1
|
Carlin CR, Akins-Lewenthal D, Bastin B, Crowley E, McMahon W, Ziebell B. An Alternative Rapid Confirmation Method for Identifying Listeria monocytogenes from a Variety of 125 g Food Samples Within Two Days of a PCR Presumptive Positive. J Food Prot 2024; 87:100193. [PMID: 37967767 DOI: 10.1016/j.jfp.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Cultural confirmation following detection of a Listeria monocytogenespresumptive positive can take 3-7 days to finalize; this uncertainty is a point of frustration for food producers needing to make time-sensitive disposition decisions. To address the demand for shortened time-to-results, an alternative L. monocytogenes confirmation method consisting of two components, (i) a secondary screen using a different rapid method, and (ii) concurrent cultural isolation followed by next-day colony identification was evaluated. For the study, four food matrices (hot dogs, peanut butter, frozen vegetables, and multicomponent frozen meals) were inoculated with low levels (0.36-1.39 MPN/125 g) of L. monocytogenes per the AOAC guidelines for a matrix study. Analyses were performed on 125 g test portions and started with a PCR primary screen (Bio-Rad iQ-Check Listeria monocytogenes II). Next, all enriched food samples underwent a secondary screen by bioMérieux's GENE-UP LMO2 Real-Time PCR and VIDAS LMX ELFA along with streaking onto RAPID'L.mono Agar. Presumptive positive L. monocytogenes colonies were identified utilizing a high throughput rapid identification method (Hygiena's BAX System L. monocytogenes Real-Time PCR assay, Neogen's ANSR isothermal nucleic acid amplification assay, and Bruker's MALDI Biotyper). Importantly, this study evaluated multiple commercially available options for the secondary screen (n = 2) and rapid identification (n = 3) to allow for easy adoption by testing laboratories. Overall, there was no statistically significant difference (p ≤ 0.05) between the number of L. monocytogenes-positive 125 g samples obtained by the cultural reference method and the alternative confirmation methods (regardless of which method combinations were evaluated). Additionally, this study supports that, when both the primary and secondary screen methods yield a positive result, the sample could be considered a confirmed positive for L. monocytogenes.
Collapse
Affiliation(s)
| | - Deann Akins-Lewenthal
- ConAgra - Center for Research and Development, Conagra Brands, Inc., Six Conagra Drive, Omaha, NE 68102, USA
| | - Benjamin Bastin
- Q Laboratories, 1930 Radcliff Drive, Cincinnati, OH 45204, USA
| | - Erin Crowley
- Q Laboratories, 1930 Radcliff Drive, Cincinnati, OH 45204, USA
| | - Wendy McMahon
- Mérieux NutriSciences, 3600 Eagle Nest Dr., Crete, IL 60417, USA
| | - Bradley Ziebell
- ConAgra - Center for Research and Development, Conagra Brands, Inc., Six Conagra Drive, Omaha, NE 68102, USA.
| |
Collapse
|
2
|
XIAN ZHIHAN, YOO JIYOON, PATEL CHADNI, YANG HELEN, DENG XIANGYU, HAMMACK THOMAS, CHEN YI. Comparison between qPCR, VIDAS immunoassays and agar streaking for the detection of Listeria monocytogenes from food and environmental surfaces containing and not containing Listeria innocua. J Food Prot 2022; 86:100013. [PMID: 37018852 DOI: 10.1016/j.jfp.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/12/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Comparisons among a qPCR assay, VIDAS® assays and a conventional agar streaking method following the same enrichment for the detection of Listeria monocytogenes were performed under two challenging conditions. In the first comparison, L. innocua and L. monocytogenes were coinoculated into sausages at ratios (L. innocua-to-L. monocytogenes) of 10, 100, 1000, and 10 000. qPCR provided the most sensitive detection at all ratios after both 24-h and 48-h enrichments. A modified VIDAS® LMO2 assay (i.e., replacement of the kit-specified enrichment scheme with the enrichment scheme used in this study) and agar streaking yielded equivalent results when the ratio was 10 and 100; agar streaking was more sensitive when the ratio was 1000; neither method could detect L. monocytogenes at the ratio of 10 000. Enrichment duration of 48 h was needed for modified VIDAS® to detect L. monocytogenes when the ratio was 1000. Agar streaking after 24-h enrichment isolated L. monocytogenes better than after 48-h enrichment when the ratio was 100 and 1000. In the second comparison, we followed the validation guidelines of AOAC International and inoculated L. monocytogenes, without any L. innocua, onto lettuce and stainless-steel surfaces at low levels. The numbers of positive samples detected by qPCR, VIDAS® LIS assay, modified VIDAS® LMO2 assay, and agar streaking after 48-h enrichment were not statistically different. Our data showed that qPCR was the most sensitive method, while agar streaking and VIDAS® performed reasonably well. Streaking after 24-h enrichment was needed when background flora could overgrow L. monocytogenes during prolonged enrichment, and this is critical for confirming rapid screening assays. Appropriate selection of enrichment duration and rapid assays will enhance the testing of L. monocytogenes in food and environmental samples.
Collapse
|
3
|
Carlin CR, Roof S, Wiedmann M. Assessment of Reference Method Selective Broth and Plating Media with 19 Listeria Species Highlights the Importance of Including Diverse Species in Listeria Method Evaluations. J Food Prot 2022; 85:494-510. [PMID: 34855940 DOI: 10.4315/jfp-21-293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Reference methods developed for detection of Listeria monocytogenes are commonly used for detection of Listeria at the genus level. Improved method performance data are needed because this genus has expanded from 6 to 26 species and now includes several Listeria sensu lato species, which can have phenotypes distinct from those of Listeria sensu stricto. We evaluated growth of 19 Listeria species, including 12 recently described Listeria sensu lato species, using the media specified by (i) the U.S. Food and Drug Administration (FDA) Bacteriological Analytical Manual, (ii) the U.S. Department of Agriculture (USDA) Microbiology Laboratory Guidebook, and (iii) the International Organization for Standardization (ISO). The FDA broth enrichment procedure allowed all species to grow to detectable levels (≥4 log CFU/mL), yielded the highest mean growth (7.58 log CFU/mL), and was the only procedure with which no Listeria sensu lato species yielded significantly higher growth than did a comparison Listeria sensu stricto species. With the USDA and ISO broth enrichment procedures, several Listeria sensu lato species yielded significantly higher growth than did either Listeria seeligeri or Listeria ivanovii, suggesting that these two Listeria sensu stricto species could be outgrown by Listeria sensu lato species. On selective and differential agar media, L. seeligeri, L. ivanovii, and Listeria grayi produced colonies with atypical morphology and/or growth of these species was inhibited (which may lead to incorrect classification of a sample as negative), whereas several newly described Listeria sensu lato species grew to high levels and produced colonies with typical morphology. Overall, our study results indicate that the ability to detect various Listeria species can be impacted by the specific broth and selective and differential agar used. Our data can help guide selection of appropriate media and detection methods for environmental Listeria monitoring programs and methods that are most likely to detect the targeted Listeria groups (e.g., Listeria sensu stricto, which appear to be the most appropriate index organisms for the pathogen L. monocytogenes). HIGHLIGHTS
Collapse
Affiliation(s)
- Catharine R Carlin
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Sherry Roof
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
4
|
Chen Y, Simonetti T, Peter K, Jin Q, Brown E, LaBorde LF, Macarisin D. Genetic Diversity of Listeria monocytogenes Isolated From Three Commercial Tree Fruit Packinghouses and Evidence of Persistent and Transient Contamination. Front Microbiol 2022; 12:756688. [PMID: 35082763 PMCID: PMC8784831 DOI: 10.3389/fmicb.2021.756688] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Whole genome analysis was performed on 501 isolates obtained from a previous survey which recovered 139 positive environmental sponge samples (i.e., up to 4 isolates per sample) from a total of 719 samples collected at 40 standardized sites in 3 commercial apple packinghouse facilities (i.e., P1, P2, and P3) over 3 successive seasons in a single production year. After excluding duplicated isolates, the data from 156 isolates revealed the clonal diversity of L. monocytogenes and allowed the detection of transient contamination, persistent contamination, and cross-area transmission events. Facility P2 with the poorest sanitary conditions had the least diversity (Shannon's index of 0.38). P2 contained a Clonal Complex (CC) 554, serogroup IVb-v1 strain that persisted throughout the year and spread across the entire facility, a singleton Sequence Type (ST) 1003, lineage III strain that persisted through two seasons and spread across two areas of the facility, and 3 other clones from transient contaminations. P1 and P3, facilities with better sanitary conditions, had much higher diversity (i.e., 15 clones with a Shannon's index of 2.49 and 10 clones with a Shannon's index of 2.10, respectively) that were the result of transient contamination. Facilities P1 and P3 had the highest incidence (43.1%) of lineage III isolates, followed by lineage I (31.3%) and lineage II (25.5%) isolates. Only 1 isolate in the three facilities contained a premature stop codon in virulence gene inlA. Fourteen samples yielded 2-3 clones per sample, demonstrating the importance of choosing appropriate methodologies and selecting a sufficient number of isolates per sample for studying L. monocytogenes diversity. Only 1 isolate, belonging to CC5 and from facility P3, contained a known plasmid, and this was also the only isolate containing benzalkonium chloride tolerance genes. The persistent CC554 strain did not exhibit stronger sanitizer resistance than other isolates and did not contain any confirmed molecular determinants of L. monocytogenes stress resistance that were differentially present in other isolates, such as genes involved in sanitizer tolerance, heavy metal resistance, biofilm-forming, stress survival islet 1 (SSI-1), stress survival islet 2 (SSI-2) or Listeria genomic island (LGI2).
Collapse
Affiliation(s)
- Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration (FDA), College Park, MD, United States
| | - Tobin Simonetti
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Kari Peter
- Fruit Research and Extension Center, Pennsylvania State University, University Park, PA, United States
| | - Qing Jin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration (FDA), College Park, MD, United States
| | - Eric Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration (FDA), College Park, MD, United States
| | - Luke F LaBorde
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration (FDA), College Park, MD, United States
| |
Collapse
|
5
|
Bell RL, Kase JA, Harrison LM, Balan KV, Babu U, Chen Y, Macarisin D, Kwon HJ, Zheng J, Stevens EL, Meng J, Brown EW. The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens 2021; 10:1391. [PMID: 34832547 PMCID: PMC8617848 DOI: 10.3390/pathogens10111391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Water is vital to agriculture. It is essential that the water used for the production of fresh produce commodities be safe. Microbial pathogens are able to survive for extended periods of time in water. It is critical to understand their biology and ecology in this ecosystem in order to develop better mitigation strategies for farmers who grow these food crops. In this review the prevalence, persistence and ecology of four major foodborne pathogens, Shiga toxin-producing Escherichia coli (STEC), Salmonella, Campylobacter and closely related Arcobacter, and Listeria monocytogenes, in water are discussed. These pathogens have been linked to fresh produce outbreaks, some with devastating consequences, where, in a few cases, the contamination event has been traced to water used for crop production or post-harvest activities. In addition, antimicrobial resistance, methods improvements, including the role of genomics in aiding in the understanding of these pathogens, are discussed. Finally, global initiatives to improve our knowledge base of these pathogens around the world are touched upon.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Julie A. Kase
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Lisa M. Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Kannan V. Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Uma Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Dumitru Macarisin
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Hee Jin Kwon
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Jie Zheng
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Eric L. Stevens
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA;
| | - Eric W. Brown
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| |
Collapse
|
6
|
Kirchner M, Goulter RM, Chapman BJ, Clayton J, Jaykus LA. Cross-Contamination on Atypical Surfaces and Venues in Food Service Environments. J Food Prot 2021; 84:1239-1251. [PMID: 33545714 DOI: 10.4315/jfp-20-314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cross-contamination of raw food to other surfaces, hands, and foods is a serious issue in food service. With individuals eating more meals away from home, contracting a foodborne illness from a food service establishment is an increasing concern. However, most studies have concentrated on hands or food contact surfaces and neglected atypical and unusual surfaces (surfaces that are not typically identified as a source of cross-contamination) and venues. This review was conducted to identify atypically cross-contaminated surfaces and atypical venues where cross-contamination could occur that have not been examined thoroughly in the literature. Most surfaces that could be at risk for cross-contamination are frequently touched, are rarely cleaned and sanitized, and can support the persistence and/or growth of foodborne pathogens. These surfaces include menus, spice and condiment containers, aprons and coveralls, mobile devices and tablets, and money. Venues that are explored, such as temporary events, mobile vendors, and markets, are usually limited in space or infrastructure, have low compliance with proper hand washing, and provide the opportunity for raw and ready-to-eat foods to come into contact with one another. These factors create an environment in which cross-contamination can occur and potentially impact food safety. A more comprehensive cleaning and sanitizing regime encompassing these surfaces and venues could help mitigate cross-contamination. This review highlights key surfaces and venues that have the potential to be cross-contaminated and have been underestimated or not fully investigated. These knowledge gaps indicate where further work is needed to fully understand the role of these surfaces and venues in cross-contamination and how it can be prevented. HIGHLIGHTS
Collapse
Affiliation(s)
- Margaret Kirchner
- Department of Food, Bioprocessing and Nutrition Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Rebecca M Goulter
- Department of Food, Bioprocessing and Nutrition Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Benjamin J Chapman
- Department of Agricultural and Human Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Science, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
7
|
Simonetti T, Peter K, Chen Y, Jin Q, Zhang G, LaBorde LF, Macarisin D. Prevalence and Distribution of Listeria monocytogenes in Three Commercial Tree Fruit Packinghouses. Front Microbiol 2021; 12:652708. [PMID: 34177834 PMCID: PMC8222780 DOI: 10.3389/fmicb.2021.652708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
A 2-year longitudinal study of three tree fruit packinghouses was conducted to determine the prevalence and distribution of Listeria monocytogenes. Samples were collected from 40 standardized non-food-contact surface locations six different times over two 11-month production seasons. Of the 1,437 samples collected, the overall prevalence of L. monocytogenes over the course of the study was 17.5%. Overall prevalence did not differ significantly (p > 0.05) between each year. However, values varied significantly (p ≤ 0.05) within each production season following packing activity levels; increasing in the fall, peaking in early winter, and then decreasing through spring. L. monocytogenes was most often found in the packing line areas, where moisture and fruit debris were commonly observed and less often in dry cold storage and packaging areas. Persistent contamination was attributed to the inability of water drainage systems to prevent moisture accumulation on floors and equipment during peak production times and uncontrolled employee and equipment traffic throughout the facility. This is the first multiyear longitudinal surveillance study to compare L. monocytogenes prevalence at standardized sample sites common to multiple tree fruit packinghouses. Recommendations based on our results will help packinghouse operators to identify critical areas for inclusion in their L. monocytogenes environmental monitoring programs.
Collapse
Affiliation(s)
- Tobin Simonetti
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Kari Peter
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Qing Jin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
8
|
Stewart DS, Rana YS, Deng K, Vijayakumar G, Yin L, Salazar JK, Tortorello ML. Effect of Time, Temperature, and Transport Media on the Recovery of Listeria monocytogenes from Environmental Swabs. J Food Prot 2021; 84:811-819. [PMID: 33290508 DOI: 10.4315/jfp-20-334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/06/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Environmental monitoring for Listeria monocytogenes in food processing environments is key for ensuring the safety of ready-to-eat foods. For sampling, swabs are often hydrated with a wetting or transport medium that may contain neutralizers and other ingredients. After swabbing the environment, the swabs may then be transported or shipped cold to an off-site laboratory for testing, ideally within 48 h. Extended shipping times may subject the pathogen to increased temperatures in the presence of the wetting medium, organics, and other chemicals from the processing facility that could confound detection. This study evaluated growth and detection of L. monocytogenes on stainless steel exposed to either buffer or sodium hypochlorite before drying. Swabs were rehydrated with Butterfield's phosphate buffer, neutralizing buffer, Letheen broth, or Dey-Engley neutralizing broth before swabbing. Swabs were stored in the presence of no added food, cheese whey, or ice cream under both optimal (4°C) and suboptimal (15°C) temperatures for up to 72 h. Overall, there was no growth of L. monocytogenes at 4°C through 72 h of storage, although enrichment from these swabs was dependent on the presence and type of food matrix. Pathogen growth during storage at 15°C was more variable and depended on both the food matrix and transport media used, with Dey-Engley and Letheen broths allowing for the highest population increases. Overall, more enrichments resulting in L. monocytogenes detections were observed when using Letheen broth and neutralizing buffer than Dey-Engley broth, which resulted in fewer detections at 15°C. Logistic regression and Cochran-Mantel-Haenszel analyses determined that storage temperature, transport media, and food matrix all significantly affected detection of L. monocytogenes, whereas storage time did not have a clear effect on recovery from swabs. HIGHLIGHTS
Collapse
Affiliation(s)
- Diana S Stewart
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501.,(ORCID: https://orcid.org/0000-0002-3792-1845 [D.S.S.])
| | - Yadwinder Singh Rana
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501
| | - Kaiping Deng
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501
| | - Geethaanjali Vijayakumar
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501
| | - Lanlan Yin
- Bioinformatics and Biostatistics Staff, U.S. Food and Drug Administration, College Park, Maryland 20742, USA
| | - Joelle K Salazar
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501
| | - Mary Lou Tortorello
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501
| |
Collapse
|
9
|
Salazar JK, Fay M, Eckert C, Stewart D, Cranford V, Tortorello ML. Evaluation of Methods of Enrichment and Compositing of Environmental Samples for Detection of Listeria monocytogenes. J Food Prot 2021; 84:639-646. [PMID: 33232458 DOI: 10.4315/jfp-20-276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/21/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Various methods exist for the enrichment and detection of Listeria spp. and Listeria monocytogenes from environmental samples. Procedures for the compositing of environmental samples are not as well defined. In this study, different enrichment procedures involving buffered Listeria enrichment broth (BLEB), University of Vermont medium (UVM), and Fraser broth (FB) were evaluated to determine the limits of detection (LODs) for L. monocytogenes from culture and from swabs of stainless steel and to assess the efficacy of composite sampling by wet (pooling of primary enrichments) and dry (pooling of swabs) procedures. For detection of cells in pure culture, the computed values for the LOD at 95% probability (LOD95) using a single-step BLEB or two-step UVM-FB enrichment were 0.33 and 0.49 CFU/225 mL enrichment, respectively. No significant differences in detection were observed for procedures using either two-step BLEB-FB or UVM-FB enrichments for swabs of stainless steel when L. monocytogenes was inoculated at 2 to 6 log CFU; the LOD95 values were 3.82 and 3.62 log CFU per 4-in2 area, respectively. Wet compositing of L. monocytogenes from culture with and without romaine lettuce wash resident microbiota was conducted using BLEB-FB and UVM-FB enrichment methods; both allowed detection of the pathogen at ratios of 1:1, 1:2, 1:4, and 1:7 (1 positive sample to x negative samples) with no loss in sensitivity. From swabs of stainless steel, L. monocytogenes was detected similarly for both wet and dry composites of up to eight samples (1:7) with romaine lettuce wash. However, the BLEB-FB method allowed significantly faster detection (after 24 h of FB incubation) in composites of 1:4 and 1:7 samples compared with the UVM-FB method under the conditions tested. The results of this study provide data to evaluate the efficacies of the different enrichment procedures and aid in assessing the use of wet and dry compositing of environmental samples for use as part of a Listeria control plan in food production and processing facilities. HIGHLIGHTS
Collapse
Affiliation(s)
- Joelle K Salazar
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501.,(ORCID: https://orcid.org/0000-0002-3587-7588 [J.K.S.])
| | - Megan Fay
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501
| | - Christine Eckert
- Institute for Food Safety and Health, Illinois Institute of Technology, 6502 South Archer Road, Bedford Park, Illinois 60501; and
| | - Diana Stewart
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501
| | - Vanessa Cranford
- Division of Produce Safety, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Mary Lou Tortorello
- Division of Food Processing Science and Technology, U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501
| |
Collapse
|
10
|
Li F, Xian Z, Kwon HJ, Yoo J, Burall L, Chirtel SJ, Hammack TS, Chen Y. Comparison of three neutralizing broths for environmental sampling of low levels of Listeria monocytogenes desiccated on stainless steel surfaces and exposed to quaternary ammonium compounds. BMC Microbiol 2020; 20:333. [PMID: 33138783 PMCID: PMC7607625 DOI: 10.1186/s12866-020-02004-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Background An effective environmental sampling method involves the use of a transport/neutralizing broth with the ability to neutralize sanitizer residues that are collected during sampling and to maintain viability of stressed Listeria monocytogenes (Lm) cells. Results We applied Lm onto stainless steel surfaces and then subjected Lm to desiccation stress for 16–18 h at room temperature (RT, 21–24 °C). This was followed by the subsequent application of Whisper™ V, a quaternary ammonium compound (QAC)-based sanitizer, diluted to 400 ppm and 8000 ppm of active quat, for 6 h. We then sampled Lm with sponges pre-moistened in three transport broths, Dey/Engley (D/E) broth, Letheen broth and HiCap™ broth, to generate environmental samples that contained sanitizer residues and low levels of stressed Lm, which were subsequently analyzed by an enrichment-based method. This scheme conformed with validation guidelines of AOAC International by using 20 environmental test portions per broth that contained low levels of Lm such that not all test portions were positive (i.e., fractional positive). We showed that D/E broth, Letheen broth and HiCap™ broth performed similarly when no quat or 400 ppm of quat was applied to the Lm contaminating stainless steel surfaces. However, when 8000 ppm of quat was applied, Letheen broth did not effectively neutralize the QAC in the samples. These comparisons were performed on samples stored under three conditions after collection to replicate scenarios of sample transport, RT for 2 h, 4 °C for 24 h and 4 °C for 72 h. Comparisons under the three different scenarios generally reached the same conclusions. In addition, we further demonstrated that storing Letheen and HiCap™ broths at RT for two months before sampling did not reduce their capacity to neutralize sanitizers. Conclusions We developed a scheme to evaluate the ability of transport broths to neutralize QAC sanitizers. The three transport broths performed similarly with a commonly used concentration of quat, but Letheen broth could not effectively neutralize a very high concentration of QAC. The performance of transport broths was not significantly affected under the assessed pre-sampling and post-sampling storage conditions.
Collapse
Affiliation(s)
- Fengmin Li
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Zhihan Xian
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Hee Jin Kwon
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Jiyoon Yoo
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Laurel Burall
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Stuart J Chirtel
- Office of Analytical Outreach, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Thomas S Hammack
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA.
| |
Collapse
|
11
|
Draft Genome Sequence of Multidrug-Resistant Listeria innocua Strain UAM003-1A, Isolated from a Wild Black Bear (Ursus americanus). Microbiol Resour Announc 2019; 8:8/47/e01281-19. [PMID: 31753950 PMCID: PMC6872892 DOI: 10.1128/mra.01281-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is currently limited knowledge of the genome sequences of nonpathogenic Listeria species, especially strains from wildlife. Here, we report the draft genome sequence and associated genome information of an antibiotic-resistant Listeria innocua strain, UAM003-1A, isolated from the feces of a black bear in California, USA.
Collapse
|
12
|
Lando AM, Bazaco MC, Chen Y. Consumers' Use of Personal Electronic Devices in the Kitchen. J Food Prot 2018; 81:437-443. [PMID: 29474153 DOI: 10.4315/0362-028x.jfp-17-172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/07/2017] [Indexed: 11/11/2022]
Abstract
Smartphones, tablets, and other personal electronic devices have become ubiquitous in Americans' daily lives. These devices are used by people throughout the day, including while preparing food. For example, a device may be used to look at recipes and therefore be touched multiple times during food preparation. Previous research has indicated that cell phones can harbor bacteria, including opportunistic human pathogens such as Staphylococcus and Klebsiella spp. This investigation was conducted with data from the 2016 Food Safety Survey (FSS) and from subsequent focus groups to determine the frequency with which consumers use personal electronic devices in the kitchen while preparing food, the types of devices used, and hand washing behaviors after handling these devices. The 2016 FSS is the seventh wave of a repeated cross-sectional survey conducted by the U.S. Food and Drug Administration in collaboration with the U.S. Department of Agriculture. The goal of the FSS is to evaluate U.S. adult consumer attitudes, behaviors, and knowledge about food safety. The FSS included 4,169 adults that were contacted using a dual-frame (land line and cell phone interviews) random-digit-dial sampling process. The personal electronics module was the first of three food safety topics discussed by each of eight consumer focus groups, which were convened in four U.S. cities in fall 2016. Results from the 2016 FSS revealed that of those individuals who use personal electronic devices while cooking, only about one third reported washing hands after touching the device and before continuing cooking. This proportion is significantly lower than that for self-reported hand washing behaviors after touching risky food products such as raw eggs, meat, chicken, or fish. Results from the focus groups highlight the varied usage of these devices during food preparation and the related strategies consumers are using to incorporate personal electric devices into their cooking routines.
Collapse
Affiliation(s)
- Amy M Lando
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Michael C Bazaco
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Yi Chen
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| |
Collapse
|