 days and 15 days respectively. The prepared cost-effective silver packing material can be used in food packaging for various perishable foods.
Collapse
|
18
|
Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021; 10:foods10071598. [PMID: 34359468 PMCID: PMC8305275 DOI: 10.3390/foods10071598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Microbial food contamination is a major concern for consumers and food industries. Consumers desire nutritious, safe and “clean label” products, free of synthetic preservatives and food industries and food scientists try to meet their demands by finding natural effective alternatives for food preservation. One of the alternatives to synthetic preservatives is the use of natural anti-microbial agents in the food products and/or in the packaging materials. Meat and processed meat products are characteristic examples of products that are highly perishable; hence natural anti-microbials can be used for extending their shelf-life and enhancing their safety. Despite several examples of the successful application of natural anti-microbial agents in meat products reported in research studies, their commercial use remains limited. This review objective is to present an extensive overview of recent research in the field of natural anti-microbials, covering essential oils, plant extracts, flavonoids, animal-derived compounds, organic acids, bacteriocins and nanoparticles. The anti-microbial mode of action of the agents, in situ studies involving meat products, regulations and, limitations for usage and future perspectives are described. The review concludes that naturally derived anti-microbials can potentially support the meat industry to provide “clean label”, nutritious and safe meat products for consumers.
Collapse
|
19
|
Gumienna M, Górna B. Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecules 2021; 26:3735. [PMID: 34207426 PMCID: PMC8234186 DOI: 10.3390/molecules26123735] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Innovations in food and drink packaging result mainly from the needs and requirements of consumers, which are influenced by changing global trends. Antimicrobial and active packaging are at the forefront of current research and development for food packaging. One of the few natural polymers on the market with antimicrobial properties is biodegradable and biocompatible chitosan. It is formed as a result of chitin deacetylation. Due to these properties, the production of chitosan alone or a composite film based on chitosan is of great interest to scientists and industrialists from various fields. Chitosan films have the potential to be used as a packaging material to maintain the quality and microbiological safety of food. In addition, chitosan is widely used in antimicrobial films against a wide range of pathogenic and food spoilage microbes. Polylactic acid (PLA) is considered one of the most promising and environmentally friendly polymers due to its physical and chemical properties, including renewable, biodegradability, biocompatibility, and is considered safe (GRAS). There is great interest among scientists in the study of PLA as an alternative food packaging film with improved properties to increase its usability for food packaging applications. The aim of this review article is to draw attention to the existing possibilities of using various components in combination with chitosan, PLA, or bacteriocins to improve the properties of packaging in new food packaging technologies. Consequently, they can be a promising solution to improve the quality, delay the spoilage of packaged food, as well as increase the safety and shelf life of food.
Collapse
Affiliation(s)
- Małgorzata Gumienna
- Laboratory of Fermentation and Biosynthesis, Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | | |
Collapse
|
20
|
Chelliah R, Wei S, Daliri EBM, Rubab M, Elahi F, Yeon SJ, Jo KH, Yan P, Liu S, Oh DH. Development of Nanosensors Based Intelligent Packaging Systems: Food Quality and Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1515. [PMID: 34201071 PMCID: PMC8226856 DOI: 10.3390/nano11061515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/02/2022]
Abstract
The issue of medication noncompliance has resulted in major risks to public safety and financial loss. The new omnipresent medicine enabled by the Internet of things offers fascinating new possibilities. Additionally, an in-home healthcare station (IHHS), it is necessary to meet the rapidly increasing need for routine nursing and on-site diagnosis and prognosis. This article proposes a universal and preventive strategy to drug management based on intelligent and interactive packaging (I2Pack) and IMedBox. The controlled delamination material (CDM) seals and regulates wireless technologies in novel medicine packaging. As such, wearable biomedical sensors may capture a variety of crucial parameters via wireless communication. On-site treatment and prediction of these critical factors are made possible by high-performance architecture. The user interface is also highlighted to make surgery easier for the elderly, disabled, and patients. Land testing incorporates and validates an approach for prototyping I2Pack and iMedBox. Additionally, sustainability, increased product safety, and quality standards are crucial throughout the life sciences. To achieve these standards, intelligent packaging is also used in the food and pharmaceutical industries. These technologies will continuously monitor the quality of a product and communicate with the user. Data carriers, indications, and sensors are the three most important groups. They are not widely used at the moment, although their potential is well understood. Intelligent packaging should be used in these sectors and the functionality of the systems and the values presented in this analysis.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Momna Rubab
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan;
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Su-Jung Yeon
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Kyoung hee Jo
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China;
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (E.B.-M.D.); (F.E.); (S.-J.Y.); (K.h.J.); (P.Y.)
| |
Collapse
|
21
|
Salgado-Cruz MDLP, Salgado-Cruz J, García-Hernández AB, Calderón-Domínguez G, Gómez-Viquez H, Oliver-Espinoza R, Fernández-Martínez MC, Yáñez-Fernández J. Chitosan as a Coating for Biocontrol in Postharvest Products: A Bibliometric Review. MEMBRANES 2021; 11:421. [PMID: 34073018 PMCID: PMC8228418 DOI: 10.3390/membranes11060421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
The aim of this work was to carry out a systematic literature review focused on the scientific production, trends, and characteristics of a knowledge domain of high worldwide importance, namely, the use of chitosan as a coating for postharvest disease biocontrol in fruits and vegetables, which are generated mainly by fungi and bacteria such as Aspergillus niger, Rhizopus stolonifera, and Botrytis cinerea. For this, the analysis of 875 published documents in the Scopus database was performed for the years 2011 to 2021. The information of the keywords' co-occurrence was visualized and studied using the free access VOSviewer software to show the trend of the topic in general. The study showed a research increase of the chitosan and nanoparticle chitosan coating applications to diminish the postharvest damage by microorganisms (fungi and bacteria), as well as the improvement of the shelf life and quality of the products.
Collapse
Affiliation(s)
- Ma de la Paz Salgado-Cruz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Julia Salgado-Cruz
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Alitzel Belem García-Hernández
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Georgina Calderón-Domínguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico; (M.d.l.P.S.-C.); (A.B.G.-H.); (G.C.-D.)
| | - Hortensia Gómez-Viquez
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - Rubén Oliver-Espinoza
- Centro de Investigaciones Económicas, Administrativas y Sociales, Instituto Politécnico Nacional, Ciudad de México 11360, Mexico; (J.S.-C.); (H.G.-V.); (R.O.-E.)
| | - María Carmen Fernández-Martínez
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| | - Jorge Yáñez-Fernández
- Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Ciudad de México 07340, Mexico;
| |
Collapse
|
22
|
Pseudomonas spp.: Are Food Grade Organic Acids Efficient against These Spoilage Microorganisms in Fresh Cheeses? Foods 2021; 10:foods10040891. [PMID: 33921594 PMCID: PMC8074068 DOI: 10.3390/foods10040891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Psychrotolerant Pseudomonas spp. are among the most common spoilage agents in fresh, soft and semi-soft cheeses; therefore, hurdles inhibiting their growth are in strong demand by producers. This study aimed to establish Minimal Inhibiting Concentrations (MICs) of lactic and acetic acid towards P. fluorescens and to evaluate the efficacy of a cheese surface treatment with these two organic acids. MICs were determined in Brain Heart Infusion broth at 30 °C: the inhibition was achieved at a concentration of 49.96 mM and 44.40 mM of acetic and lactic acid, respectively. Two series of inhibition tests were performed on fresh “Primo sale” cheese, inoculated with P. brenneri MGM3, then dipped into different acid solutions (acetic acid: 49.96, 99.92 and 149.88 mM; lactic acid: 44.40, 88.80 and 133.20 mM) and stored at 6 °C. P. brenneri MGM3 were enumerated, including a control series. A significantly lower growth was revealed at the highest concentrations tested, both for acetic (p < 0.01) and lactic acid (p < 0.05) if compared to control samples. A conditioning of “Primo sale” surface with organic acid solutions could be a useful hurdle for Pseudomonas inhibition and shelf-life extension; it should be applied in combination with other mild interventions to fight spoilage and maintain the original product characteristics.
Collapse
|
23
|
Pandhi S, Mahato DK, Kumar A. Overview of Green Nanofabrication Technologies for Food Quality and Safety Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
24
|
Antibacterial Activity of Chitosan-Polylactate Fabricated Plastic Film and Its Application on the Preservation of Fish Fillet. Polymers (Basel) 2021; 13:polym13050696. [PMID: 33669080 PMCID: PMC7956300 DOI: 10.3390/polym13050696] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
This research prepared chitosan–PLA plastic films by extrusion, analyzed the physical and mechanical properties and antibacterial activity of the fabricated plastic films, and used them to preserve grouper fillet. We added chitosan (220 kDa, 93% DD) in the weight ratio of 0.5–2% into the PLA to prepare the chitosan–PLA films. With the increasing chitosan dosage, both the water vapor transmission rate and moisture content of chitosan–PLA films increased. Among the three doses of chitosan (0.5%, 1%, and 2%) added to PLA, 0.5% chitosan–PLA film had the highest antibacterial activity. This plastic film had an inhibitory efficiency of over 95% against Escherichia coli, Pseudomonas fluorescens, and Staphylococcus aureus. The action of covering the fish fillet with 0.5% chitosan–PLA film significantly reduced several microbes’ counting (i.e., mesophiles, psychrophiles, coliforms, Pseudomonas, Aeromonas, and Vibrio) and total volatile basic nitrogen (TVBN) value in the grouper fillets stored at 4 °C. Thus, such action prolongs the fish fillets’ shelf life to up to at least nine days, and this 0.5% chitosan–PLA film shows promising potential for preserving refrigerated fish.
Collapse
|
25
|
Kourmentza K, Gromada X, Michael N, Degraeve C, Vanier G, Ravallec R, Coutte F, Karatzas KA, Jauregi P. Antimicrobial Activity of Lipopeptide Biosurfactants Against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front Microbiol 2021; 11:561060. [PMID: 33505362 PMCID: PMC7829355 DOI: 10.3389/fmicb.2020.561060] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Lipopeptide biosurfactants produced by Bacillus sp. were assessed regarding their antimicrobial activity against foodborne pathogenic and food spoilage microorganisms. Both Gram-positive and Gram-negative bacteria were found not to be susceptible to these lipopeptides. However, mycosubtilin and mycosubtilin/surfactin mixtures were very active against the filamentous fungi Paecilomyces variotti and Byssochlamys fulva, with minimum inhibitory concentrations (MICs) of 1-16 mg/L. They were also active against Candida krusei, MIC = 16-64 mg/L. Moreover it was found that the antifungal activity of these lipopeptides was not affected by differences in isoform composition and/or purity. Furthermore their cytotoxicity tested on two different cell lines mimicking ingestion and detoxification was comparable to those of approved food preservatives such as nisin. Overall, for the first time here mycosubtilin and mycosubtilin/surfactin mixtures were found to have high antifungal activity against food relevant fungi at concentrations lower than their toxicity level hence, suggesting their application for extending the shelf-life of products susceptible to these moulds. In addition combining nisin with mycosubtilin or mycosubtiliin/surfactin mixtures proved to be an effective approach to produce antimicrobials with broader spectrum of action.
Collapse
Affiliation(s)
- Konstantina Kourmentza
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Xavier Gromada
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Nicholas Michael
- Chemical Analysis Facility (CAF), Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Gaetan Vanier
- Lipofabrik, Polytech-Lille, Villeneuve d’Ascq, France
| | - Rozenn Ravallec
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Francois Coutte
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
- Lipofabrik, Polytech-Lille, Villeneuve d’Ascq, France
| | - Kimon Andreas Karatzas
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
26
|
Budinčić JM, Petrović L, Đekić L, Fraj J, Bučko S, Katona J, Spasojević L. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr Polym 2021; 251:116988. [PMID: 33142560 DOI: 10.1016/j.carbpol.2020.116988] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Potential benefit of microencapsulation is its ability to deliver and protect incorporated ingredients such as vitamin E. Microcapsule wall properties can be changed by adding of coss-linking agents that are usually considered toxic for application. The microcapsules were prepared by a spray-drying technique using coacervation method, by depositing the coacervate formed in the mixture of chitosan and sodium lauryl ether sulfate to the oil/water interface. All obtained microcapsules suspensions had slightly lower mean diameter compared to the starting emulsion (6.85 ± 0.213 μm), which shows their good stability during the drying process. The choice and absence of cross-linking agents had influence on kinetics of vitamin E release. Encapsulation efficiency of microcapsules without cross-linking agent was 73.17 ± 0.64 %. This study avoided the use of aldehydes as cross-linking agents and found that chitosan/SLES complex can be used as wall material for the microencapsulation of hydrophobic active molecules in cosmetic industry.
Collapse
Affiliation(s)
- Jelena Milinković Budinčić
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia.
| | - Lidija Petrović
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Đekić
- Faculty of Pharmacy, University of Belgrade, Department of Pharmaceutical Technology and Cosmetology, Serbia
| | - Jadranka Fraj
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Sandra Bučko
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Jaroslav Katona
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| | - Ljiljana Spasojević
- Faculty of Technology Novi Sad, University of Novi Sad, Department of Biotechnology and Pharmaceutical Engineering, Serbia
| |
Collapse
|
27
|
Melro E, Antunes FE, da Silva GJ, Cruz I, Ramos PE, Carvalho F, Alves L. Chitosan Films in Food Applications. Tuning Film Properties by Changing Acidic Dissolution Conditions. Polymers (Basel) 2020; 13:polym13010001. [PMID: 33374920 PMCID: PMC7792621 DOI: 10.3390/polym13010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Food contamination due to the presence of microorganisms is a serious problem. New food preservation systems are being studied to kill or inhibit spoilage and pathogenic microorganisms that contaminate food and reduce the shelf life of products. Chitosan films with potential application to food preservation have witnessed great developments during the last years. Chitosan is a cationic polysaccharide with the ability to form films and possess antimicrobial properties. It is water-insoluble but can be dissolved in acidic solutions. In the present work, three different acids (acetic, lactic and citric) were used in chitosan dissolution and both, the resultant solutions and formed films were characterized. It was observed that chitosan water-acetic acid systems show the highest antimicrobial activity due to the highest chitosan charge density, compared to the mixtures with lactic and citric acid. This system showed also the higher solution viscosity compared to the other systems. Chitosan-acetic acid films were also the ones presenting better mechanical properties; this can be attributed to the fact that lactic and citric acids remain in the films, changing their properties, which does not happen with acetic acid. Films produced from chitosan dissolved in water/acetic acid system are resistant, while very fragile but elastic films are formed when lactic acid is used. It was demonstrated that a good selection of the type of acid not only facilitates the dissolution of chitosan but also plays a key role in the properties of the formed solutions and films.
Collapse
Affiliation(s)
- Elodie Melro
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (E.M.); (F.E.A.)
| | - Filipe E. Antunes
- CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (E.M.); (F.E.A.)
| | - Gabriela J. da Silva
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Inês Cruz
- Primor Charcutaria—Prima S.A., Avenida Santiago de Gavião, 1142, 4760-003 Vila Nova de Famalicão, Portugal; (I.C.); (P.E.R.); (F.C.)
| | - Philippe E. Ramos
- Primor Charcutaria—Prima S.A., Avenida Santiago de Gavião, 1142, 4760-003 Vila Nova de Famalicão, Portugal; (I.C.); (P.E.R.); (F.C.)
| | - Fátima Carvalho
- Primor Charcutaria—Prima S.A., Avenida Santiago de Gavião, 1142, 4760-003 Vila Nova de Famalicão, Portugal; (I.C.); (P.E.R.); (F.C.)
| | - Luís Alves
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
28
|
Perinelli DR, Palmieri GF, Cespi M, Bonacucina G. Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules 2020; 25:E5878. [PMID: 33322621 PMCID: PMC7763935 DOI: 10.3390/molecules25245878] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (G.F.P.); (M.C.); (G.B.)
| | | | | | | |
Collapse
|
29
|
Sustainable Rabbit Skin Glue to Produce Bioactive Nanofibers for Nonactive Wound Dressings. MATERIALS 2020; 13:ma13235388. [PMID: 33260877 PMCID: PMC7730916 DOI: 10.3390/ma13235388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
This paper assessed the collagen glue (Col) from rabbit skin for use as a raw material in combination with different water-based dispersants of antimicrobial agents such as ZnO NPs, TiO2 NPs doped with nitrogen and Ag NPs (TiO2-N-Ag NPs), and chitosan (CS) for the production of biocompatible and antimicrobial nanofibers. The electrospun nanofibers were investigated by scanning electron microscopy (SEM), attenuated total reflectance in conjunction with Fourier-transform infrared spectroscopy (ATR-FT-IR) analyses and antioxidant activity. The biocompatibility of electrospun nanofibers was investigated on cell lines of mouse fibroblast NCTC (clone L929) using MTT test assays. Antimicrobial activity was performed against Escherichia coli and Staphylococcus aureus bacteria and Candida albicans pathogenic fungus. Electrospun antimicrobial nanofibers based on collagen glue achieved reduction in the number of viable microorganisms against both fungi and bacteria and exhibited multiple inhibitory actions of fungal and bacterial strains. The electrospun nanofibers showed average dimension sizes in the range of 30–160 nm. The results indicated that both Col/TiO2-N-Ag NPs and Col/CS formulations are suitable for cell proliferation and may be useful for producing of nonactive wound dressings.
Collapse
|
30
|
Francesconi S, Steiner B, Buerstmayr H, Lemmens M, Sulyok M, Balestra GM. Chitosan Hydrochloride Decreases Fusarium graminearum Growth and Virulence and Boosts Growth, Development and Systemic Acquired Resistance in Two Durum Wheat Genotypes. Molecules 2020; 25:E4752. [PMID: 33081211 PMCID: PMC7587526 DOI: 10.3390/molecules25204752] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/26/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease for cereals. FHB is managed by fungicides at anthesis, but their efficacy is variable. Conventional fungicides accumulate in the soil and are dangerous for animal and human health. This study assayed the antifungal ability of chitosan hydrochloride against Fusarium graminearum. Chitosan reduced F. graminearum growth and downregulated the transcript of the major genes involved in the cell growth, respiration, virulence, and trichothecenes biosynthesis. Chitosan promoted the germination rate, the root and coleoptile development, and the nitrogen balance index in two durum wheat genotypes, Marco Aurelio (FHB-susceptible) and DBC480 (FHB-resistant). Chitosan reduced FHB severity when applied on spikes or on the flag leaves. FHB severity in DBC480 was of 6% at 21 dpi after chitosan treatments compared to F. graminearum inoculated control (20%). The elicitor-like property of chitosan was confirmed by the up-regulation of TaPAL, TaPR1 and TaPR2 (around 3-fold). Chitosan decreased the fungal spread and mycotoxins accumulation. This study demonstrated that the non-toxic chitosan is a powerful molecule with the potential to replace the conventional fungicides. The combination of a moderately resistant genotype (DBC480) with a sustainable compound (chitosan) will open new frontiers for the reduction of conventional compounds in agriculture.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Barbara Steiner
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Hermann Buerstmayr
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Marc Lemmens
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Michael Sulyok
- Department of Agrobiotechnology Tulln (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz Straße 20, A-3430 Tulln an der Donau, Austria; (B.S.); (H.B.); (M.L.); (M.S.)
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
31
|
Han H, Liu C, Zhu J, Li FX, Wang XL, Yu JY, Qin XH, Wu DQ. Contact/Release Coordinated Antibacterial Cotton Fabrics Coated with N-Halamine and Cationic Antibacterial Agent for Durable Bacteria-Killing Application. Int J Mol Sci 2020; 21:ijms21186531. [PMID: 32906715 PMCID: PMC7555230 DOI: 10.3390/ijms21186531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
Coating a cationic antibacterial layer on the surface of cotton fabric is an effective strategy to provide it with excellent antibacterial properties and to protect humans from bacterial cross-infection. However, washing with anionic detergent will inactivate the cationic antibacterial coating. Although this problem can be solved by increasing the amount of cationic antibacterial coating, excessive cationic antibacterial coating reduces the drapability of cotton fabric and affects the comfort of wearing it. In this study, a coordinated antibacterial coating strategy based on quaternary ammonium salt and a halogenated amine compound was designed. The results show that the antibacterial effect of the modified cotton fabric was significantly improved. In addition, after mechanically washing the fabric 50 times in the presence of anionic detergent, the antibacterial effect against Staphylococcus aureus and Escherichia coli was still more than 95%. Furthermore, the softness of the obtained cotton fabric showed little change compared with the untreated cotton fabric. This easy-to-implement and cost-effective approach, combined with the cationic contact and the release effect of antibacterial agents, can endow cotton textiles with durable antibacterial properties and excellent wearability.
Collapse
Affiliation(s)
- Hua Han
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No.2999 North Renmin Road, Songjiang, Shanghai 201620, China; (H.H.); (C.L.); (F.-X.L.); (X.-L.W.); (J.-Y.Y.)
| | - Chang Liu
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No.2999 North Renmin Road, Songjiang, Shanghai 201620, China; (H.H.); (C.L.); (F.-X.L.); (X.-L.W.); (J.-Y.Y.)
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang, Shanghai 201620, China;
| | - Fa-Xue Li
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No.2999 North Renmin Road, Songjiang, Shanghai 201620, China; (H.H.); (C.L.); (F.-X.L.); (X.-L.W.); (J.-Y.Y.)
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xue-Li Wang
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No.2999 North Renmin Road, Songjiang, Shanghai 201620, China; (H.H.); (C.L.); (F.-X.L.); (X.-L.W.); (J.-Y.Y.)
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jian-Yong Yu
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No.2999 North Renmin Road, Songjiang, Shanghai 201620, China; (H.H.); (C.L.); (F.-X.L.); (X.-L.W.); (J.-Y.Y.)
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Xiao-Hong Qin
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No.2999 North Renmin Road, Songjiang, Shanghai 201620, China; (H.H.); (C.L.); (F.-X.L.); (X.-L.W.); (J.-Y.Y.)
- Correspondence: (X.-H.Q.); (D.-Q.W.)
| | - De-Qun Wu
- Key Laboratory of Textile Science & Technology, Ministry Education, College of Textiles, Donghua University, No.2999 North Renmin Road, Songjiang, Shanghai 201620, China; (H.H.); (C.L.); (F.-X.L.); (X.-L.W.); (J.-Y.Y.)
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
- Correspondence: (X.-H.Q.); (D.-Q.W.)
| |
Collapse
|
32
|
Sullivan DJ, Cruz-Romero MC, Hernandez AB, Cummins E, Kerry JP, Morris MA. A novel method to deliver natural antimicrobial coating materials to extend the shelf-life of European hake (Merluccius merluccius) fillets. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Wei L, Song J, Cheng B, Yang Z. Synthesis, characterization and antibacterial properties of novel cellulose acetate sorbate. Carbohydr Polym 2020; 243:116416. [DOI: 10.1016/j.carbpol.2020.116416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022]
|
34
|
Sürmelioğlu D, Özçetin HK, Özdemir ZM, Yavuz SA, Aydın U. Effectiveness and SEM-EDX analysis following bleaching with an experimental bleaching gel containing titanium dioxide and/or chitosan. Odontology 2020; 109:114-123. [PMID: 32440750 DOI: 10.1007/s10266-020-00526-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate the bleaching effectiveness and mineral alterations following the use of experimental bleaching gels that included 6% hydrogen peroxide (HP), titanium dioxide (TiO2) and/or chitosan in comparison with the routinely used 35% HP bleaching gel. Thirty-six maxillary anterior teeth were divided into three groups according to bleaching agent as follows: Group 1: 6% HP + TiO2, Group 2: 6% HP + TiO2 + chitosan, Group 3: 35% HP. Tooth colour was measured with a spectrophotometer before bleaching and after sessions one and two on days 14 and 30, respectively. Colour changes were assessed with the CIEDE2000 and CIELab formulas. Mineral analysis was performed with a scanning electron microscopy-energy dispersive X-ray (SEM-EDX) device before and 14 days after application. The enamel surfaces of randomly selected samples from each group were analysed by SEM. Two-way ANOVA was used to compare differences between groups. All tested materials resulted in significantly increased bleaching compared to the initial colour values (p < 0.05). Group 3 showed significantly more whitening compared to the other groups after the first and second sessions (p < 0.05). However, Group 2 presented prolonged whitening efficiency and reached a bleaching level similar to the 35% HP treatment after 14 and 30 days. The results of the CIEDE2000 and CIELab formulas were found to be correlated (r > 0.6). The increases in Ca were similar in Groups 2 and 3 (p > 0.05) and were significantly higher than that in Group 1 (p < 0.05). p was similarly decreased among all groups (p > 0.05). The combination of 6% HP, chitosan and TiO2 appears to constitute a promising material for tooth whitening, showing good bleaching efficiency and acceptable mineral alterations.
Collapse
Affiliation(s)
| | | | | | | | - Uğur Aydın
- Gaziantep Universitesi Dis Hekimligi Fakultesi, Gaziantep, Turkey
| |
Collapse
|
35
|
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10:19309-19336. [PMID: 35515480 PMCID: PMC9054203 DOI: 10.1039/d0ra01084g] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid advancement of nanotechnology has provided opportunities for the development of new sensing and food packaging solutions, addressing long-standing challenges in the food sector to extend shelf-life, reduce waste, assess safety and improve the quality of food. Nanomaterials can be used to reinforce mechanical strength, enhance gas barrier properties, increase water repellence, and provide antimicrobial and scavenging activity to food packaging. They can be incorporated in chemical and biological sensors enabling the design of rapid and sensitive devices to assess freshness, and detect allergens, toxins or pathogenic contaminants. This review summarizes recent studies on the use of nanomaterials in the development of: (1) (bio)sensing technologies for detection of nutritional and non-nutritional components, antioxidants, adulterants and toxicants, (2) methods to improve the barrier and mechanical properties of food packaging, and (3) active functional packaging. The environmental, health and safety implications of nanomaterials in the food sector, along with an overview of regulation and consumer perception is also provided.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| |
Collapse
|
36
|
Soubhagya AS, Moorthi A, Prabaharan M. Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. Int J Biol Macromol 2020; 157:135-145. [PMID: 32339591 DOI: 10.1016/j.ijbiomac.2020.04.156] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 01/29/2023]
Abstract
Three-dimensional (3D) porous films based on chitosan/pectin/ZnO nanoparticles (NPs) were prepared for wound healing by the freeze-drying method. The chemical nature, composition and morphology of these films were revealed by FTIR, XRD, EDX, SEM and BET analysis. SEM micrographs showed a decrease in the pore size and porosity of chitosan/pectin/ZnO films when increasing the content of ZnO NPs. The developed films presented the swelling degree and water retention ability in the range of 189-465 and 230-390%, respectively. Moreover, they showed an improved compression strength and controlled degradation in the lysozyme-containing medium in comparison with control. MTT assay demonstrated the biocompatibility of chitosan/pectin/ZnO films against the primary human dermal fibroblast cells (HFCs). Among the developed chitosan/pectin/ZnO films, CPZnO-2 films presented the increased rate of cell proliferation and migration. Also, they exhibited antimicrobial activity against the gram-positive and gram-negative bacteria and fungi. These results suggested that chitosan/pectin/ZnO films could be safe, convenient and effective for wound healing.
Collapse
Affiliation(s)
- A S Soubhagya
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India
| | - A Moorthi
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603 103, India
| | - M Prabaharan
- Department of Chemistry, Hindustan Institute of Technology and Science, Padur, Chennai 603 103, India.
| |
Collapse
|
37
|
Maluin FN, Hussein MZ, Azah Yusof N, Fakurazi S, Idris AS, Zainol Hilmi NH, Jeffery Daim LD. Chitosan-Based Agronanofungicides as a Sustainable Alternative in the Basal Stem Rot Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4305-4314. [PMID: 32227887 DOI: 10.1021/acs.jafc.9b08060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by Ganoderma boninense in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal Ganoderma boninense mycelium. The results revealed that chitosan nanoparticles could act as dual modes of action, which are themselves as a biocide or as a nanocarrier for the existing fungicides. In addition, the particle size of the chitosan-based agronanofungicides plays a crucial role in suppressing and controlling the disease. The synergistic effect of the double-fungicide system of 5 nm chitosan-hexaconazole-dazomet nanoparticles can be observed as the system showed the highest disease reduction with 74.5%, compared to the untreated infected seedlings.
Collapse
Affiliation(s)
- Farhatun Najat Maluin
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Seman Idris
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nur Hailini Zainol Hilmi
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Leona Daniela Jeffery Daim
- Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 1st Floor, Block B, Lebuh Silikon, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
38
|
The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Sci 2020; 162:107961. [DOI: 10.1016/j.meatsci.2019.107961] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
|
39
|
Maluin FN, Hussein MZ. Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules 2020; 25:E1611. [PMID: 32244664 PMCID: PMC7180820 DOI: 10.3390/molecules25071611] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 11/26/2022] Open
Abstract
The rise in the World's food demand in line with the increase of the global population has resulted in calls for more research on the production of sustainable food and sustainable agriculture. A natural biopolymer, chitosan, coupled with nanotechnology could offer a sustainable alternative to the use of conventional agrochemicals towards a safer agriculture industry. Here, we review the potential of chitosan-based agronanochemicals as a sustainable alternative in crop protection against pests, diseases as well as plant growth promoters. Such effort offers better alternatives: (1) the existing agricultural active ingredients can be encapsulated into chitosan nanocarriers for the formation of potent biocides against plant pathogens and pests; (2) the controlled release properties and high bioavailability of the nanoformulations help in minimizing the wastage and leaching of the agrochemicals' active ingredients; (3) the small size, in the nanometer regime, enhances the penetration on the plant cell wall and cuticle, which in turn increases the argochemical uptake; (4) the encapsulation of agrochemicals in chitosan nanocarriers shields the toxic effect of the free agrochemicals on the plant, cells and DNA, thus, minimizing the negative impacts of agrochemical active ingredients on human health and environmental wellness. In addition, this article also briefly reviews the mechanism of action of chitosan against pathogens and the elicitations of plant immunity and defense response activities of chitosan-treated plants.
Collapse
Affiliation(s)
| | - Mohd Zobir Hussein
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| |
Collapse
|
40
|
Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105411] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Pirsa S, Karimi Sani I, Pirouzifard MK, Erfani A. Smart film based on chitosan/Melissa officinalis essences/ pomegranate peel extract to detect cream cheeses spoilage. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:634-648. [DOI: 10.1080/19440049.2020.1716079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sajad Pirsa
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Iraj Karimi Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mir Khalil Pirouzifard
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Aref Erfani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
43
|
Dong C, Wang B, Li F, Zhong Q, Xia X, Kong B. Effects of edible chitosan coating on Harbin red sausage storage stability at room temperature. Meat Sci 2020; 159:107919. [DOI: 10.1016/j.meatsci.2019.107919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022]
|
44
|
Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106786] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
İncili GK, Karatepe P, İlhak Oİ. Effect of chitosan and Pediococcus acidilactici on E. coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in meatballs. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Kim HW, Seok YS, Rhee MS. Synergistic staphylocidal interaction of benzoic acid derivatives (benzoic acid, 4-hydroxybenzoic acid and β-resorcylic acid) and capric acid: mechanism and verification study using artificial skin. J Antimicrob Chemother 2019; 75:571-575. [DOI: 10.1093/jac/dkz494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Objectives
The present study was designed to investigate a synergistic staphylocidal interaction of antimicrobials.
Methods
The widely used preservative benzoic acid (BzA) and its derivatives [4-hydroxybenzoic acid (HA) and β-resorcylic acid (β-RA)] combined with capric acid (CPA) were investigated.
Results
β-RA was identified as the most effective antimicrobial exhibiting synergistic action with CPA against both Staphylococcus aureus and MRSA. For example, a complete reduction of bacteria (>7.3 log reduction) was obtained within 5 min after treatment with 5.0 mM β-RA (0.079%) plus 0.20 mM CPA (0.004%), while treatment with each material individually showed low bactericidal effects (<1.5 log reduction). Flow cytometry analysis identified membrane disruption related to the synergistic mechanisms, including the following: (i) membrane disruption by CPA (69.2% of cells were damaged by 0.20 mM CPA treatment); (ii) antimicrobial entry through the damaged membrane; and (iii) cytoplasmic ion imbalance resulting in cell death. We verified that the synergistic combination was also effective against MRSA on artificial skin (99.989% elimination after 5 min).
Conclusions
We used only consumer-preferred natural-borne antimicrobials and a very small amount of material was needed based on the synergistic effects. Therefore, these antimicrobials can be widely used as alternative anti-MRSA compounds in healthcare products, cosmetics, pharmaceutical products, foods and for environmental hygiene.
Collapse
Affiliation(s)
- H W Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Y S Seok
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - M S Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
47
|
Sun X, Jia P, Zhe T, Bu T, Liu Y, Wang Q, Wang L. Construction and multifunctionalization of chitosan-based three-phase nano-delivery system. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int J Biol Macromol 2019; 138:693-703. [DOI: 10.1016/j.ijbiomac.2019.07.089] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
|
49
|
Biological activities of chitosan and prepared chitosan-tripolyphosphate nanoparticles using ionic gelation method against various pathogenic bacteria and fungi strains. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00299-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Belbekhouche S, Bousserrhine N, Alphonse V, Le Floch F, Charif Mechiche Y, Menidjel I, Carbonnier B. Chitosan based self-assembled nanocapsules as antibacterial agent. Colloids Surf B Biointerfaces 2019; 181:158-165. [PMID: 31129522 DOI: 10.1016/j.colsurfb.2019.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Creating an appropriate antibacterial disinfection system without forming any harmful compounds is still a major challenge and calls for new technologies for efficient disinfection and microbial control. Towards this aim, we report on the elaboration of biodegradable and biocompatible polymeric nanocapsules, also called hollow nanoparticles, for potential applications in antibiotic therapy. These nanomaterials are based on the self-assembly of charged polysaccharides, namely chitosan and alginate, onto gold nanoparticles as a sacrificial matrix (60 nm). Electrostatic interactions between the protonated amine groups of chitosan (+35 mV) and the carboxylate groups of alginate (- 20 mV) are the driving attraction force enabling the elaboration of well-ordered multilayer films onto the spherical substrate. The removal of the colloidal gold, via cyanide-assisted hydrolysis, is evidenced by time-dependent variation of the gold spectroscopic signature (30 min is required). TEM shows the obtention of nanocapsules. An inhibitory effect of these particles has been demonstrated during the growth of two representative bacteria in a liquid medium: Staphylococcus aureus (Gram-positive) (from 4.6% to 16.3% for gold nanomaterials + and from 18.6% to 34.9% for (chi+/alg-)n-chi+ nanocapsules) and Escherichia coli (Gram-negative) (from 5.4% to 20% for gold nanomaterials and from 23.7% to 40% for (chi+/alg-)n-chi+ nanocapsules). Acridine orange staining demonstrated the bactericidal effect of chitosan-based capsules. These findings demonstrate that (chitosan/alginate)n capsules can be exploited as new antibacterial material. Thus, we present a complementary approach to classical nanoparticles prepared by complexation between alginate and chitosan or other materials.
Collapse
Affiliation(s)
- Sabrina Belbekhouche
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France.
| | - Noureddine Bousserrhine
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU), Université-Paris-Est Créteil, Créteil cedex, 94010, France
| | - Vanessa Alphonse
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU), Université-Paris-Est Créteil, Créteil cedex, 94010, France
| | - Fannie Le Floch
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| | - Youcef Charif Mechiche
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| | - Ilyes Menidjel
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| | - Benjamin Carbonnier
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil Val-de-Marne, 2 rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|