1
|
Kulshreshtha G, Ward C, Calvert ND, Benavides-Reyes C, Rodriguez-Navarro AB, Diep T, Hincke MT. Effect of Egg Washing and Hen Age on Cuticle Quality and Bacterial Adherence in Table Eggs. Microorganisms 2024; 12:2027. [PMID: 39458336 PMCID: PMC11509795 DOI: 10.3390/microorganisms12102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The cuticle covering the outer surface of an eggshell functions as both a physical and chemical barrier against invading microorganisms. Contamination of eggs by microbial pathogens progresses in four stages: bacterial attachment to the egg surface, penetration through the cuticle and eggshell, multiplication within the underlying membranes, and the final stage of contaminating the egg contents. Therefore, it is important to study bacterial count at the first point of contact, i.e., on the surface of the eggs. In this study, we have evaluated the impact of differences in cuticle quality (due to egg washing and hen age) on bacterial load. We compared bacterial adherence on the eggshell surface of white eggs which were either washed (graded) or unwashed (ungraded), collected from Lohmann laying hens of different ages: early (24-28 weeks), mid-lay (44-48 weeks), and late (66-70 weeks). We aimed to determine the impact of hen age and egg washing on differences in cuticle quality and bacterial adherence. Our results indicate that hen age (up to 70 weeks) and commercial egg washing do not significantly impact bacterial adherence on eggshell surfaces. We have developed a novel method using green fluorescent protein (GFP)-expressing Salmonella typhimurium to estimate adherence of bacteria to the eggshell surface, with independent measurement of autofluorescence to quantitate cuticle deposition. S. typhimurium were localized, adhering to cracks visible on the outer cuticle in ungraded eggs, indicating that egg-associated pathogens usually enter the egg interior either through respiratory pores in eggshells or through shell micro-cracks. The results of this study can be utilized to optimize innovative methods for predictive microbiology in order to achieve egg safety.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (G.K.); (C.W.); (N.D.C.)
| | - Cian Ward
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (G.K.); (C.W.); (N.D.C.)
| | - Nicholas D. Calvert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (G.K.); (C.W.); (N.D.C.)
| | - Cristina Benavides-Reyes
- Departamento de Mineralogia y Petrologia, Universidad de Granada, Campus de Fuentenueva, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Alejandro B. Rodriguez-Navarro
- Departamento de Mineralogia y Petrologia, Universidad de Granada, Campus de Fuentenueva, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Ty Diep
- Lyn Egg Production and Grading, Burnbrae Farms Limited, 75 Laurier Ave E, Ottawa, ON K1N 6N5 Canada;
| | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (G.K.); (C.W.); (N.D.C.)
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
2
|
Pham TT, Nguyen LLP, Baranyai L, Dam MS, Ha NTT, Varga-Tóth A, Dalmadi I, Németh C, Friedrich LF. Evaluation of Gel Coating Performance in Extending the Shelf Life of Egg: The Role of Surface Area and Initial Weight. Gels 2024; 10:487. [PMID: 39195016 DOI: 10.3390/gels10080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
This work investigated the impact of chicken egg size, including surface area and initial weight, on the effectiveness of cassava starch-based gel coating during storage at room temperature. The quality of a total of 540 fresh eggs in four different sizes (S, M, L and XL) was evaluated over a 4-week storage period at 25 ± 1 °C (60-65% RH). In this research, images from a scanning electron microscope revealed that the coatings maintained their integrity across all egg sizes, effectively covering pores and cracks throughout storage. The application of gel coating reduced weight loss and preserved the Haugh unit and yolk index, extending freshness by 1-2 weeks compared with uncoated eggs at 25 °C. The results indicated that the performance of the coating varied with egg size. Statistical analysis revealed that the surface area and initial weight of the egg significantly impacted the effectiveness of the coating in preserving quality (p < 0.001). Eggs with larger surface areas exhibited a reduced protective effect of the coating, resulting in higher weight loss and lower retention of Haugh unit and yolk index compared with the coated eggs with smaller surface areas. The coating application was more effective in preserving the Haugh unit of eggs with higher initial weights. Overall, the surface area and the initial weight of the egg should be considered as key factors to ensure optimal coating performance.
Collapse
Affiliation(s)
- Thanh Tung Pham
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh 700000, Vietnam
| | - Lien Le Phuong Nguyen
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - László Baranyai
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Mai Sao Dam
- Industrial University of Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Nga Thi Thanh Ha
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh 700000, Vietnam
| | - Adrienn Varga-Tóth
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - István Dalmadi
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - Csaba Németh
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| | - László Ferenc Friedrich
- Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary
| |
Collapse
|
3
|
Oliveira GDS, McManus C, Dos Santos VM. Control of Escherichia coli in Poultry Using the In Ovo Injection Technique. Antibiotics (Basel) 2024; 13:205. [PMID: 38534640 DOI: 10.3390/antibiotics13030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Pathogens, such as Escherichia coli (E. coli), have been identified as significant causes of poultry mortality. Poultry can serve as potential sources of E. coli transmission, even when asymptomatic, posing a substantial threat to food safety and human health. The in ovo administration of antimicrobials is crucial for preventing and/or effectively combating acute and chronic infections caused by poultry pathogens. To achieve this goal, it is critical that antimicrobials are properly injected into embryonic fluids, such as the amnion, to reach target tissues and trigger robust antimicrobial responses. Several protocols based on antimicrobials were evaluated to meet these requirements. This review analyzed the impacts of antimicrobial substances injected in ovo on the control of E. coli in poultry. The reduction in infection rates, resulting from the implementation of in ovo antimicrobials, combined with efforts aimed at hygienic-sanitary action plans in poultry sheds, reinforces confidence that E. coli can be contained before causing large scale damage. For example, antimicrobial peptides and probiotics have shown potential to provide protection to poultry against infections caused by E. coli. Issues related to the toxicity and bacterial resistance of many synthetic chemical compounds represent challenges that need to be overcome before the commercial application of in ovo injection protocols focused on microbiological control.
Collapse
Affiliation(s)
| | - Concepta McManus
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília 70910-900, Brazil
| | | |
Collapse
|
4
|
Abdoli B, Khoshtaghaza MH, Ghomi H, Torshizi MAK, Mehdizadeh SA, Pishkar G, Dunn IC. Cold atmospheric pressure air plasma jet disinfection of table eggs: Inactivation of Salmonella enterica, cuticle integrity and egg quality. Int J Food Microbiol 2024; 410:110474. [PMID: 37984215 DOI: 10.1016/j.ijfoodmicro.2023.110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Eggshell cuticles are first lines of defense against egg-associated pathogens, such as Salmonella enterica serovar Enteritidis (SE). Infections from eggs contaminated with this strain remain a significant risk. In addition, changes in the cuticle are closely related to changes in egg safety. The emerging non-thermal atmospheric pressure plasma technology enables a high rate of microbial inactivation at near-ambient temperatures, making it ideal for food safety applications. This study examines the effects of a cold atmospheric pressure air plasma jet (CAAP-J) on eggshell cuticle and egg quality whilst inactivating SE. Shell eggs inoculated with SE (7 log10 cfu/egg) were used as the samples to test the decontamination performance of the device. The tests were conducted using an industrial CAAP-J with different power levels (600-800 W), exposure times (60-120 s), at a fixeddistance of 20 mm from the plasma jet and an air flow rate of 3600 L/h. It was found that the best results were obtained after 120 s at maximum plasma power (800 W). Subsequent to the implementation of this plasma procedure, it was determined that no viable cells could be detected. After CAAP-J treatment, the temperature remains below 50.5 °C, thereby minimizing the risk of altering egg quality. All specific measurements (egg white pH, yolk pH, yolk color, HU, and eggshell breaking strength) have shown that CAAP-J treatment has no negative effect on egg quality. No changes in eggshell cuticle quality after CAAP-J treatment was confirmed through scanning electron microscope (SEM).
Collapse
Affiliation(s)
- Bahareh Abdoli
- Department of Biosystems Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Saman Abdanan Mehdizadeh
- Mechanics of Biosystems Engineering Department, Faculty of Agricultural Engineering and Rural Development, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | | | - Ian C Dunn
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom
| |
Collapse
|
5
|
Lin CM, Chen SY, Lin YT, Hsiao CP, Liu CT, Hazeena SH, Wu JS, Hou CY. Inactivating Salmonella Enteritidis on shell eggs by using ozone microbubble water. Int J Food Microbiol 2023; 398:110213. [PMID: 37120942 DOI: 10.1016/j.ijfoodmicro.2023.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023]
Abstract
The major pathogen associated with eggs is Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) and chlorine washing is the most widely used for sanitization. Microbubble, a novel technique and able to operate in large quantity, has been presented to be an alternative method. Thus, microbubble water combining with ozone (OMB) was applied to disinfect S. Enteritidis spiked on shells at 107 cells per egg. OMB was generated by injecting ozone into a Nikuni microbubble system, then delivered into 10 L of water. After 5, 10, or 20 min of activation time, the eggs were placed into OMB and washed for 30 or 60 s. The controls involved unwashed, water washing, ozone only, and microbubble only (MB). The highest reduction, 5.19 log CFU/egg, was achieved by the combination of 20-min activation and 60-s washing, which was used for following tests of large water quantities. Comparing with the unwashed control, 4.32, 3.73 and 3.07 log CFU/egg reductions were achieved in 25, 80, and 100 L of water, respectively. The other system, Calpeda, with higher motor power was tested in 100 L and obtained a reduction of 4.15 log CFU/egg. The average diameter of bubbles generated by Nikuni and Calpeda pump systems were 29.05 and 36.50 μm, respectively, which both were within the microbubble definition of ISO. Much lower reductions, around 1-2 log10 CFU/egg, were shown with the treatments of ozone only and MB by the same operative parameters. After 15-day storage at ambient temperature, the OMB-treated eggs showed similar sensory quality with the unwashed ones. This is the first study demonstrating that OMB effectively inactivates S. Enteritidis on shell eggs in large quantity of water and does not diminished the sensory characteristics of eggs. Furthermore, bacterial population was under the detection limit in the OMB-treated water.
Collapse
Affiliation(s)
- Chia-Min Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan
| | - Song-Yue Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan
| | - Yi-Ting Lin
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan
| | - Chun-Ping Hsiao
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Chih-Tung Liu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan
| | - Jong-Shinn Wu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
6
|
Souza OF, Adams CB, Agilar JC, Biselo V, Mello RO, Gomez LG, Bonaspetti S, Stefanello C. Assessments of productive performance, eggshell quality, excreta moisture, and incubation traits of laying breeder hens fed a proprietary blend of Quillaja and Yucca. Front Vet Sci 2023; 9:1069295. [PMID: 36744222 PMCID: PMC9890069 DOI: 10.3389/fvets.2022.1069295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
A study was conducted to evaluate performance, eggshell quality, nutrient metabolizability, and incubation traits of laying breeder hens fed diets supplemented with an additive containing polyphenols and saponins of a proprietary blend from Quillaja saponaria and Yucca schidigera (QY) biomass. Hens were fed 4 feeds in 5 periods of 28 days each from 30 to 49 weeks of age. Experimental feeds were a Control diet; Control + virginiamycin (33 g/ton); Control + QY (250 g/ton) and Control + virginiamycin + QY. A total of 40 White Plymouth Rock and 44 Rhode Island Red breeder hens were allocated in individual cages using a completely randomized block design with 21 replicates. Performance parameters, evaluated per period, were egg production, egg weight, FCR, egg mass, and culled eggs. All eggs were collected in the last 4 days of each period to evaluate specific egg weight, percentage of albumen, yolk and shell, and Haugh unit as well as cuticle quality, shell strength, and shell thickness. At the end of the experiment, nutrient metabolizability assessment and four incubations were conducted. There were no interactions between diet and period in all evaluated responses (P > 0.05). Experimental diets did not affect daily egg production, egg weight, and egg mass as well as Haugh unit, yolk and albumen percentage, and yolk color (P > 0.05). However, hens fed Control + QY produced eggs with better shell strength, shell thickness, and cuticle quality than hens fed the Control (P < 0.05). Hens fed Control + QY or Control + virginiamycin + QY had lower culled eggs, better FCR and higher egg specific weight, shell percentage, and yolk strength compared to breeder hens fed the Control (P < 0.05). In general, hens fed QY achieved enhanced performance and egg quality compared to virginiamycin. In conclusion, laying breeder hens fed diets supplemented with Quillaja and Yucca additive, from 30 to 49 weeks of age, maintained their productive performance, had improved eggshell and cuticle quality and reduced culled, dirty and contaminated eggs.
Collapse
Affiliation(s)
- Otoniel F. Souza
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Carine B. Adams
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jessica C. Agilar
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Valeria Biselo
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Renius O. Mello
- Department of Food Technology and Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luis G. Gomez
- Phibro Animal Health Corporation, Teaneck, NJ, United States
| | | | - Catarina Stefanello
- Department of Animal Science, Federal University of Santa Maria, Santa Maria, Brazil,*Correspondence: Catarina Stefanello ✉
| |
Collapse
|
7
|
Casalino G, Bozzo G, Dinardo FR, D’Amico F, Dimuccio MM, Camarda A, Ceci E, Romito D, Circella E. Prevalence and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli from Laying Hens Housed in Different Rearing Systems. Animals (Basel) 2022; 12:ani12212978. [PMID: 36359101 PMCID: PMC9653605 DOI: 10.3390/ani12212978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter (C.) jejuni and C. coli are responsible for food poisoning in humans. Laying hens may host the bacteria usually without developing symptoms. The aims of this paper were to evaluate the incidence of C. jejuni and C. coli infection in laying hen flocks housed in different rearing systems, the plasma levels of two welfare indicators (corticosterone and interleukin 6, IL-6) and the antimicrobial resistance of the detected Campylobacter strains. Two different flocks (1 and 2) from cage (A), barn (B) and aviary (C) farms were investigated. The highest (p < 0.05) levels of IL-6 were detected in laying hens housed in aviaries. A similar trend emerged in corticosterone level, although differences were found between C1 and C2. C. jejuni and C. coli were identified in 43.5% and 38.9% of birds, respectively. In total, 14 out of 177 (7.9%) hens simultaneously hosted C. jejuni and C. coli.C. jejuni was prevalently detected in hens housed in barns (B1: 53.3%; B2: 46.7%) and aviaries (C1: 34.6%; C2: 86.7%). Conversely, laying hens housed in cages were significantly exposed to infection of C. coli (A1: 41.9%; A2: 80%) while, regarding barns and aviaries, a significant prevalence emerged only in flocks B2 (40%) and C1 (54.8%). Simultaneous infection was statistically significant in barn B1 (36.7%). Antibiotic resistance was mainly detected among C. coli strains, and it was most frequent for fluoroquinolones and tetracycline. Multidrug resistance was also found in C. jejuni (19.7%) and C. coli (17.5%) strains. Based on the results of this study, we recommend increasing biosecurity and hygienic measures to manage hen flocks.
Collapse
|
8
|
Jabalera Y, Dominguez-Gasca N, Muñoz A, Hincke M, Jimenez-Lopez C, Rodriguez-Navarro AB. Antimicrobial defenses of table eggs: Importance of antibacterial proteins in egg white as a function of hen age in an extended production cycle. Food Microbiol 2022; 107:104068. [DOI: 10.1016/j.fm.2022.104068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
9
|
Wang B, Wei W, Aputexiakere J, Li Y, Ma H. Surface decontamination of whole eggs using pulsed light technology and shelf life study of combined pulsed light and vaseline coating during room temperature storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Obianwuna UE, Oleforuh-Okoleh VU, Wang J, Zhang HJ, Qi GH, Qiu K, Wu SG. Potential Implications of Natural Antioxidants of Plant Origin on Oxidative Stability of Chicken Albumen during Storage: A Review. Antioxidants (Basel) 2022; 11:antiox11040630. [PMID: 35453315 PMCID: PMC9027279 DOI: 10.3390/antiox11040630] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Enhanced albumen quality is reflected in increased thick albumen height, albumen weight, and Haugh unit value, while the antimicrobial, antioxidant, foaming, gelling, viscosity, and elasticity attributes are retained. Improved albumen quality is of benefit to consumers and to the food and health industries. Egg quality often declines during storage because eggs are highly perishable products and are most often not consumed immediately after oviposition. This review provides insights into albumen quality in terms of changes in albumen structure during storage, the influence of storage time and temperature, and the mitigation effects of natural dietary antioxidants of plant origin. During storage, albumen undergoes various physiochemical changes: loss of moisture and gaseous products through the shell pores and breakdown of carbonic acid, which induces albumen pH increases. High albumen pH acts as a catalyst for structural changes in albumen, including degradation of the β-ovomucin subunit and O-glycosidic bonds, collapse of the ovomucin-lysozyme complex, and decline in albumen protein–protein interactions. These culminate in declined albumen quality, characterized by the loss of albumen proteins, such as ovomucin, destabilized foaming and gelling capacity, decreased antimicrobial activity, albumen liquefaction, and reduced viscosity and elasticity. These changes and rates of albumen decline are more conspicuous at ambient temperature compared to low temperatures. Thus, albumen of poor quality due to the loss of functional and biological properties cannot be harnessed as a functional food, as an ingredient in food processing industries, and for its active compounds for drug creation in the health industry. The use of refrigerators, coatings, and thermal and non-thermal treatments to preserve albumen quality during storage are limited by huge financial costs, the skilled operations required, environmental pollution, and residue and toxicity effects. Nutritional interventions, including supplementation with natural antioxidants of plant origin in the diets of laying hens, have a promising potential as natural shelf-life extenders. Since they are safe, without residue effects, the bioactive compounds could be transferred to the egg. Natural antioxidants of plant origin have been found to increase albumen radical scavenging activity, increase the total antioxidant capacity of albumen, reduce the protein carbonyl and malondialdehyde (MDA) content of albumen, and prevent oxidative damage to the magnum, thereby eliminating the transfer of toxins to the egg. These products are targeted towards attenuating oxidative species and inhibiting or slowing down the rates of lipid and protein peroxidation, thereby enhancing egg quality and extending the shelf life of albumen.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Vivian U. Oleforuh-Okoleh
- Department of Animal Science, Faculty of Agriculture, Rivers State University, Nkpolu-Oroworukwo, Port-Harcourt PMB-5080, Nigeria;
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Hai-Jun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Guang-Hai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (J.W.); (H.-J.Z.); (G.-H.Q.)
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (J.W.); (H.-J.Z.); (G.-H.Q.)
- Correspondence: (K.Q.); (S.-G.W.)
| | - Shu-Geng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (U.E.O.); (J.W.); (H.-J.Z.); (G.-H.Q.)
- Correspondence: (K.Q.); (S.-G.W.)
| |
Collapse
|
11
|
Sirri F, Zampiga M, Berardinelli A. Effects of genotype and age on eggshell cuticle coverage and color profile in modern laying hen strains. Poult Sci 2022; 101:101691. [PMID: 35114433 PMCID: PMC8814822 DOI: 10.1016/j.psj.2021.101691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this research was to investigate the effects of laying hen genotype and age on eggshell cuticle deposition. A total of 4,320 brown eggs were obtained from 3 modern hen strains (A, B, and C), currently used worldwide for commercial egg production, at different intervals of age (20-30, 40-50, and 60-70 wk). Four samplings of 120 randomly collected eggs were carried out for each genotype/interval of age. Eggs were individually weighed and cuticle blue staining was used to assess quality and degree of cuticle coverage. On each egg, the eggshell color profile was assessed before and after staining using the CIE L*a*b* system and these values were used to calculate ΔE*ab. A 4-point scale visual score (VS) system was also applied to estimate the degree of cuticle coverage after staining (0 = no coverage, 1 = partial coverage, 2 = total coverage - low degree, 3 = total coverage - high degree). The effects of genotype and age and their interaction on eggshell color attributes were assessed by means of factorial ANOVA, while omnibus Chi-Square and Chi-squared Automatic Interaction Detector algorithm were applied for the analysis of VS data. Overall, both genotype and age affected the eggshell color profile as well as the degree of cuticle coverage. Hen strain A showed better cuticle deposition in comparison with B and particularly C one, being ΔE*ab values significantly higher. The VS evaluation revealed that eggs with impaired cuticle coverage degree increased with the hen age (23, 34, and 37%, respectively for 20-30, 40-50, and 60-70 wk; P < 0.05). However, a significant interaction between genotype and age was observed: transition from early to late hen age resulted in a significantly different pattern of ΔE*ab changes in each genotype. The classification tree analysis confirmed that the hen genotype has a greater effect than the age on cuticle deposition. In conclusion, considering the importance of the cuticle in table egg production, these results highlight the crucial role exerted by the genotype on eggshell cuticle coverage.
Collapse
Affiliation(s)
- F Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, 40064 Ozzano dell'Emilia, Italy.
| | - M Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - A Berardinelli
- Department of Industrial Engineering, University of Trento, 38123 Povo, TN, Italy; Centre Agriculture Food Environment, University of Trento, 38010 S. Michele all'Adige, TN, Italy
| |
Collapse
|
12
|
Kulshreshtha G, D’Alba L, Dunn IC, Rehault-Godbert S, Rodriguez-Navarro AB, Hincke MT. Properties, Genetics and Innate Immune Function of the Cuticle in Egg-Laying Species. Front Immunol 2022; 13:838525. [PMID: 35281050 PMCID: PMC8914949 DOI: 10.3389/fimmu.2022.838525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Cleidoic eggs possess very efficient and orchestrated systems to protect the embryo from external microbes until hatch. The cuticle is a proteinaceous layer on the shell surface in many bird and some reptile species. An intact cuticle forms a pore plug to occlude respiratory pores and is an effective physical and chemical barrier against microbial penetration. The interior of the egg is assumed to be normally sterile, while the outer eggshell cuticle hosts microbes. The diversity of the eggshell microbiome is derived from both maternal microbiota and those of the nesting environment. The surface characteristics of the egg, outer moisture layer and the presence of antimicrobial molecules composing the cuticle dictate constituents of the microbial communities on the eggshell surface. The avian cuticle affects eggshell wettability, water vapor conductance and regulates ultraviolet reflectance in various ground-nesting species; moreover, its composition, thickness and degree of coverage are dependent on species, hen age, and physiological stressors. Studies in domestic avian species have demonstrated that changes in the cuticle affect the food safety of eggs with respect to the risk of contamination by bacterial pathogens such as Salmonella and Escherichia coli. Moreover, preventing contamination of internal egg components is crucial to optimize hatching success in bird species. In chickens there is moderate heritability (38%) of cuticle deposition with a potential for genetic improvement. However, much less is known about other bird or reptile cuticles. This review synthesizes current knowledge of eggshell cuticle and provides insight into its evolution in the clade reptilia. The origin, composition and regulation of the eggshell microbiome and the potential function of the cuticle as the first barrier of egg defense are discussed in detail. We evaluate how changes in the cuticle affect the food safety of table eggs and vertical transmission of pathogens in the production chain with respect to the risk of contamination. Thus, this review provides insight into the physiological and microbiological characteristics of eggshell cuticle in relation to its protective function (innate immunity) in egg-laying birds and reptiles.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Liliana D’Alba
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Ian C. Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Kulshreshtha G, Benavides-Reyes C, Rodriguez-Navarro AB, Diep T, Hincke MT. Impact of Different Layer Housing Systems on Eggshell Cuticle Quality and Salmonella Adherence in Table Eggs. Foods 2021; 10:foods10112559. [PMID: 34828840 PMCID: PMC8625084 DOI: 10.3390/foods10112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
The bacterial load on the eggshell surface is a key factor in predicting the bacterial penetration and contamination of the egg interior. The eggshell cuticle is the first line of defense against vertical penetration by microbial food-borne pathogens such as Salmonella Enteritidis. Egg producers are increasingly introducing alternative caging systems into their production chain as animal welfare concerns become of greater relevance to today’s consumer. Stress that is introduced by hen aggression and modified nesting behavior in furnished cages can alter the physiology of egg formation and affect the cuticle deposition/quality. The goal of this study was to determine the impact of caging systems (conventional, enriched, free-run, and free-range), on eggshell cuticle parameters and the eggshell bacterial load. The cuticle plug thickness and pore length were higher in the free-range eggs as compared to conventional eggs. The eggshells from alternative caging (enriched and free-range) had a higher total cuticle as compared to conventional cages. A reduction in bacterial cell counts was observed on eggshells that were obtained from free-range eggs as compared to the enriched systems. An inverse correlation between the contact angle and Salmonella adherence was observed. These results indicate that the housing systems of layer hens can modify the cuticle quality and thereby impact bacterial adherence and food safety.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cristina Benavides-Reyes
- Departamento de Mineralogia y Petrologia, Campus de Fuentenueva, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Alejandro B. Rodriguez-Navarro
- Departamento de Mineralogia y Petrologia, Campus de Fuentenueva, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Ty Diep
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, ON K0E 1M0, Canada;
| | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8193)
| |
Collapse
|
14
|
The application of a novel non-thermal plasma device with double rotary plasma jets for inactivation of Salmonella Enteritidis on shell eggs and its effects on sensory properties. Int J Food Microbiol 2021; 355:109332. [PMID: 34358812 DOI: 10.1016/j.ijfoodmicro.2021.109332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/03/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023]
Abstract
Consumer awareness and distaste towards both bacterial and chemical contaminations on food items have been increasing in recent years. Non-thermal plasma (NTP) is a cutting-edge technology which has been shown to effectively inactivate bacteria on the treated foods. Although the general NTP with a single plasma jet is appropriate for the continuous operation process, it suffers limitations due to its smaller scanning area. Here, a novel NTP device with a double rotary nozzle jet system was utilized, which could treat an area instead of a point. The shell eggs inoculated with Salmonella enterica serotype Enteritidis (SE) were placed on a moving platform under the double rotary nozzle jet system. The efficacy of the NTP treatment on microbial decontamination was evaluated by testing a total of 26 combinations of operating parameters consisting of various plasma power (150, 180, 210 W), argon flow rate (10, 15, 20 slm), repetition of the moving platform (4, 6, 8 times), and speed of the moving platform (5, 10 mm/s). Although significantly higher SE reduction (p < 0.05) was achieved with higher power, more repetitions, larger argon flow rates, and lower speed of the platform, these parameters induced significant alterations in the sensory properties of the treated eggs. By comprehensively considering the bacterial reductions, egg quality, and sensory properties, NTP treatment with combination T (180 W-15 slm-6 times-10 mm/s) was determined to be the optimal parameter, which achieved >4 log CFU/egg of SE reduction and significantly better sensory properties than commercially washed eggs (p < 0.05). Additionally, SEM analysis revealed that NTP treatment with combination T resulted in less damage to egg cuticles compared to commercially washed eggs. This novel NTP device offers an efficient antibacterial activity under shorter exposure time (30 s), smaller argon flow rate (15 slm), and lower power (180 W) without adversely affecting the overall quality of the treated eggs. Therefore, this NTP device equipped with the double rotary jet system possesses a potential solution for future industrial applications.
Collapse
|
15
|
Lin CM, Herianto S, Syu SM, Song CH, Chen HL, Hou CY. Applying a large-scale device using non-thermal plasma for microbial decontamination on shell eggs and its effects on the sensory characteristics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Park JH, Kang MS, Park KM, Lee HY, Ok GS, Koo MS, Hong SI, Kim HJ. A dynamic predictive model for the growth of Salmonella spp. and Staphylococcus aureus in fresh egg yolk and scenario-based risk estimation. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
OLIVEIRA CH, BOIAGO MM, GUARAGNI A. Effects of heat treatments and edible shell coatings on egg quality after storage at room temperature. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.13019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Mao C, Xue C, Wang X, He S, Wu L, Yan X. Rapid quantification of pathogenic Salmonella Typhimurium and total bacteria in eggs by nano-flow cytometry. Talanta 2020; 217:121020. [PMID: 32498838 DOI: 10.1016/j.talanta.2020.121020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Rapid quantification of pathogenic Salmonella Typhimurium (S. Typhimurium) and total bacteria in eggs is highly desired for food safety control. However, the complexity of egg matrix presents a significant challenge for sensitive detection of bacteria. In this study, a sample pretreatment protocol, including dilution, fat dissolution, protein degradation, filtration, and washing was developed to circumvent this challenge. A laboratory-built nano-flow cytometer (nFCM) that is hundreds of fold more sensitive than the conventional flow cytometer was employed to analyze individual bacteria upon nucleic acid and immunofluorescent staining. Eggs spiked with pathogenic S. Typhimurium and harmless Escherichia coli K12 (E. coli K12) were used as the model system to optimize the sample pretreatment protocol. S. Typhimurium and total bacteria in eggs can be quantified without cultural enrichment, and the whole process of sample pretreatment, staining, and instrument analysis can be accomplished within 1.5 h. The bacterial recovery rate upon sample pretreatment, detection limit, and dynamic range for S. Typhimurium in eggs were 92%, 2 × 103 cells/mL, and from 2 × 103 to 4 × 108 cells/mL, respectively. The as-developed approach can specifically distinguish S. Typhimurium from other bacteria and successful application to bacterial detection in eggs freshly purchased from supermarket and spoiled eggs upon inappropriate storage was demonstrated.
Collapse
Affiliation(s)
- Cuiping Mao
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Xuzheng Wang
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Shengbin He
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Lina Wu
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.
| |
Collapse
|
19
|
|
20
|
Chen X, Li X, Guo Y, Li W, Song J, Xu G, Yang N, Zheng J. Impact of cuticle quality and eggshell thickness on egg antibacterial efficiency. Poult Sci 2019; 98:940-948. [DOI: 10.3382/ps/pey369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
|
21
|
Effects of Chitosan Coating Structure and Changes during Storage on Their Egg Preservation Performance. COATINGS 2018. [DOI: 10.3390/coatings8090317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To explore the influences of chitosan coating structure and structure changes during storage on egg preservation, eggs coated by chitosan solution for single time (CS1), two times (CS2), and three times (CS3) were prepared separately and stored with untreated eggs (CK1), eggs washed by water (CK2) and eggs treated by acetic acid solution (CK3) at 25 °C, 80% RH. The weight loss, Haugh unit, yolk index, albumen pH, eggshell morphologies and infrared (FTIR—Fourier Transform Infrared) spectra of all the samples were monitored. CS2 and CS3 presented the lowest weight loss, highest Haugh unit and yolk index, stabilized pH, and the highest thickness of chitosan coating layers (>2 μm) among all the groups, which extended egg shelf life for 20 days longer compared to CK1 and CK2. CS1 with very thin chitosan coating showed similar egg qualities with CK3, which are second only to CS2 and CS3. Furthermore, destructions were found on chitosan coatings during storage as revealed by the eggshell morphologies and FTIR spectra, which caused the quality deterioration of eggs. The results demonstrated that eggs with the thickest coating showed the best qualities during storage, while destructions on coating layers led to the quality drop of eggs.
Collapse
|
22
|
Kulshreshtha G, Rodriguez-Navarro A, Sanchez-Rodriguez E, Diep T, Hincke MT. Cuticle and pore plug properties in the table egg. Poult Sci 2018; 97:1382-1390. [PMID: 29340658 DOI: 10.3382/ps/pex409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/23/2017] [Indexed: 11/20/2022] Open
Abstract
Food safety of table eggs is vital since many pathogens can contaminate the unfertilized egg, leading to increased risk of foodborne illness for consumers. The eggshell cuticle is the first line of defense to restrict the entry of egg-associated pathogens, such as Salmonella Enteritidis. The thickness and completeness of coverage of the cuticle layer are heritable traits that are strongly associated with egg resistance to bacterial penetration. The present study characterizes the chemical composition of the eggshell cuticle and structure of pore plugs from table eggs. Eggs collected from both brown and white egg laying Lohmann flocks (early, mid, and late lay) were either unwashed or washed. Pore plugs were characterized using scanning electron microscopy (SEM), and elemental composition was determined using energy-dispersive x-ray spectroscopy (EDS). SEM observations confirmed that the plug formed by the cuticle layer within the eggshell pore remains firmly lodged throughout the commercial washing process. The eggshell thickness and cuticle pore length visualized in brown eggs was significantly higher than in white eggs in hens of all ages. EDS analysis revealed that the pore inner surface was enriched in phosphorus and chemically different from the surrounding bulk eggshell mineral. Detailed assessment of the cuticle chemical composition was performed by Fourier transform infrared spectroscopy (FTIR). Washing of eggs removed cuticle from the eggshell surface. There was a trend of lower cuticle coverage with increasing hen age for white eggs. A significant reduction in the amount of proteins and phosphates and polysaccharides was observed in the cuticle of brown unwashed eggs with hen age. In white unwashed eggs, amides and lipids decreased with hen age; by contrast, the amount of sulfate was highest at mid-lay. The results from our research will assist selective breeding programs that target cuticle integrity and pore plug stability to enhance egg resistance to pathogen penetration and improve food safety.
Collapse
Affiliation(s)
- G Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada K1H 8M5
| | - A Rodriguez-Navarro
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario, Canada, K0E 1M0
| | - E Sanchez-Rodriguez
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario, Canada, K0E 1M0
| | - T Diep
- Department of Mineralogy and Petrology, University of Granada, Granada, Spain
| | - M T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
23
|
Surface decontamination of eggshells by using non-thermal atmospheric plasma. Int J Food Microbiol 2017; 266:267-273. [PMID: 29274482 DOI: 10.1016/j.ijfoodmicro.2017.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 11/22/2022]
Abstract
In this study, the possibility of using an effective short time non-thermal plasma (NTP) treatment to inactivate Salmonella enterica serovar Enteritidis on eggshell surface was investigated. The eggshells were artificially contaminated with S. Enteritidis at an initial concentration of 107cfu/egg and then treated with an atmospheric pressure plasma jet by using air as process gas under different experimental settings with various frequencies (20-25kHz) and reference voltages (100-80%), exposure times (60-120s), distances from plasma jet (15 or 40mm) and gas flow rates (2000-3000L/h). The best result was obtained at maximum plasma power of 655W (25kHz-100% V), where S. Enteritidis concentration on egg surface was reduced below the detection limit (102cfu/egg) after 120s of treatment. The temperature remained below 35°C after all plasma treatments in order to minimize the risk of egg quality alterations. Specific measurements demonstrated that there were no negative effects on egg quality after NTP treatment. The effect of plasma process on the egg cuticle was demonstrated by using scanning electron microscopy.
Collapse
|
24
|
Microbial diversity on commercial eggs as affected by the production system. A first approach using PGM. Int J Food Microbiol 2017; 262:3-7. [PMID: 28950163 DOI: 10.1016/j.ijfoodmicro.2017.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023]
Abstract
A novel DNA-based technique (PGM) has been employed for first time to analyse commercial eggs with the advantage of allowing an exhaustive identification of the microbiota present. Eggs from two different production systems, i.e. a free range system and a cage system, were analysed. Twenty-one and twenty-two phyla were identified on the surface of cage system and free range system eggs, respectively. In both cases, Firmicutes was the dominant phylum (representing around 50% of total phyla), being found families frequently reported to be present in the intestinal microbiota of chickens or hens, such as Clostridiaceae, Ruminococcaceae and Lachnospiraceae. Additionally, other phyla and families not previously described in association with eggshells could also be identified in this work. Most of the potential pathogenic genera associated with eggs (Salmonella, Clostridium, Helicobacter, Pseudomonas and Staphylococcus) showed higher incidence in eggs coming from cage systems than in eggs coming from free range systems, although the abundance of these genera were very low in both cases (<5% of total bacteria).
Collapse
|
25
|
D'Alba L, Torres R, Waterhouse GIN, Eliason C, Hauber ME, Shawkey MD. What Does the Eggshell Cuticle Do? A Functional Comparison of Avian Eggshell Cuticles. Physiol Biochem Zool 2017; 90:588-599. [PMID: 28745930 DOI: 10.1086/693434] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The avian eggshell is a highly ordered structure with several layers (mammillae, palisades, and vertical crystal layer) composed of calcium carbonate (∼96%) and minerals within an organic matrix. The cuticle is a noncalcified layer that covers the eggshells of most bird species. Eggshells are multifunctional structures that have evolved in response to diverse embryonic requirements and challenges, including protection from microbial infection, nest flooding, and exposure to solar radiation. However, experimental evidence for these functions across diverse taxa is currently limited. Here we investigated the effects of nanosphere cuticles on (1) bacterial attachment and transshell penetration, (2) eggshell wettability, (3) water vapor conductance, and (4) regulation of ultraviolet (UV) reflectance in seven ground-nesting bird species. We found considerable interspecific variation in ultrastructure and chemical composition of cuticles. Experimental removal of the cuticle confirmed that all nanospheres were highly effective at decreasing attachment of bacteria to shell surfaces and at preventing bacterial penetration. Cuticles also greatly decreased the amount of UV reflected by eggshells. In species with particularly small nanospheres, gas exchange was reduced by the presence of cuticle. Our results support the hypothesis that microbes and solar UV radiation can cause strong selection on bird eggs but also show that we need a greater understanding about the effects of specific nesting conditions (e.g., hydric and gaseous milieu) on embryo well-being and eggshell structure variation.
Collapse
|
26
|
Dominguez-Gasca N, Muñoz A, Rodriguez-Navarro AB. Quality assessment of chicken eggshell cuticle by infrared spectroscopy and staining techniques: a comparative study. Br Poult Sci 2017; 58:517-522. [DOI: 10.1080/00071668.2017.1342219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- N. Dominguez-Gasca
- Departmento de Mineralogia y Petrologia, Universidad de Granada, Granada, Spain
| | - A. Muñoz
- Departmento de Mineralogia y Petrologia, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
27
|
Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Yang Y, Hoe YW, Zheng Q, Chung HJ, Yuk HG. Biofilm formation by Salmonella Enteritidis in a simulated liquid egg processing environment and its sensitivity to chlorine and hot water treatment. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Cui H, Ma C, Li C, Lin L. Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.05.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|