1
|
Lan W, Zhang B, Liu L, Pu T, Zhou Y, Xie J. Slightly acidic electrolyzed water-slurry ice: shelf-life extension and quality maintenance of mackerel (Pneumatophorus japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3787-3798. [PMID: 36224103 DOI: 10.1002/jsfa.12269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Different ice treatments were applied for the preservation of mackerel (Pneumatophorus japonicus). The quality changes of samples treated with flake ice (Control), slurry ice (SI) and slightly acidic electrolyzed water-slurry ice (SAEW-SI) in microbiological, physicochemical, protein characteristic, and sensory evaluation were investigated during chilled storage. RESULTS SAEW-SI showed a significant advantage for the inhibition of microbial growth, which could extend the shelf-life for another 144 h at least, compared with Control group. SAEW-SI treatment also showed a strong inhibition for the increase in pH, total volatile basic nitrogen (TVB-N), K-value, histamine and metmyoglobin (MetMb) content. Results of texture profile analysis (TPA) and water holding capacity (WHC) indicated that SAEW-SI can obviously suppress the decrease of hardness value, and have a better protective effect on muscle structure compared to flake ice and SI (P < 0.05). During the whole experiment, the highest sensory scores and a* were obtained in the SAEW-SI group, which indicated that SAEW-SI treatment could maintain better sensory characteristics. According to the results of thiobarbituric acid reactive substances (TBARS) and fluorescence spectroscopy analysis, SAEW-SI treatment could effectively retard protein degradation and lipid oxidation compared with Control and SI group. In maintaining the quality of mackerel, SAEW-SI shows a better effect than SI due to the synergistic effect of fence factors. CONCLUSION The results demonstrated that the shelf-life of mackerel could be extended and the quality of mackerel could be maintained effectively with SAEW-SI treatment during chilled storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianting Pu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuxiao Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, China
| |
Collapse
|
2
|
Li H, Bai X, Li Y, Du X, Wang B, Li F, Shi S, Pan N, Zhang Q, Xia X, Kong B. The positive contribution of ultrasound technology in muscle food key processing and its mechanism-a review. Crit Rev Food Sci Nutr 2022; 64:5220-5241. [PMID: 36469643 DOI: 10.1080/10408398.2022.2153239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional processing methods can no longer meet the demands of consumers for high-quality muscle food. As a green and non-thermal processing technology, ultrasound has the advantage of improving processing efficiency and reducing processing costs. Of these, the positive effect of power ultrasound in the processing of muscle foods is noticeable. Based on the action mechanism of ultrasound, the factors affecting the action of ultrasound are analyzed. On this basis, the effect of ultrasound technology on muscle food quality and its action mechanism and application status in processing operations (freezing-thawing, tenderization, marination, sterilization, drying, and extraction) is discussed. The transient and steady-state effects, mechanical effects, thermal effects, and chemical effects can have an impact on processing operations through complex correlations, such as improving the efficiency of mass and heat transfer. Ultrasound technology has been proven to be valuable in muscle food processing, but inappropriate ultrasound treatment can also have adverse effects on muscle foods. In the future, kinetic models are expected to be an effective tool for investigating the application effects of ultrasound in food processing. Additionally, the combination with other processing technologies can facilitate their intensive application on an industrial level to overcome the disadvantages of using ultrasound technology alone.
Collapse
Affiliation(s)
- Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Lan W, Zhang B, Zhou D, Xie J. Ultrasound assisted slightly acidic electrolyzed water treatment on the protein structure stability of vacuum‐packaged sea bass (
Lateolabrax japonicas
) during refrigerated storage. J Food Saf 2022. [DOI: 10.1111/jfs.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Dapeng Zhou
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai China
| |
Collapse
|
4
|
Rodríguez-López P, Rodríguez-Herrera JJ, López Cabo M. Architectural Features and Resistance to Food-Grade Disinfectants in Listeria monocytogenes- Pseudomonas spp. Dual-Species Biofilms. Front Microbiol 2022; 13:917964. [PMID: 35756028 PMCID: PMC9218357 DOI: 10.3389/fmicb.2022.917964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is considered a foodborne pathogen of serious concern capable of forming multispecies biofilms with other bacterial species, such as Pseudomonas spp., adhered onto stainless steel (SS) surfaces. In an attempt to link the biofilms' morphology and resistance to biocides, dual-species biofilms of L. monocytogenes, in co-culture with either Pseudomonas aeruginosa, Pseudomonas fluorescens, or Pseudomonas putida, were assayed to ascertain their morphological characteristics and resistance toward benzalkonium chloride (BAC) and neutral electrolyzed water (NEW). Epifluorescence microscopy analysis revealed that each dual-species biofilm was distributed differently over the SS surface and that these differences were attributable to the presence of Pseudomonas spp. Confocal laser scanning microscopy (CLSM) assays demonstrated that despite these differences in distribution, all biofilms had similar maximum thicknesses. Along with this, colocalization analyses showed a strong trend of L. monocytogenes to share location within the biofilm with all Pseudomonas assayed whilst the latter distributed throughout the surface independently of the presence of L. monocytogenes, a fact that was especially evident in those biofilms in which cell clusters were present. Finally, a modified Gompertz equation was used to fit biofilms' BAC and NEW dose-response data. Outcomes demonstrated that L. monocytogenes was less susceptible to BAC when co-cultured with P. aeruginosa or P. fluorescens, whereas susceptibility to NEW was reduced in all three dual-species biofilms, which can be attributable to both the mechanism of action of the biocide and the architectural features of each biofilm. Therefore, the results herein provided can be used to optimize already existing and develop novel target-specific sanitation treatments based on the mechanism of action of the biocide and the biofilms' species composition and structure.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- Laboratory of Microbiology and Technology of Marine Products (MICROTEC), Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain
| | | | | |
Collapse
|
5
|
Speranza B, Racioppo A, Bevilacqua A, Buzzo V, Marigliano P, Mocerino E, Scognamiglio R, Corbo MR, Scognamiglio G, Sinigaglia M. Innovative Preservation Methods Improving the Quality and Safety of Fish Products: Beneficial Effects and Limits. Foods 2021; 10:2854. [PMID: 34829142 PMCID: PMC8622261 DOI: 10.3390/foods10112854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Fish products are highly perishable, requiring proper processing to maintain their quality and safety during the entire storage. Different from traditional methods used to extend the shelf-life of these products (smoking, salting, marinating, icing, chilling, freezing, drying, boiling, steaming, etc.), in recent years, some alternative methods have been proposed as innovative processing technologies able to guarantee the extension of their shelf-life while minimally affecting their organoleptic properties. The present review aims to describe the primary mechanisms of some of these innovative methods applied to preserve quality and safety of fish products; namely, non-thermal atmospheric plasma (NTAP), pulsed electric fields (PEF), pulsed light (PL), ultrasounds (US) and electrolyzed water (EW) are analysed, focusing on the main results of the studies published over the last 10 years. The limits and the benefits of each method are addressed in order to provide a global overview about these promising emerging technologies and to facilitate their greater use at industrial level. In general, all the innovative methods analysed in this review have shown a good effectiveness to control microbial growth in fish products maintaining their organoleptic, nutritional and sensory characteristics. Most of the technologies have also shown the great advantage to have a lower energy consumption and shorter production times. In contrast, not all the methods are in the same development stage; thus, we suggest further investigations to develop one (or more) hurdle-like non-thermal method able to meet both food production requirements and the modern consumers' demand.
Collapse
Affiliation(s)
- Barbara Speranza
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Angela Racioppo
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Antonio Bevilacqua
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Veronica Buzzo
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Piera Marigliano
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Ester Mocerino
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Raffaella Scognamiglio
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Maria Rosaria Corbo
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| | - Gennaro Scognamiglio
- UNCI AGROALIMENTARE, Via San Sotero 32, 00165 Roma, Italy; (V.B.); (P.M.); (E.M.); (R.S.)
| | - Milena Sinigaglia
- Department of Agriculture Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (B.S.); (A.R.); (A.B.); (M.R.C.)
| |
Collapse
|
6
|
Wu J, Zhao L, Lai S, Yang H. NMR-based metabolomic investigation of antimicrobial mechanism of electrolysed water combined with moderate heat treatment against Listeria monocytogenes on salmon. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020833] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A literature search and systematic review were conducted to present and discuss the most recent research studies for the past twenty years on the application of non-thermal methods for ensuring the microbiological safety and quality of fish and seafood. This review presents the principles and reveals the potential benefits of high hydrostatic pressure processing (HHP), ultrasounds (US), non-thermal atmospheric plasma (NTAP), pulsed electric fields (PEF), and electrolyzed water (EW) as alternative methods to conventional heat treatments. Some of these methods have already been adopted by the seafood industry, while others show promising results in inactivating microbial contaminants or spoilage bacteria from solid or liquid seafood products without affecting the biochemical or sensory quality. The main applications and mechanisms of action for each emerging technology are being discussed. Each of these technologies has a specific mode of microbial inactivation and a specific range of use. Thus, their knowledge is important to design a practical application plan focusing on producing safer, qualitative seafood products with added value following today’s consumers’ needs.
Collapse
|
8
|
Efficacy of Nanobubbles Alone or in Combination with Neutral Electrolyzed Water in Removing Escherichia coli O157:H7, Vibrio parahaemolyticus, and Listeria innocua Biofilms. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02572-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
10
|
Applications of Electrolyzed Water as a Sanitizer in the Food and Animal-By Products Industry. Processes (Basel) 2020. [DOI: 10.3390/pr8050534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Food demand is increasing every year and, usually animal-derived products are generated far from consumer-places. New technologies are being developed to preserve quality characteristics during processing and transportation. One of them is electrolyzed water (EW) that helps to avoid or decrease the development of foodborne pathogens, or losses by related bacteria. Initially, EW was used in ready-to-eat foods such as spinach, lettuce, strawberries, among others; however, its application in other products is under study. Every product has unique characteristics that require an optimized application of EW. Different sanitizers have been developed; unfortunately, they could have undesirable effects like deterioration of quality or alterations in sensory properties. Therefore, EW is gaining popularity in the food industry due to its characteristics: easy application and storage, no corrosion of work surfaces, absence of mucosal membrane irritation in workers handling food, and it is considered environmentally friendly. This review highlights the advantages of using EW in animal products like chicken, pork, beef, eggs and fish to preserve their safety and quality.
Collapse
|
11
|
Yan W, Zhang Y, Yang R, Zhao W. Combined effect of slightly acidic electrolyzed water and ascorbic acid to improve quality of whole chilled freshwater prawn (Macrobrachium rosenbergii). Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Listeria monocytogenes survival in raw Atlantic salmon (Salmo salar) fillet under in vitro simulated gastrointestinal conditions by culture, qPCR and PMA-qPCR detection methods. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Electrolyzed water and mild-thermal processing of Atlantic salmon (Salmo salar): Reduction of Listeria monocytogenes and changes in protein structure. Int J Food Microbiol 2018; 276:10-19. [DOI: 10.1016/j.ijfoodmicro.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 02/12/2018] [Accepted: 04/02/2018] [Indexed: 12/25/2022]
|
14
|
Zhao L, Zhang Z, Wang M, Sun J, Li H, Malakar PK, Liu H, Pan Y, Zhao Y. New Insights into the Changes of the Proteome and Microbiome of Shrimp ( Litopenaeus vannamei) Stored in Acidic Electrolyzed Water Ice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4966-4976. [PMID: 29708332 DOI: 10.1021/acs.jafc.8b00498] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acidic electrolyzed water (AEW) ice is a novel technique for prolonging the shelf life of foods, but there is limited knowledge of its preservation mechanism. A proteomics approach and 16S rRNA-based Illumina sequencing were employed to investigate the changes of key proteins and bacterial communities in shrimp stored in AEW ice and tap water ice (TW ice) for 7 days. Compared with TW ice, AEW ice markedly retards the degradation of myofibrillar proteins in shrimp, including myosin, actin, and tropomyosin. Moreover, sarcoplasmatic proteins that participate in the carbohydrate catabolic process and amino acid metabolism were also influenced. Furthermore, the growth of spoilage bacteria, which includes the genera Psychrobacter, Shewanella, and Flavobacterium, was significantly inhibited by AEW ice, and the inhibition rates at day 7 were 71.6, 47.8, and 100%, respectively ( p < 0.05). Further correlation analysis showed the links between spoilage bacteria and protein changes can be broken by AEW ice treatment. Collectively, our findings indicated AEW ice can improve the quality of shrimp via previously undescribed mechanisms, which retarded the degradation of myofibrillar proteins and inhibited the growth of spoilage bacteria.
Collapse
Affiliation(s)
- Li Zhao
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Zhaohuan Zhang
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Meng Wang
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Jiangping Sun
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Huan Li
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Pradeep K Malakar
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Haiquan Liu
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai) , Ministry of Agriculture , Shanghai 201306 , China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation , Shanghai 201306 , China
- Engineering Research Center of Food Thermal-Processing Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Yingjie Pan
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai) , Ministry of Agriculture , Shanghai 201306 , China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation , Shanghai 201306 , China
| | - Yong Zhao
- College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai) , Ministry of Agriculture , Shanghai 201306 , China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation , Shanghai 201306 , China
| |
Collapse
|
15
|
Ming R, Zhu Y, Deng L, Zhang A, Wang J, Han Y, Chai B, Ren Z. Effect of electrode material and electrolysis process on the preparation of electrolyzed oxidizing water. NEW J CHEM 2018. [DOI: 10.1039/c8nj01076e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The efficient preparation of EO water can be controlled by different electrode materials and electrolysis processes.
Collapse
Affiliation(s)
- Ruoxi Ming
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Li Deng
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ailian Zhang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ju Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yongqi Han
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Bo Chai
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
16
|
Flores D, Athayde D, Silva M, Silva J, Genro A, Cichoski A, Barin J, Wagner R, Terra N, Ragagnin C. The use of ultrasound and slightly acidic electrolyzed water as alternative technologies in the meat industry. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.5.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Dewi FR, Stanley R, Powell SM, Burke CM. Application of electrolysed oxidising water as a sanitiser to extend the shelf-life of seafood products: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:1321-1332. [PMID: 28416883 PMCID: PMC5380643 DOI: 10.1007/s13197-017-2577-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.
Collapse
Affiliation(s)
- Fera R. Dewi
- School of Land and Food, University of Tasmania, Newnham Drive, Newnham, Locked Bag 1351, Launceston, TAS 7250 Australia
| | - Roger Stanley
- Tasmanian Institute of Agriculture, University of Tasmania, Churchill Avenue, Sandy Bay, Hobart, TAS 7005 Australia
| | - Shane M. Powell
- Tasmanian Institute of Agriculture, University of Tasmania, Churchill Avenue, Sandy Bay, Hobart, TAS 7005 Australia
| | - Christopher M. Burke
- Institute of Marine and Antarctic Studies, University of Tasmania, Old School Road, Newnham, Private Bag 1370, Launceston, TAS 7250 Australia
| |
Collapse
|
18
|
Mikš-Krajnik M, James Feng LX, Bang WS, Yuk HG. Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Khan I, Tango CN, Miskeen S, Lee BH, Oh DH. Hurdle technology: A novel approach for enhanced food quality and safety – A review. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Wei S, Shi L, Ren Z, Zhang A, Ming R, Chai B, Zhu Y. Preparation of electrolyzed oxidizing water with a platinum electrode prepared by magnetron sputtering technique. RSC Adv 2017. [DOI: 10.1039/c7ra08150b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EO water has the maximum value of available chlorine content when prepared by the Pt-MS electrode due to its good selectivity for CER.
Collapse
Affiliation(s)
- Shaonan Wei
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Liubin Shi
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ailian Zhang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Ruoxi Ming
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Bo Chai
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
21
|
Al-Qadiri HM, Al-Holy MA, Shiroodi SG, Ovissipour M, Govindan BN, Al-Alami N, Sablani SS, Rasco B. Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis). Int J Food Microbiol 2016; 231:48-53. [DOI: 10.1016/j.ijfoodmicro.2016.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
22
|
Rahman SME, Khan I, Oh DH. Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. Compr Rev Food Sci Food Saf 2016; 15:471-490. [DOI: 10.1111/1541-4337.12200] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/15/2022]
Affiliation(s)
- SME Rahman
- Dept. of Food Science and Biotechnology, School of Bio-convergence Science and Technology; Kangwon Natl. Univ; Chuncheon Gangwon 200-701 Republic of Korea
- Dept. of Animal Science; Bangladesh Agricultural Univ; Mymensingh 2202 Bangladesh
| | - Imran Khan
- Dept. of Food Science and Biotechnology, School of Bio-convergence Science and Technology; Kangwon Natl. Univ; Chuncheon Gangwon 200-701 Republic of Korea
| | - Deog-Hwan Oh
- Dept. of Food Science and Biotechnology, School of Bio-convergence Science and Technology; Kangwon Natl. Univ; Chuncheon Gangwon 200-701 Republic of Korea
| |
Collapse
|