1
|
Hong S, Moon JS, Yoon SS, Kim HY, Lee YJ. Genetic and Phenotypic Diversity of Listeria monocytogenes in Pig Slaughterhouses in Korea. Foodborne Pathog Dis 2024; 21:1-9. [PMID: 37819680 DOI: 10.1089/fpd.2023.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that has variable subtypes associated with human listeriosis and occurs in food and processing environments. This study was conducted to provide the genetic and phenotypic characterization of L. monocytogenes in pig carcasses and environments of slaughterhouses in Korea. A total of 22 L. monocytogenes were isolated from eight of 26 pig slaughterhouses between 2020 and 2022, and the most common serotype was 1/2c (40.9%), followed by serotypes 1/2b (31.8%) and 1/2a (27.3%). The isolates showed a significantly high prevalence of virulence genes located in Listeria pathogenicity island-1 (LIPI-1) and internalins (90.9-100%; p < 0.05). However, the prevalence rates of llsX, ptsA, and stress survival islet-1 (SSI-1) located in LIPI-3, LIPI-4, and SSI were only 9.1%, 22.7%, and 31.8%, respectively. In addition, among the epidemic clones (EC), ECI, ECII, ECIII, and ECV, only one isolate was represented as ECV. Isolates identified from the same slaughterhouses were divided into two or more pulsotypes, except for two slaughterhouses. Furthermore, the seven STs were classified into seven clonal complexes (CCs) (CC8, CC9, CC37, CC87, CC121, CC155, and CC288), and all CCs belonged to lineages I (31.8%) and II (68.1%). Interestingly, the isolates showed a high prevalence of oxacillin resistance (59.1%), and most isolates of the serotypes 1/2a and 1/2b exhibited oxacillin resistance, whereas only one of nine serotype 1/2c isolates exhibited oxacillin resistance. These results provide the genetic diversity of L. monocytogenes in pig carcasses and environments of slaughterhouses, and continuous monitoring will be helpful in predicting food safety risks.
Collapse
Affiliation(s)
- Serim Hong
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-San Moon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
García-Díez J, Saraiva S, Moura D, Grispoldi L, Cenci-Goga BT, Saraiva C. The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Vet Sci 2023; 10:167. [PMID: 36851472 PMCID: PMC9959654 DOI: 10.3390/vetsci10020167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
From the point of public health, the objective of the slaughterhouse is to guarantee the safety of meat in which meat inspection represent an essential tool to control animal diseases and guarantee the public health. The slaughterhouse can be used as surveillance center for livestock diseases. However, other aspects related with animal and human health, such as epidemiology and disease control in primary production, control of animal welfare on the farm, surveillance of zoonotic agents responsible for food poisoning, as well as surveillance and control of antimicrobial resistance, can be monitored. These controls should not be seen as a last defensive barrier but rather as a complement to the controls carried out on the farm. Regarding the control of diseases in livestock, scientific research is scarce and outdated, not taking advantage of the potential for disease control. Animal welfare in primary production and during transport can be monitored throughout ante-mortem and post-mortem inspection at the slaughterhouse, providing valuable individual data on animal welfare. Surveillance and research regarding antimicrobial resistance (AMR) at slaughterhouses is scarce, mainly in cattle, sheep, and goats. However, most of the zoonotic pathogens are sensitive to the antibiotics studied. Moreover, the prevalence at the slaughterhouse of zoonotic and foodborne agents seems to be low, but a lack of harmonization in terms of control and communication may lead to underestimate its real prevalence.
Collapse
Affiliation(s)
- Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Sónia Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Dina Moura
- Divisão de Intervenção de Alimentação e Veterinária de Vila Real e Douro Sul, Direção de Serviços de Alimentação e Veterinária da Região Norte, Direção Geral de Alimentação e Veterinária, Lugar de Codessais, 5000-567 Vila Real, Portugal
| | - Luca Grispoldi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy
| | - Beniamino Terzo Cenci-Goga
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy
- Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| | - Cristina Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
- Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
4
|
Galán-Relaño Á, Sánchez-Carvajal J, Gómez-Gascón L, Vera E, Huerta B, Cardoso-Toset F, Gómez-Laguna J, Astorga R. Phenotypic and genotypic antibiotic resistance patterns in Salmonella Typhimurium and its monophasic variant from pigs in southern Spain. Res Vet Sci 2022; 152:596-603. [DOI: 10.1016/j.rvsc.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
|
5
|
Wu B, Ed-Dra A, Pan H, Dong C, Jia C, Yue M. Genomic Investigation of Salmonella Isolates Recovered From a Pig Slaughtering Process in Hangzhou, China. Front Microbiol 2021; 12:704636. [PMID: 34305874 PMCID: PMC8298193 DOI: 10.3389/fmicb.2021.704636] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
The pig industry is the principal source of meat products in China, and the presence of pathogens in pig-borne meat is a crucial threat to public health. Salmonella is the major pathogen associated with pig-borne diseases. However, route surveillance by genomic platforms along the food chain is still limited in China. Here, we conducted a study to evaluate the dynamic prevalence of Salmonella in a pig slaughtering process in Hangzhou, Zhejiang Province, China. Fifty-five of 226 (24.37%) samples were positive for Salmonella; from them, 78 different isolates were selected and subjected to whole genome sequencing followed by bioinformatics analyses to determine serovar distribution, MLST patterns, antimicrobial resistance genes, plasmid replicons, and virulence factors. Moreover, phenotypic antimicrobial resistance was performed using the broth dilution method against 14 antimicrobial agents belonging to 10 antimicrobial classes. Our results showed that samples collected from the dehairing area (66.66%) and the splitting area (57.14%) were the most contaminated. Phenotypic antimicrobial resistance classified 67 of 78 isolates (85.90%) as having multidrug resistance (MDR), while the highest resistance was observed in tetracycline (85.90%; 67/78) followed by ampicillin (84.62%; 66/78), chloramphenicol (71.80%; 56/78), and nalidixic acid (61.54%; 48/78). Additionally, serovar prediction showed the dominance of Salmonella Typhimurium ST19 (51.28%; 40/78) among the 78 studied isolates, while plasmid prediction reported the dominance of IncHI2A_1 (20.51%; 16/78), followed by IncX1_1 (17.95%; 14/78) and IncHI2_1 (11.54%; 9/78). Virulence factor prediction showed the detection of cdtB gene encoding typhoid toxins in two Salmonella Goldcoast ST358 and one Salmonella Typhimurium ST19, while one isolate of Salmonella London ST155 was positive for genes encoding for the siderophore “yersiniabactin” and the gene senB encoding for enterotoxin production. From this study, we conclude that pig slaughterhouses are critical points for the dissemination of virulent and multidrug-resistant Salmonella isolates along the food chain which require the implementation of management systems to control the critical points. Moreover, there is an urgent need for the implementation of the whole genome sequencing platform to monitor the emergence of virulent and multidrug-resistant clones along the food chain.
Collapse
Affiliation(s)
- Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Hang Pan
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghang Dong
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China.,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
6
|
Huang J, Zang X, Lei T, Ren F, Jiao X. Prevalence of Campylobacter spp. in Pig Slaughtering Line in Eastern China: Analysis of Contamination Sources. Foodborne Pathog Dis 2020; 17:712-719. [DOI: 10.1089/fpd.2020.2800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People's Republic of China
| | - Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People's Republic of China
| | - Tianyao Lei
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, People's Republic of China
| | - Fangzhe Ren
- Joint International Research Laboratory of Agriculture and Agri-product Safety, Ministry of Education of China, Yangzhou, People's Republic of China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
7
|
Yang H, Wei SH, Hobman JL, Dodd CER. Antibiotic and Metal Resistance in Escherichia coli Isolated from Pig Slaughterhouses in the United Kingdom. Antibiotics (Basel) 2020; 9:antibiotics9110746. [PMID: 33126748 PMCID: PMC7692696 DOI: 10.3390/antibiotics9110746] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance is currently an important concern, but there are few data on the co-presence of metal and antibiotic resistance in potentially pathogenic Escherichia coli entering the food chain from pork, which may threaten human health. We have examined the phenotypic and genotypic resistances to 18 antibiotics and 3 metals (mercury, silver, and copper) of E. coli from pig slaughterhouses in the United Kingdom. The results showed resistances to oxytetracycline, streptomycin, sulphonamide, ampicillin, chloramphenicol, trimethoprim–sulfamethoxazole, ceftiofur, amoxicillin–clavulanic acid, aztreonam, and nitrofurantoin. The top three resistances were oxytetracycline (64%), streptomycin (28%), and sulphonamide (16%). Two strains were resistant to six kinds of antibiotics. Three carried the blaTEM gene. Fifteen strains (18.75%) were resistant to 25 µg/mL mercury and five (6.25%) of these to 50 µg/mL; merA and merC genes were detected in 14 strains. Thirty-five strains (43.75%) showed resistance to silver, with 19 possessing silA, silB, and silE genes. Fifty-five strains (68.75%) were resistant to 8 mM copper or above. Seven contained the pcoE gene. Some strains were multi-resistant to antibiotics, silver, and copper. The results in this study, based on strains isolated between 2007 and 2010, will aid understanding about the effects of strategies to reduce resistance and mechanisms of antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Hongyan Yang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK; (S.-H.W.); (J.L.H.); (C.E.R.D.)
- Correspondence:
| | - Shao-Hung Wei
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK; (S.-H.W.); (J.L.H.); (C.E.R.D.)
- JHL Biotech, Zhubei City, Hsinchu County 302, Taiwan
| | - Jon L. Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK; (S.-H.W.); (J.L.H.); (C.E.R.D.)
| | - Christine E. R. Dodd
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK; (S.-H.W.); (J.L.H.); (C.E.R.D.)
| |
Collapse
|
8
|
Gómez-Laguna J, Cardoso-Toset F, Meza-Torres J, Pizarro-Cerdá J, Quereda JJ. Virulence potential of Listeria monocytogenes strains recovered from pigs in Spain. Vet Rec 2020; 187:e101. [PMID: 33024008 DOI: 10.1136/vr.105945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/04/2020] [Accepted: 08/16/2020] [Indexed: 11/03/2022]
Abstract
BACKGROUND Listeria monocytogenes is a foodborne bacterial pathogen that causes listeriosis, an infectious disease in animals and people, with pigs acting as asymptomatic reservoirs. In August 2019 an outbreak associated with the consumption of pork meat caused 222 human cases of listeriosis in Spain. Determining the diversity as well as the virulence potential of strains from pigs is important to public health. METHODS The behaviour of 23 L monocytogenes strains recovered from pig tonsils, meat and skin was compared by studying (1) internalin A, internalin B, listeriolysin O, actin assembly-inducing protein and PrfA expression levels, and (2) their invasion and intracellular growth in eukaryotic cells. RESULTS Marked differences were found in the expression of the selected virulence factors and the invasion and intracellular replication phenotypes of L monocytogenes strains. Strains obtained from meat samples and belonging to serotype 1/2a did not have internalin A anchored to the peptidoglycan. Some strains expressed higher levels of the studied virulence factors and invaded and replicated intracellularly more efficiently than an epidemic L monocytogenes reference strain (F2365). CONCLUSION This study demonstrates the presence of virulent L monocytogenes strains with virulent potential in pigs, with valuable implications in veterinary medicine and food safety.
Collapse
Affiliation(s)
- Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, University of Cordoba, Cordoba, Spain
| | | | - Jazmín Meza-Torres
- Yersinia Research Unit, Microbiology Department, Institut Pasteur, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Microbiology Department, Institut Pasteur, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Plague, Microbiology Department, Institut Pasteur, F-75724 Paris, France
| | - Juan J Quereda
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
9
|
Cherifi T, Arsenault J, Pagotto F, Quessy S, Côté JC, Neira K, Fournaise S, Bekal S, Fravalo P. Distribution, diversity and persistence of Listeria monocytogenes in swine slaughterhouses and their association with food and human listeriosis strains. PLoS One 2020; 15:e0236807. [PMID: 32760141 PMCID: PMC7410256 DOI: 10.1371/journal.pone.0236807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/13/2020] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a major foodborne disease and an important public health concern. Contamination of meat with L. monocytogenes occurs frequently at the slaughterhouse. Our aims were; 1) to investigate the distribution of L. monocytogenes in the processing areas of four swine slaughterhouses; 2) to describe the diversity of L. monocytogenes strains by pulsed-field gel electrophoresis; 3) to identify persistent L. monocytogenes strains and describe their distribution; 4) to investigate the associations between persistence of strains and their following characteristics: detection in food isolates, detection in human clinical isolates, and the presence of benzalkonium chloride (BAC) resistance genes. Various operation areas within the four swine slaughterhouses were sampled on four occasions. A total of 2496 samples were analyzed, and L. monocytogenes was successfully isolated from 243 samples. The proportion of positive samples ranged from 32 to 58% in each slaughterhouse and from 24 to 68% in each operation area. Fifty-eight different pulsotypes were identified and eight pulsotypes, present in samples collected during 4 visits, were considered persistent. The persistent pulsotypes were significantly more likely to be detected in food (P < 0.01, exact χ²) and human clinical cases (P < 0.01, exact χ²), respectively. Among pulsotypes harboring the BAC bcrABC resistance cassette or the emrE multidrug transporter gene, 42.8% were persistent compared to 4.5% for pulsotypes without these resistance genes (P < 0.01, exact χ²). Our study highlights the importance of persistent L. monocytogenes strains in the environmental contamination of slaughterhouses, which may lead to repeated contamination of meat products. It also shows that the presence of disinfectants resistance genes is an important contributing factor.
Collapse
Affiliation(s)
- Tamazight Cherifi
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- * E-mail: (TC); (PF)
| | - Julie Arsenault
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Epidemiology of Zoonoses and Public Health Research Unit (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Franco Pagotto
- Listeriosis Reference Service, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Sylvain Quessy
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Charles Côté
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Kersti Neira
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Groupe de recherche et d’enseignement en salubrité des aliments (GRESA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Philippe Fravalo
- Chaire de recherche en salubrité des viandes, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Epidemiology of Zoonoses and Public Health Research Unit (GREZOSP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- * E-mail: (TC); (PF)
| |
Collapse
|
10
|
Alía A, Andrade MJ, Rodríguez A, Martín I, Pérez-Baltar A, Medina M, Córdoba JJ. Prevalence and characterization of Listeria monocytogenes in deboning and slicing areas of Spanish dry-cured ham processing. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Morales-Partera Á, Cardoso Toset F, Luque I, Maldonado A, Tarradas C, Gómez-Laguna J. Supplementing feed with Pediococcus acidilactici reduces Campylobacter load in finishing pigs. Vet Rec 2020; 187:e45. [PMID: 32327553 DOI: 10.1136/vr.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pigs are asymptomatic carriers of foodborne bacteria, such as Salmonella enterica and Campylobacter species, which can pose a risk to human health. New strategies to control bacteria burden before reaching the slaughterhouse are necessary. This study evaluated the effect of Pediococcus acidilactici on performance parameters and on the burden of foodborne pathogens, that have subsequent implications on food quality and safety, in free-range finishing pigs at the slaughterhouse. METHODS Pigs were randomly allocated and blocked by weight into control group (control diet) and treated group (control diet supplemented with P acidilactici) 31 days before slaughter. Weight and average daily gain were recorded and changes in faecal microbiota were determined at the beginning and at the end of the study. RESULTS No changes were observed in performance parameters. No statistically significant differences were observed when comparing between treated and control animals at the beginning or at the end of the study. However, a significant decrease was detected in the counts of Campylobacter species in treated animals between day 0 and day 31 (4.86-3.40 log colony-forming units/g; P=0.002). CONCLUSION This study indicates that supplementation with P acidilactici represents a useful approach to control Campylobacter species load in free-range finishing pigs before slaughter.
Collapse
Affiliation(s)
- Ángela Morales-Partera
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain.,Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain
| | | | - Inmaculada Luque
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Alfonso Maldonado
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Carmen Tarradas
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Jaime Gómez-Laguna
- Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain .,Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| |
Collapse
|
12
|
Han X, Peng J, Guan X, Li J, Huang X, Liu S, Wen Y, Zhao Q, Huang X, Yan Q, Huang Y, Cao S, Wu R, Ma X, Zou L. Genetic and antimicrobial resistance profiles of Salmonella spp. isolated from ducks along the slaughter line in southwestern China. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Meloni D. High-Hydrostatic-Pressure (HHP) Processing Technology as a Novel Control Method for Listeria monocytogenes Occurrence in Mediterranean-Style Dry-Fermented Sausages. Foods 2019; 8:E672. [PMID: 31842401 PMCID: PMC6963505 DOI: 10.3390/foods8120672] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Although conventional microbial control techniques are currently employed and largely successful, their major drawbacks are related to their effects on quality of processed food. In recent years, there has been a growing demand for high-quality foods that are microbially safe and retain most of their natural freshness. Therefore, several modern and innovative methods of microbial control in food processing have been developed. High-hydrostatic-pressure (HHP) processing technology has been mainly used to enhance the food safety of ready-to-eat (RTE) products as a new pre-/post-packaging, non-thermal purification method in the meat industry. Listeria monocytogenes is a pertinent target for microbiological safety and shelf-life; due to its capacity to multiply in a broad range of food environments, is extremely complicated to prevent in fermented-sausage-producing plants. The frequent detection of L. monocytogenes in final products emphasizes the necessity for the producers of fermented sausages to correctly overcome the hurdles of the technological process and to prevent the presence of L. monocytogenes by applying novel control techniques. This review discusses a collection of recent studies describing pressure-induced elimination of L. monocytogenes in fermented sausages produced in the Mediterranean area.
Collapse
Affiliation(s)
- Domenico Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
14
|
Wijnen LI, Biasino W, Verbeke W, De Zutter L, Seliwiorstow T, Van Damme I. Attitudes and opinions of the abattoir sector toward the control and prevention of microbiological foodborne pathogens. J Food Saf 2019. [DOI: 10.1111/jfs.12667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lena I. Wijnen
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food SafetyGhent University Merelbeke Belgium
| | - Wauter Biasino
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food SafetyGhent University Merelbeke Belgium
| | - Wim Verbeke
- Faculty of Bioscience Engineering, Department of Agricultural EconomicsGhent University Ghent Belgium
| | - Lieven De Zutter
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food SafetyGhent University Merelbeke Belgium
| | - Tomasz Seliwiorstow
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food SafetyGhent University Merelbeke Belgium
| | - Inge Van Damme
- Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food SafetyGhent University Merelbeke Belgium
| |
Collapse
|
15
|
Campylobacter and Arcobacter species in food-producing animals: prevalence at primary production and during slaughter. World J Microbiol Biotechnol 2019; 35:146. [DOI: 10.1007/s11274-019-2722-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|