1
|
Aslam N, Fatima R, Altemimi AB, Ahmad T, Khalid S, Hassan SA, Aadil RM. Overview of industrial food fraud and authentication through chromatography technique and its impact on public health. Food Chem 2024; 460:140542. [PMID: 39079380 DOI: 10.1016/j.foodchem.2024.140542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Food fraud is widespread nowadays in the food products supply chain, from raw materials processing to the final product and during storage and transport. The most frequent fraud is practiced in staple food commodities like cereals. Their origin, variety, genotype, and bioactive compounds are altered to deceive consumers. Similarly, in various food sectors like beverage, baking, and confectionary, items like melamine, flour improver, and food colors are used in the market to temple consumers. To tackle food fraud and authentication, non-destructive techniques are being used. These techniques have limitations like lack of standardization, interference from multiple absorbing species, ambiguous results, and time-consuming to perform, depending on the type, size, and location of the system proved difficult to quantify the samples of adulteration. Chromatography has been introduced as an effective technique. It serves to safeguard public health due to its detection capabilities. Chromatography proved a crucial tool against fraudulent practices to preserve consumer trust.
Collapse
Affiliation(s)
- Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rida Fatima
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Talha Ahmad
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| |
Collapse
|
2
|
Eghbali S, Farhadi F, Askari VR. An overview of analytical methods employed for quality assessment of Crocus sativus (saffron). Food Chem X 2023; 20:100992. [PMID: 38144850 PMCID: PMC10740065 DOI: 10.1016/j.fochx.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
This paper reviews qualitative and quantitative analytical methodologies used for the appraisal of saffron quality, as the most expensive spice. Due to the chemical diversity of biologically active compounds of the Crocus genus, analytical methods with different features are required for their complete analysis. However, screening of the main components, such as carotenoids and flavonoids, appears to be sufficient for quality control, a more precise examination needs evaluation of minor compounds, including anthocyanins and fatty acids. High-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), ultraviolet-visible spectroscopy (UV), nuclear magnetic resonance spectroscopy (NMR), and thin-layer chromatography (TLC), are elementary and applicable methods in quality control analysis, whereas HPLC provides metabolite fingerprint and monitoring multi-compound instances at preparative and analytical levels. Combination approaches like metabolomics using different methods could classify saffron types, identify its adulterations, contaminants and provide a comprehensive metabolite map for quality control of selected compounds.
Collapse
Affiliation(s)
- Samira Eghbali
- Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faegheh Farhadi
- Herbal and Traditional Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Aissa R, Ibourki M, Ait Bouzid H, Bijla L, Oubannin S, Sakar EH, Jadouali S, Hermansyah A, Goh KW, Ming LC, Bouyahya A, Gharby S. Phytochemistry, quality control and medicinal uses of Saffron ( Crocus sativus L.): an updated review. J Med Life 2023; 16:822-836. [PMID: 37675158 PMCID: PMC10478662 DOI: 10.25122/jml-2022-0353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 09/08/2023] Open
Abstract
Saffron, botanically known as Crocus sativus L., is renowned as the world's most expensive spice and has been utilized in various fields since ancient times. Extensive scientific research has been conducted on Crocus sativus (C. sativus), focusing on its phytochemical composition, diverse applications, and biological activities. C. sativus phytochemicals consist mainly of three compounds, namely crocin, picrocrocin, and safranal, which are responsible for most of its properties. Saffron is rich in bioactive compounds, more than 150 of which have been isolated. Owing to its unique composition and properties, saffron is used in various fields, such as the food industry, perfumery, cosmetics, pharmaceutics, and medicine. However, the high economic value of saffron makes it susceptible to adulteration and various fraudulent practices. To deal with this issue, a number of methods and techniques have been developed to authenticate and determine adulterants in saffron. This paper presents a bibliometric study of saffron based on the Web of Science database, analyzing 3,735 studies published between 2000 and 2021. The study also examined author participation and collaboration networks among countries. Production, transformation, chemical composition, methods of adulteration detection, uses, and health properties of saffron are also discussed.
Collapse
Affiliation(s)
- Rabha Aissa
- Department of Bio-Industrial Engineering & Environment, Bioprocesses and Environment Team, Superior School of Technology, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Ibourki
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Hasna Ait Bouzid
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Laila Bijla
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Samira Oubannin
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology, and Health, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Simohamed Jadouali
- Laboratory of Biotechnology, Bioanalysis and Bioinformatics, Superior School of Technology, Sultan Moulay Slimane University, Khenifra, Morocco
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Abdelhakim Bouyahya
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control Team, Laboratory of Analysis Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| |
Collapse
|
4
|
Alighaleh P, Pakdel R, Ghanei Ghooshkhaneh N, Einafshar S, Rohani A, Saeidirad MH. Detection and Classification of Saffron Adulterants by Vis-Nir Imaging, Chemical Analysis, and Soft Computing. Foods 2023; 12:foods12112192. [PMID: 37297436 DOI: 10.3390/foods12112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 06/12/2023] Open
Abstract
Saffron (Crocus sativus L.) is the most expensive spice in the world, known for its unique aroma and coloring in the food industry. Hence, its high price is frequently adulterated. In the current study, a variety of soft computing methods, including classifiers (i.e., RBF, MLP, KNN, SVM, SOM, and LVQ), were employed to classify four samples of fake saffron (dyed citrus blossom, safflower, dyed fibers, and mixed stigma with stamens) and three samples of genuine saffron (dried by different methods). RGB and spectral images (near-infrared and red bands) were captured from prepared samples for analysis. The amount of crocin, safranal, and picrocrocin were measured chemically to compare the images' analysis results. The comparison results of the classifiers indicated that KNN could classify RGB and NIR images of samples in the training phase with 100% accuracy. However, KNN's accuracy for different samples in the test phase was between 71.31% and 88.10%. The RBF neural network achieved the highest accuracy in training, test, and total phases. The accuracy of 99.52% and 94.74% was obtained using the features extracted from RGB and spectral images, respectively. So, soft computing models are helpful tools for detecting and classifying fake and genuine saffron based on RGB and spectral images.
Collapse
Affiliation(s)
- Pejman Alighaleh
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran
| | - Reyhaneh Pakdel
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran
| | - Narges Ghanei Ghooshkhaneh
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran
| | - Soodabeh Einafshar
- Department of Agricultural Engineering Institute, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad P.O. Box 9177335488, Iran
| | - Abbas Rohani
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 9177948974, Iran
| | - Mohammad Hossein Saeidirad
- Department of Agricultural Engineering Institute, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad P.O. Box 9177335488, Iran
| |
Collapse
|
5
|
An YL, Wei WL, Guo DA. Application of Analytical Technologies in the Discrimination and Authentication of Herbs from Fritillaria: A Review. Crit Rev Anal Chem 2022; 54:1775-1796. [PMID: 36227577 DOI: 10.1080/10408347.2022.2132374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Medicinal plants of Fritillaria are widely distributed in numerous countries around the world and possess excellent antitussive and expectorant effects. In particular, Fritillariae Bulbus (FB) as a precious traditional medicine has thousands of years of medical history in China. Herbs of Fritillaria have a high market value and demand while limited by harsh growing circumstances and scarce wild resources. As a consequence, fraudulent behaviors are regularly engaged by the unscrupulous merchants in an attempt to reap greater profits. It is of an urgent need to evaluate the quality of Fritillaria herbs and their products using various analytical instruments and techniques. This review has scrutinized approximately 160 articles from 1995 to 2022 published on the investigation of Fritillaria herbs and related herbal products. The botanical classification of genus Fritillaria, types of counterfeits, technologies applied for differentiating Fritillaria species were comprehensively summarized and discussed in the current review. Molecular and chromatographic identification were the dominant technologies in the authentication of Fritillaria herbs. Additionally, we brought some potential and promising technologies and analytical strategies into attention, which are worthy attempting in the future researches. This review could conduce to excellent reference value for further investigations of the authenticity assessment of Fritillaria species.
Collapse
Affiliation(s)
- Ya-Ling An
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Cabezudo I, Salazar MO, Ramallo IA, Furlan RLE. Effect-directed analysis in food by thin-layer chromatography assays. Food Chem 2022; 390:132937. [PMID: 35569399 DOI: 10.1016/j.foodchem.2022.132937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Thin-layer chromatography (TLC) is widely used for food analysis and quality control. As an open chromatographic system, TLC is compatible with microbial-, biochemical-, and chemical-based derivatization methods. This compatibility makes it possible to run in situ bioassays directly on the plate to obtain activity-profile chromatograms, i.e., the effect-directed analysis of the sample. Many of the properties that can be currently measured using this assay format are related to either desired or undesired features for food related products. The TLC assays can detect compounds related to the stability of foods (antioxidant, antimicrobial, antibrowning, etc.), contaminants (antibiotics, pesticides, estrogenic compounds, etc.), and compounds that affect the absorption, metabolism or excretion of nutrients and metabolites or could improve the consumers health (enzyme inhibitors). In this article, different food related TLC-assays are reviewed. The different detection systems used, the way in which they are applied as well as selected examples are discussed.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
7
|
Yin S, Niu L, Liu Y. Recent Progress on Techniques in the Detection of Aflatoxin B 1 in Edible Oil: A Mini Review. Molecules 2022; 27:6141. [PMID: 36234684 PMCID: PMC9573432 DOI: 10.3390/molecules27196141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Contamination of agricultural products and foods by aflatoxin B1 (AFB1) is becoming a serious global problem, and the presence of AFB1 in edible oil is frequent and has become inevitable, especially in underdeveloped countries and regions. As AFB1 results from a possible degradation of aflatoxins and the interaction of the resulting toxic compound with food components, it could cause chronic disease or severe cancers, increasing morbidity and mortality. Therefore, rapid and reliable detection methods are essential for checking AFB1 occurrence in foodstuffs to ensure food safety. Recently, new biosensor technologies have become a research hotspot due to their characteristics of speed and accuracy. This review describes various technologies such as chromatographic and spectroscopic techniques, ELISA techniques, and biosensing techniques, along with their advantages and weaknesses, for AFB1 control in edible oil and provides new insight into AFB1 detection for future work. Although compared with other technologies, biosensor technology involves the cross integration of multiple technologies, such as spectral technology and new nano materials, and has great potential, some challenges regarding their stability, cost, etc., need further studies.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Binhu District, Wuxi 214122, China
| |
Collapse
|
8
|
de Araújo Gomes A, Azcarate SM, Diniz PHGD, de Sousa Fernandes DD, Veras G. Variable selection in the chemometric treatment of food data: A tutorial review. Food Chem 2022; 370:131072. [PMID: 34537434 DOI: 10.1016/j.foodchem.2021.131072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Food analysis covers aspects of quality and detection of possible frauds to ensure the integrity of the food. The arsenal of analytical instruments available for food analysis is broad and allows the generation of a large volume of information per sample. But this instrumental information may not yet give the desired answer; it must be processed to provide a final answer for decision making. The possibility of discarding non-informative and/or redundant signals can lead to models of better accuracy, robustness, and chemical interpretability, in line with the principle of parsimony. Thus, in this tutorial review, we cover aspects of variable selection in food analysis, including definitions, theoretical aspects of variable selection, and case studies showing the advantages of variable selection-based models concerning the use of a wide range of non-informative and redundant instrumental information in the analysis of food matrices.
Collapse
Affiliation(s)
- Adriano de Araújo Gomes
- Universidade Federal do Rio Grande do Sul, Instituto de Química, 90650-001 Porto Alegre, RS, Brazil
| | - Silvana M Azcarate
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Av. Uruguay 151, 630 0 Santa Rosa, La Pampa, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Godoy Cruz 2290 CABA (C1425FQB), Argentina
| | | | | | - Germano Veras
- Laboratório de Química Analítica e Quimiometria, Centro de Ciências e Tecnologia, Universidade Estadual da Paraíba, 58429-500 Campina Grande, PB, Brazil
| |
Collapse
|
9
|
Smart-Hydroponic-Based Framework for Saffron Cultivation: A Precision Smart Agriculture Perspective. SUSTAINABILITY 2022. [DOI: 10.3390/su14031120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Saffron, one of the most expensive crops on earth, having a vast domain of applications, has the potential to boost the economy of India. The cultivation of saffron has been immensely affected in the past few years due to the changing climate. Despite the use of different artificial methods for cultivation, hydroponic approaches using the IoT prove to give the best results. The presented study consists of potential artificial approaches used for cultivation and the selection of hydroponics as the best approach out of these based on different parameters. This paper also provides a comparative analysis of six present hydroponic approaches. The research work on different factors of saffron, such as the parameters responsible for growth, reasons for the decline in growth, and different agronomical variables, has been shown graphically. A smart hydroponic system for saffron cultivation has been proposed using the NFT (nutrient film technique) and renewable sources of energy.
Collapse
|
10
|
Kumari L, Jaiswal P, Tripathy SS. Various techniques useful for determination of adulterants in valuable saffron: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Amirvaresi A, Parastar H. External parameter orthogonalization-support vector machine for processing of attenuated total reflectance-mid-infrared spectra: A solution for saffron authenticity problem. Anal Chim Acta 2021; 1154:338308. [PMID: 33736807 DOI: 10.1016/j.aca.2021.338308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/18/2022]
Abstract
In the present work, a new approach based on external parameter orthogonalization combined with support vector machine (EPO-SVM) is proposed for processing of attenuated total reflectance-Fourier transform mid-infrared (ATR-FT-MIR) spectra with the goal of solving authentication problem in saffron, the most expensive spice in the world. First, one-hundred authentic saffron samples are clustered by principal component analysis (PCA) with EPO as the best preprocessing strategy. Then, EPO-SVM is used for the detection of four commonly used plant-derived adulterants (i.e. safflower, calendula, rubia, and style) in binary mixtures (saffron and each of plant adulterants) and its performance is compared with other common classification methods. The obtained results showed that the EPO-SVM approach has a much better classification accuracy (>95%) than other methods (accuracy<89.2%). Finally, two different sample sets including mixture of saffron and four plant adulterants and commercial saffron samples are used for validation of the developed EPO-SVM model. In this regard, classification figures of merit in terms of sensitivity, specificity and accuracy were respectively 96.6%, 97.1%, and 96.8% which showed good classification performance. It is concluded that the proposed EPO-PCA and EPO-SVM approaches can be considered as reliable tools for authentication and adulteration detection in saffron samples.
Collapse
Affiliation(s)
- Arian Amirvaresi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Hadi Parastar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
12
|
Combining multivariate image analysis with high-performance thin-layer chromatography for development of a reliable tool for saffron authentication and adulteration detection. J Chromatogr A 2020; 1628:461461. [DOI: 10.1016/j.chroma.2020.461461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/02/2023]
|
13
|
Macêdo IYLD, Machado FB, Ramos GS, Costa AGDC, Batista RD, Filho ARG, Asquieri ER, Souza ARD, Oliveira AED, Gil EDS. Starch adulteration in turmeric samples through multivariate analysis with infrared spectroscopy. Food Chem 2020; 340:127899. [PMID: 32889203 DOI: 10.1016/j.foodchem.2020.127899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
|
14
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. A rapid MALDI MS/MS based method for assessing saffron (Crocus sativus L.) adulteration. Food Chem 2020; 307:125527. [DOI: 10.1016/j.foodchem.2019.125527] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/02/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
|
15
|
Ristivojević P, Trifković J, Andrić F, Milojković-Opsenica D. Recent trends in image evaluation of HPTLC chromatograms. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1725555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Filip Andrić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
16
|
Pandey DK, Nandy S, Mukherjee A, Dey A. Advances in bioactive compounds from Crocus sativus (saffron): Structure, bioactivity and biotechnology. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-12-817907-9.00010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
17
|
Chemometrics: a complementary tool to guide the isolation of pharmacologically active natural products. Drug Discov Today 2019; 25:27-37. [PMID: 31600581 DOI: 10.1016/j.drudis.2019.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022]
Abstract
Chemometrics offers an important complementary tool to enhance the searching and isolation of bioactive natural products from natural sources.
Collapse
|
18
|
Garavand F, Rahaee S, Vahedikia N, Jafari SM. Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Medina S, Perestrelo R, Silva P, Pereira JA, Câmara JS. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Athanassopoulos CM, Napoli A. Molecular species fingerprinting and quantitative analysis of saffron ( Crocus sativus L.) for quality control by MALDI mass spectrometry. RSC Adv 2018; 8:36104-36113. [PMID: 35558493 PMCID: PMC9088749 DOI: 10.1039/c8ra07484d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of saffron (Crocus sativus L.) by direct MS and MS/MS analysis. Experimentally, powdered saffron was subjected to a brief treatment with a 0.3% TFA water/acetonitrile solution, and the resulting mixture was directly placed on the MALDI plate for analysis. This approach allowed the detection of the commonly observed crocins C-1-C-6 and flavonols, together with the identification of the unknown highly glycosylated crocins C-7, C-8 and C-9, and carotenoid-derived metabolites. The strategy endorsed the simultaneous detection and characterization of saffron and adulterant markers using crude extracts of the adulterant itself and synthetic sets of adulterated authentic saffron samples. The implementation of the strategy was to measure the amount of an unknown adulterant from the crude extract using curcumin as a non-isotopic isobaric internal standard. The relationship between the saffron and curcumin molar ratios were established with a correlation coefficient of 0.9942. The ANOVA regression model was significant, F(1, 72) = 13 595.82, p < 0.001, y = (0.0116 ± 0.0001)x + (-0.1214 ± 0.0086). No matrix effects were observed and good results were obtained with respect to instrumental repeatability (*RSD% < 2%) and LOD (1.1%). The analysis of commercial samples of saffron using the proposed approach showed the suitability of the method for routine analysis (minimal sample preparation and very short measuring time per sample).
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Italy
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| | | | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria Italy
| |
Collapse
|
21
|
Sherma J, Rabel F. A review of thin layer chromatography methods for determination of authenticity of foods and dietary supplements. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1505637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|