2
|
Zhan LZ, Song DF, Gu Q, Yan TT, Ma CC. Reverse transcription – loop-mediated isothermal amplification assay for the rapid detection of pathogenic Listeria monocytogenes in meat products. Can J Microbiol 2019; 65:913-921. [DOI: 10.1139/cjm-2019-0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study reports the use of reverse transcription – loop-mediated isothermal amplification (RT–LAMP) to detect Listeria monocytogenes in meat. The assay was designed to target the iap gene of L. monocytogenes, to which four primers, recognizing six distinct iap sites, were designed. We optimized the RT–LAMP conditions and established the following optimal systems: 60 min, 63 °C, 2.0 mmol/L MgSO4, 1.0 mol/L betaine, 2.0 mmol/L dNTPs, 320 U/mL Bst DNA polymerase, 0.4 μmol/L outer primers, and 0.8 μmol/L inner primers. The RT–LAMP amplification products were identified by a visible white Mg2P2O7 precipitate or electrophoresis on a 2% agarose gel. RT–LAMP has a sensitivity of 7.3 × 101 CFU/mL, which is 2-fold higher than that of LAMP. When commercially available raw meat samples (including beef, pork, mutton, and rabbit) were analyzed simultaneously with RT–LAMP and the Chinese National Standard GB 4789.30-2016, their abilities to detect L. monocytogenes were the same. Samples containing L. monocytogenes killed by 15 psi at 121 °C for 15 min were used to confirm the specificity of RT–LAMP for live microorganisms. Thus, we used RT–LAMP to efficiently detect L. monocytogenes in meat products.
Collapse
Affiliation(s)
- Ling-Zhi Zhan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
| | - Da-Feng Song
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
| | - Ting-Ting Yan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
| | - Cong-Cong Ma
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, No. 18, Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
3
|
Zhao VXT, Wong TI, Zheng XT, Tan YN, Zhou X. Colorimetric biosensors for point-of-care virus detections. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2019; 3:237-249. [PMID: 33604529 PMCID: PMC7148662 DOI: 10.1016/j.mset.2019.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
Colorimetric biosensors can be used to detect a particular analyte through color changes easily by naked eyes or simple portable optical detectors for quantitative measurement. Thus, it is highly attractive for point-of-care detections of harmful viruses to prevent potential pandemic outbreak, as antiviral medication must be administered in a timely fashion. This review paper summaries existing and emerging techniques that can be employed to detect viruses through colorimetric assay design with detailed discussion of their sensing principles, performances as well as pros and cons, with an aim to provide guideline on the selection of suitable colorimetric biosensors for detecting different species of viruses. Among the colorimetric methods for virus detections, loop-mediated isothermal amplification (LAMP) method is more favourable for its faster detection, high efficiency, cheaper cost, and more reliable with high reproducible assay results. Nanoparticle-based colorimetric biosensors, on the other hand, are most suitable to be fabricated into lateral flow or lab-on-a-chip devices, and can be coupled with LAMP or portable PCR systems for highly sensitive on-site detection of viruses, which is very critical for early diagnosis of virus infections and to prevent outbreak in a swift and controlled manner.
Collapse
Affiliation(s)
- Victoria Xin Ting Zhao
- College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Ten It Wong
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
4
|
Rajapaksha P, Elbourne A, Gangadoo S, Brown R, Cozzolino D, Chapman J. A review of methods for the detection of pathogenic microorganisms. Analyst 2019; 144:396-411. [PMID: 30468217 DOI: 10.1039/c8an01488d] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The testing and rapid detection of pathogenic organisms is a crucial protocol in the prevention and identification of crises related to health, safety and wellbeing. Pathogen detection has become one of the most challenging aspects in the food and water industries, because of the rapid spread of waterborne and foodborne diseases in the community and at significant costs. With the prospect of inevitable population growth, and an influx of tourism to certain water bodies testing will become a requirement to control and prevent possible outbreaks of potentially fatal illnesses. The legislation is already particularly rigorous in the food industry, where failure to detect pathogenic materials represents a catastrophic event, particularly for the elderly, very young or immune-compromised population types. In spite of the need and requirement for rapid analytical testing, conventional and standard bacterial detection assays may take up to seven days to yield a result. Given the advent of new technologies, biosensors, chemical knowledge and miniaturisation of instrumentation this timescale is not acceptable. This review presents an opportunity to fill a knowledge gap for an extremely important research area; discussing the main techniques, biology, chemistry, miniaturisation, sensing and the emerging state-of-the-art research and developments for detection of pathogens in food, water, blood and faecal samples.
Collapse
Affiliation(s)
- P Rajapaksha
- School of Science, RMIT University, La Trobe Street, Melbourne, 3000, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|