1
|
Jiang Y, Wu Y, Zheng X, Yu T, Yan F. Current insights into yeast application for reduction of patulin contamination in foods: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e70044. [PMID: 39437191 DOI: 10.1111/1541-4337.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Patulin, a fungal secondary metabolite with multiple toxicities, is widely existed in a variety of fruits and their products. This not only causes significant economic losses to the agricultural and food industries but also poses a serious threat to human health. Conventional techniques mainly involved physical and chemical methods present several challenges include incomplete patulin degradation, high technical cost, and fruit quality decline. In comparison, removal of mycotoxin through biodegradation is regarded as a greener and safer strategy which has become popular research. Among them, yeast has a unique advantage in detoxification effect and application, which has attracted our attention. Therefore, this review provides a comprehensive account of the yeast species that can degrade patulin, degradation mechanism, current application status, and future challenges. Yeasts can efficiently convert patulin into nontoxic or low-toxic substances through biodegradation. Alternatively, it can use physical adsorption, which has the advantages of safety, high efficiency, and environmental friendliness. Nevertheless, due to the inherent complexity of the production environment, the sole utilization of yeast as a control agent remains inherently unstable and challenging to implement on a large scale in a practical manner. Integration control, enhancement of yeast resilience, improvement of yeast cell wall adsorption capacity, and research on additional patulin-degrading enzymes will facilitate the practical application of this approach. Furthermore, we analyzed the feasibility of the yeast commercial application in patulin reduction and provided suggestions on how to enhance its commercial value, which is of great significance for the control of mycotoxins in food products.
Collapse
Affiliation(s)
- Yiwei Jiang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Gong Q, Zhang Z, Huang P, Wang B, Zheng X. Assessment of Fungal and Contamination of Ochratoxin A and Patulin in Foods Susceptible to Contamination in the Yangzhou Market, China. Foods 2024; 13:3205. [PMID: 39410238 PMCID: PMC11475113 DOI: 10.3390/foods13193205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The conducive conditions of warm and humid climates can facilitate mold proliferation and subsequent mycotoxin production during food processing and distribution, thereby posing a potential risk to consumer health. However, there exists a significant lack of research regarding the diversity of molds and the presence of ochratoxin A (OTA) and patulin (PAT) in food products available in the Yangzhou market. This study was conducted to assess OTA contamination levels and fungal presence in 57 cereal-based food samples, as well as PAT contamination levels and fungal presence in 50 types of foods, including apples, hawthorn berries, pears, and their derivatives. Ochratoxin A (OTA) was detected in 17 out of 57 cereal-based food samples, with concentrations ranging from 0.93 to 32.69 μg/kg. The contamination rate was determined to be 31.48%, and no samples exceeded the established regulatory limits. Furthermore, seven apple products were identified as contaminated with patulin (PAT), exhibiting concentrations between 26.85 and 192.78 μg/kg. Additionally, three food samples derived from hawthorn showed PAT contamination levels ranging from 29.83 to 88.56 μg/kg. Through purification on potato dextrose agar (PDA) medium, observation of colony morphology, and analysis of internal transcribed spacer (ITS) sequences, a total of 35 fungal strains belonging to 13 genera were identified in cereal-based foods. The predominant genera in cereals included Talaromyces, Fusarium, Aspergillus, and Penicillium. Additionally, twelve fungal strains from five genera (Penicillium, Cladosporium, Aureobasidium, Curvularia, and Alternaria) were isolated and identified in fruits and their derivatives. The findings indicate that OTA and PAT toxins are one of the important risk factors that threaten consumer health. Furthermore, the contamination of some other toxigenic strains is also a matter of substantial concern, with potential implications for consumer health.
Collapse
Affiliation(s)
| | | | | | | | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, No. 196 West Huayang Road, Yangzhou 225009, China; (Q.G.); (B.W.)
| |
Collapse
|
3
|
Wang L, Cai R, Zhang J, Liu X, Wang S, Ge Q, Zhao Z, Yue T, Yuan Y, Wang Z. Removal of ochratoxin A in wine by Cryptococcus albidus and safety assessment of degradation products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2030-2037. [PMID: 37910399 DOI: 10.1002/jsfa.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Ochratoxin A (OTA) is a mycotoxin that contaminates grape-based products and is extremely harmful to the health of the host. It is effectively removed by yeast during the fermentation of wine, whereas the removal mechanism of OTA remains unclear. Therefore, the present study aimed to investigate the removal mechanism of ochratoxin A by yeast and to evaluate the safety of its degradation products. RESULTS Cryptococcus albidus (20-G) with better effect on ochratoxin A (OTA) was screened out in the main fermentation stage of wine. The results showed that 20-G removed OTA through biosorption and biodegradation. Intracellular enzymes played the main role (18.44%) and yeast cell walls adsorbed a small amount of OTA (8.44%). Furthermore, the identification of proteins in 20-G revealed that the decrease in OTA content was mainly a result of the action of peroxidase, and validation tests were carried out. By analyzing the degradation products of OTA, OTα and phenylalanine with lower toxicity were obtained. Animal experiments showed that the intervention of yeast 20-G reduced the damage and adverse effects caused by OTA toxicity to the mice. CONCLUSION The present study demonstrates the mechanism of OTA removal by 20-G and the toxicity of OTA was reduced by peroxidase in 20-G. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, China
| | - Jierong Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Qian Ge
- Institute of Quality Standards and Testing Technology for Agricultural Products (Ningxia), Yinchuan, China
| | - Zidan Zhao
- Institute of Quality Standards and Testing Technology for Agricultural Products (Ningxia), Yinchuan, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Xianyang, China
- College of Food Science and Engineering, Northwest University, Xi'an, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Xianyang, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Xianyang, China
| |
Collapse
|
4
|
Yang C, Zhang Z, Peng B. New insights into searching patulin degrading enzymes in Saccharomyces cerevisiae through proteomic and molecular docking analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132806. [PMID: 37922585 DOI: 10.1016/j.jhazmat.2023.132806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Global warming has increased the contamination of mycotoxins. Patulin (PAT) is a harmful contaminant that poses a serious threat to food safety and human health. Saccharomyces cerevisiae biodegrades PAT by its enzymes during fermentation, which is a safe and efficient method of detoxification. However, the key degradation enzymes remain unclear. In this study, the proteomic differences of Saccharomyces cerevisiae under PAT stress were investigated. The results showed that the proteins involved in redox reactions and defense mechanisms were significantly up-regulated to resist PAT stress. Subsequently, molecular docking was used to virtual screen for degrading enzymes. Among 18 proteins, YKL069W showed the highest binding affinity to PAT and was then expressed in Escherichia coli, where the purified YKL069W completely degraded 10 μg/mL PAT at 48 h. YKL069W was demonstrated to be able to degrade PAT into E-ascladiol. Molecular dynamics simulations confirmed that YKL069W was stable in catalyzing PAT degradation with a binding free energy of - 7.5 kcal/mol. Furthermore, it was hypothesized that CYS125 and CYS101 were the key amino acid residues for degradation. This study offers new insights for the rapid screening and development of PAT degrading enzymes and provides a theoretical basis for the detoxification of mycotoxins.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural GenomicsInstitute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
5
|
Xing M, Chen Y, Dai W, He X, Li B, Tian S. Immobilized short-chain dehydrogenase/reductase on Fe 3O 4 particles acts as a magnetically recoverable biocatalyst component in patulin bio-detoxification system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130986. [PMID: 36860057 DOI: 10.1016/j.jhazmat.2023.130986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Patulin is one of the most important mycotoxins that contaminates fruit-derived products and causes acute or chronic toxicity in humans. In the present study, a novel patulin-degrading enzyme preparation was developed by taking a short-chain dehydrogenase/reductase and covalently linking it to dopamine/polyethyleneimine co-deposited magnetic Fe3O4 particles. Optimum immobilization provided 63% immobilization efficiency and 62% activity recovery. Moreover, the immobilization protocol substantially improved thermal and storage stabilities, proteolysis resistance, and reusability. Using reduced nicotinamide adenine dinucleotide phosphate as a cofactor, the immobilized enzyme exhibited a detoxification rate of 100% in phosphate-buffered saline and a detoxification rate of more than 80% in apple juice. The immobilized enzyme did not cause adverse effects on juice quality and could be magnetically separated quickly after detoxification to ensure convenient recycling. Moreover, it did not exhibit cytotoxicity against a human gastric mucosal epithelial cell line at a concentration of 100 mg/L. Consequently, the immobilized enzyme as a biocatalyst had the characteristics of high efficiency, stability, safety, and easy separation, establishing the first step in building a bio-detoxification system to control patulin contamination in juice and beverage products.
Collapse
Affiliation(s)
- Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wanqin Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Zhang Y, Dhanasekaran S, Ngea GLN, Yang Q, Zhang H. Overexpression of the SDR gene improves the ability of Meyerozyma guilliermondii to degrade patulin in pears and juices. Food Chem 2023; 417:135785. [PMID: 36913869 DOI: 10.1016/j.foodchem.2023.135785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The intracellular enzymes of antagonistic yeast are effective in controlling patulin (PAT) contamination. However, countless enzymes that have been revealed remain functionally uncharacterized. The study built on previous transcriptomic data obtained by our research group to amplify and express a gene encoding a short-chain dehydrogenase/reductase (SDR) in Meyerozyma guilliermondii. Overexpression of SDR increased the tolerance of M. guilliermondii to PAT and the ability to degrade PAT of the intracellular enzymes. Furthermore, MgSDR-overexpressed M. guilliermondii showed higher PAT degradation in juices (apple and peach) and controlled the blue mold of pears at 20 °C and 4 °C while significantly reduced the content of PAT and the biomass of Penicillium expansum in decayed tissues than wild-type M. guilliermondii. This study provides theoretical references for the subsequent heterologous expression, formulation, and application of the SDR protein from M. guilliermondii and contributes to elucidating the PAT degradation mechanism of antagonistic yeasts.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | | | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
7
|
Simões L, Fernandes N, Teixeira J, Abrunhosa L, Dias DR. Brazilian Table Olives: A Source of Lactic Acid Bacteria with Antimycotoxigenic and Antifungal Activity. Toxins (Basel) 2023; 15:71. [PMID: 36668890 PMCID: PMC9866039 DOI: 10.3390/toxins15010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48-51%), OTA (28-33%), and PAT (23-24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives.
Collapse
Affiliation(s)
- Luara Simões
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Centre of Molecular and Environmental Biology, University of Minho, 4710-057 Braga, Portugal
| | - Natália Fernandes
- Biology Department, Federal University of Lavras, Lavras 37200-900, Brazil
- Chemistry Department, University of California, Davis, CA 95616, USA
| | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Abrunhosa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, Lavras 37200-900, Brazil
| |
Collapse
|
8
|
Yang Y, Ji J, Wu S, Ye Y, Sheng L, Zhang Y, Sun X. Efficient Biodegradation of Patulin by Aspergillus niger FS10 and Metabolic Response of Degrading Strain. Foods 2023; 12:foods12020382. [PMID: 36673472 PMCID: PMC9858360 DOI: 10.3390/foods12020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Patulin, a mycotoxin commonly found in fruits and derived products, causes serious health problems for humans and animals worldwide. Several microbial strains have been observed to possess the ability to effectively remove patulin. However, these methods are presently associated with disadvantages such as low degradation efficiency and an unclear biodegradation mechanism. In the current study, the characteristics of patulin degradation via Aspergillus niger FS10 were evaluated, and the mechanisms involved were analyzed using metabolomics technologies. The results showed that the suspension of A. niger FS10 could degrade 94.72% of patulin within 36 h. The moment concentration pf patulin was 0.116 μg/mL, and the detection limit value was 0.01 μg/mL. In addition, the patulin content was reduced to levels below the detection limit within 48 h. A. niger FS10 mainly degrades patulin by producing intracellular enzymes, which can convert patulin into ascladiol. This degradation method can effectively reduce the damage caused by patulin to HepG2 cells. In addition, the patulin treatment significantly affects the pentose phosphate pathway and the glutathione pathway. These two metabolic pathways are speculated to be closely related to patulin degradation via A. niger FS10. The incubation of A. niger FS10 with patulin-contaminated apple pomace can not only eliminate patulin but also increase the utilization of apple pomace. Therefore, our research results provide a new method for addressing patulin contamination in the food and feed industries.
Collapse
Affiliation(s)
- Yang Yang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Shang Wu
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yongli Ye
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lina Sheng
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yinzhi Zhang
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiulan Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Joint International Research Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85329015; Fax: +86-85328726
| |
Collapse
|
9
|
Zheng X, Xia F, Li J, Zheng L, Rao S, Gao L, Yang Z. Reduction of ochratoxin A from contaminated food by Lactobacillus rhamnosus Bm01. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Insights into the Metabolic Response of Lactiplantibacillus plantarum CCFM1287 upon Patulin Exposure. Int J Mol Sci 2022; 23:ijms231911652. [PMID: 36232948 PMCID: PMC9570479 DOI: 10.3390/ijms231911652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Patulin (PAT) is a common mycotoxin in the food industry, and is found in apple products in particular. Consumption of food or feed contaminated with PAT can cause acute or chronic toxicity in humans and animals. Lactiplantibacillus plantarum CCFM1287 is a probiotic strain that effectively degrades PAT in PBS and food systems. In this study, it was found that the concentration of PAT (50 mg/L) in MRS medium decreased by 85.09% during the first stages of CCFM1287 growth, and this change was consistent with the first-order degradation kinetic model. Meanwhile, the regulation of oxidative stress by L. plantarum CCFM1287 in response to PAT exposure and metabolic changes that occur during PAT degradation were investigated. The degree of intracellular damage was attenuated after 16 h of exposure compared to 8 h. Meanwhile, metabolomic data showed that 30 and 29 significantly different metabolites were screened intracellularly in the strain after 8 h and 16 h of PAT stress at 50 mg/L, respectively. The results of pathway enrichment analysis suggested that the purine metabolic pathway was significantly enriched at both 8 h and 16 h. However, as is consistent with the performance of the antioxidant system, the changes in Lactiplantibacillus diminished with increasing time of PAT exposure. Therefore, this study helps to further explain the mechanism of PAT degradation by L. plantarum CCFM1287.
Collapse
|
11
|
Li N, Cui R, Zhang F, Meng X, Liu B. Current situation and future challenges of patulin reduction-a review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
The use of Caenorhabditis elegans model to screen lactobacilli for the control of patulin. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Massoud R, Zoghi A. Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. J Appl Microbiol 2022; 133:1288-1307. [PMID: 35751476 DOI: 10.1111/jam.15685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Heavy metals and mycotoxins in foodstuffs are one of the major concerns of our world nowadays. Food decontamination with the help of microbial biomass is a cheap, easy, efficient, and green method known as bioremoval. Probiotics are able to reduce the availability of heavy metals and toxins in food products. The purpose of this review is to summarize the probiotics and potential probiotics' interesting role in food bio-decontamination. After a brief glance at the definition of potential probiotic strains with bioremoval ability, LABs (lactic acid bacteria) are described as they are the most important groups of probiotics. After that, the role of the main probiotic and potential probiotic strains (Bacillus, Lactobacillus, Lactococcus, Enterococcus, Bifidobacterium, Pediococcus, Propionibacterium, Streptococcus, and Saccharomyces cerevisiae) for heavy metals and mycotoxins bioremoval are described. Additionally, the bioremoval mechanism and the effect of some factors in bioremoval efficiency are explained. Finally, the investigations about probiotic and contaminant stability are mentioned. It is worth mentioning that this review article can be exerted in different food and beverage industries to eliminate the heavy metals and mycotoxins in foodstuffs.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food and Technology, Standard Organization, Tehran, Iran
| | - Alaleh Zoghi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Li Y, Qian Y, Lou X, Hu Z, Hu Y, Zeng M, Liu Z. LuxS in Lactobacillus plantarum SS-128 Improves the Texture of Refrigerated Litopenaeus vannamei: Mechanism Exploration Using a Proteomics Approach. Front Microbiol 2022; 13:892788. [PMID: 35711745 PMCID: PMC9195002 DOI: 10.3389/fmicb.2022.892788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
This study illustrated the texture changes of Shewanella baltica-inoculated Litopenaeus vannamei during refrigerated storage with the exogenous addition of Lactobacillus plantarum SS-128. The group inoculated with SS-128 had an improved texture compared with that inoculated with the luxS-mutant group (ΔluxS). Proteomics were conducted to analyze the protein alterations in L. vannamei and supernatant, respectively. During storage, many texture-related proteins, including myosin heavy chain and beta-actin, were maintained due to luxS. Some endogenous enzymes related to the energy metabolism and hydrolysis of L. vannamei were downregulated. The luxS-induced interaction with S. baltica showed significant changes in the expression of some critical enzymes and pathways. The ATP-dependent zinc metalloprotease FtsH and protease subunit HslV were downregulated, and the oxidative phosphorylation and glycosaminoglycan degradation pathways in S. baltica were inhibited, resulting in the slow deterioration of L. vannamei. By exploring the mechanism underlying SS-128-led manipulation of the metabolism of spoilage bacteria, we clarified the texture maintenance mechanism of luxS in SS-128, providing theoretical evidence for SS-128 application in food preservation.
Collapse
Affiliation(s)
- Yuan Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Xiaowei Lou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Zhiheng Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao, China
| |
Collapse
|
15
|
Afzali Z, Mohadesi A, Ali Karimi M, Fathirad F. A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Xing M, Chen Y, Li B, Tian S. Highly efficient removal of patulin using immobilized enzymes of Pseudomonas aeruginosa TF-06 entrapped in calcium alginate beads. Food Chem 2022; 377:131973. [PMID: 34990945 DOI: 10.1016/j.foodchem.2021.131973] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 11/04/2022]
Abstract
Patulin is a toxic secondary metabolite produced by several moulds, which contaminates fruits and their products posing serious threats to human health. Though several microorganisms and enzymes have been reported to effectively degrade patulin, separation of them from fruit juice challenges the commercial applications. Here, a Pseudomonas aeruginosa strain TF-06 was isolated, its patulin degradation mechanism and optimum conditions for enzyme immobilization were investigated. The results indicated that TF-06 could degrade patulin into non-cytotoxic E/Z-ascladiol mainly by the activity of intracellular enzymes. For easy separation of enzymes, calcium alginate was selected for immobilization of intracellular enzymes from TF-06. The immobilized enzyme beads were effective in detoxification of patulin in apple juice. The mitigation rate was reached 95%, while there was no negative effect on juice quality. The study provides a promising way to resolve the issue of enzyme separation during mycotoxin biological detoxification in fruit juice.
Collapse
Affiliation(s)
- Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022; 11:foods11091283. [PMID: 35564005 PMCID: PMC9099756 DOI: 10.3390/foods11091283] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fermentation of various food stuffs by lactic acid bacteria is one of the oldest forms of food biopreservation. Bacterial antagonism has been recognized for over a century, but in recent years, this phenomenon has received more scientific attention, particularly in the use of various strains of lactic acid bacteria (LAB). Certain strains of LAB demonstrated antimicrobial activity against foodborne pathogens, including bacteria, yeast and filamentous fungi. Furthermore, in recent years, many authors proved that lactic acid bacteria have the ability to neutralize mycotoxin produced by the last group. Antimicrobial activity of lactic acid bacteria is mainly based on the production of metabolites such as lactic acid, organic acids, hydroperoxide and bacteriocins. In addition, some research suggests other mechanisms of antimicrobial activity of LAB against pathogens as well as their toxic metabolites. These properties are very important because of the future possibility to exchange chemical and physical methods of preservation with a biological method based on the lactic acid bacteria and their metabolites. Biopreservation is defined as the extension of shelf life and the increase in food safety by use of controlled microorganisms or their metabolites. This biological method may determine the alternative for the usage of chemical preservatives. In this study, the possibilities of the use of lactic acid bacteria against foodborne pathogens is provided. Our aim is to yield knowledge about lactic acid fermentation and the activity of lactic acid bacteria against pathogenic microorganisms. In addition, we would like to introduce actual information about health aspects associated with the consumption of fermented products, including probiotics.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
- Correspondence:
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| |
Collapse
|
18
|
Li N, Cui R, Zhang F, Meng X, Liu B. A novel enzyme from Rhodotorula mucilaginosa Aldolase: isolation, identification and degradation for patulin in apple juice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
|
20
|
He Q, Liang J, Zhao Y, Yuan Y, Wang Z, Gao Z, Wei J, Yue T. Enzymatic degradation of mycotoxin patulin by an extracellular lipase from Ralstonia and its application in apple juice. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Lai W, Cai R, Yang K, Yue T, Gao Z, Yuan Y, Wang Z. Detoxification of patulin by Lactobacillus pentosus DSM 20314 during apple juice fermentation. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Bangar SP, Sharma N, Kumar M, Ozogul F, Purewal SS, Trif M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Selection of Autochthonous LAB Strains of Unripe Green Tomato towards the Production of Highly Nutritious Lacto-Fermented Ingredients. Foods 2021; 10:foods10122916. [PMID: 34945467 PMCID: PMC8700740 DOI: 10.3390/foods10122916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Lactic fermentation of unripe green tomatoes as a tool to produce food ingredients is a viable alternative for adding value to industrial tomatoes unsuitable for processing and left in large quantities in the fields. Fermentation using starter cultures isolated from the fruit (plant-matrix adapted) can have advantages over allochthonous strains in obtaining fermented products with sensory acceptability and potentially probiotic characteristics. This paper details the characterisation of the unripe green tomato lactic microbiota to screen LAB strains for use as starter cultures in fermentation processes, along with LAB strains available from INIAV's collection. Morphological, biochemical (API system), and genomic (16S rDNA gene sequencing) identification showed that the dominant LAB genera in unripe green tomato are Lactiplantibacillus, Leuconostoc, and Weissella. Among nine tested strains, autochthonous Lactiplantibacillus plantarum and allochthonous Weissella paramesenteroides showed tolerance to added solanine (200 ppm) and the best in vitro probiotic potential. The results indicate that the two LAB strains are promising candidates for manufacturing probiotic fermented foods from unripe green tomatoes.
Collapse
|
24
|
Piotrowska M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins (Basel) 2021; 13:toxins13110819. [PMID: 34822603 PMCID: PMC8619243 DOI: 10.3390/toxins13110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The contamination of food and feeds with mycotoxins poses a global health risk to humans and animals, with major economic consequences. Good agricultural and manufacturing practices can help control mycotoxin contamination. Since these actions are not always effective, several methods of decontamination have also been developed, including physical, chemical, and biological methods. Biological decontamination using microorganisms has revealed new opportunities. However, these biological methods require legal regulations and more research before they can be used in food production. Currently, only selected biological methods are acceptable for the decontamination of feed. This review discusses the literature on the use of microorganisms to remove mycotoxins and presents their possible mechanisms of action. Special attention is given to Saccharomyces cerevisiae yeast and lactic acid bacteria, and the use of yeast cell wall derivatives.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
25
|
Ma K, Diao E, Zhang H, Qian S, Xie P, Mao R, Song H, Zhang L. Factors influencing the removal of patulin by cysteine. Toxicon 2021; 203:51-57. [PMID: 34626597 DOI: 10.1016/j.toxicon.2021.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
The removal of patulin in phosphoric acid buffer solution by cysteine was investigated. Cysteine could effectively decrease the patulin concentration at high acidic condition (pH 3.0-5.0) with the help of high temperature greater than 90 °C. Three removal mechanisms of patulin by cysteine under high acidic and high temperature conditions were deduced. Reaction temperature, pH of reactive media, molar ratio between cysteine and patulin, and reaction time were all the obvious factors influencing the removal efficiency of patulin, and the increase of any one factor could significantly improve the removal efficiency of patulin. The removal process of patulin could be simulated by the zero-order kinetic model, logarithmic model, and pseudo-first-order kinetic model, respectively, and the corresponding correlation coefficients (R2) were all greater than 0.90. Presently, this method can only be applied for the removal of patulin in contaminated water from washing fruits in juice processing industry due to the high treatment temperature more than 120 °C and the long detoxification time greater than 1 h.
Collapse
Affiliation(s)
- Kun Ma
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Enjie Diao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China.
| | - Hui Zhang
- College of Food Science & Engineering, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Shiquan Qian
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Ruifeng Mao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Huwei Song
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China; Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huai'an, 223300, PR China
| | - Liming Zhang
- Research & Development Center of National Vegetable Processing Technology, Jiangsu Liming Food Group Co., Ltd., Pizhou, 221354, PR China
| |
Collapse
|
26
|
Li H, James A, Shen X, Wang Y. Roles of microbiota in the formation of botrytized grapes and wines. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1958925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hua Li
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Armachius James
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Xuemei Shen
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Center For Food Nutrition And Human Health, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
27
|
Adsorption Mechanism of Patulin from Apple Juice by Inactivated Lactic Acid Bacteria Isolated from Kefir Grains. Toxins (Basel) 2021; 13:toxins13070434. [PMID: 34206488 PMCID: PMC8309945 DOI: 10.3390/toxins13070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
In the food industry, microbiological safety is a major concern. Mycotoxin patulin represents a potential health hazard, as it is heat-resistant and may develop at any stage during the food chain, especially in apple-based products, leading to severe effects on human health, poor quality products, and profit reductions. The target of the study was to identify and characterize an excellent adsorbent to remove patulin from apple juice efficiently and to assess its adsorption mechanism. To prevent juice fermentation and/or contamination, autoclaving was involved to inactivate bacteria before the adsorption process. The HPLC (high-performance liquid chromatography) outcome proved that all isolated strains from kefir grains could reduce patulin from apple juice. A high removal of 93% was found for juice having a 4.6 pH, 15° Brix, and patulin concentration of 100 μg/L by Lactobacillus kefiranofacien, named JKSP109, which was morphologically the smoothest and biggest of all isolates in terms of cell wall volume and surface area characterized by SEM (Scanning electron microscopy) and TEM (transmission electron microscopy). C=O, OH, C–H, and N–O were the main functional groups engaged in patulin adsorption indicated by FTIR (Fourier transform–infrared). E-nose (electronic nose) was performed to evaluate the aroma quality of the juices. PCA (Principal component analysis) results showed that no significant changes occurred between control and treated juice.
Collapse
|
28
|
Li C, Kong Q, Mou H, Jiang Y, Du Y, Zhang F. Biotransformation of alkylamides and alkaloids by lactic acid bacteria strains isolated from Zanthoxylum bungeanum meal. BIORESOURCE TECHNOLOGY 2021; 330:124944. [PMID: 33735732 DOI: 10.1016/j.biortech.2021.124944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Zanthoxylum bungeanum meal (ZBM) is the by-product of Z. bungeanum seeds after pressing. It is restricted as a feed additive because it contains stimulating and potentially harmful substances, which are alkylamides and alkaloids. This study described the use of Lactobacillus paracasei and L. acidipiscis isolated from ZBM in solid-state fermentation of ZBM to reduce the concentration of undesirable alkylamides and alkaloids. By optimizing the substrate and fermentation conditions, the minimum contents of alkylamide and alkaloid were 2.96 and 3.20 mg/g, and the degradation rates reached 51.86% and 39.59%, respectively. Moreover, the biotransformation pathways of hydroxyl-α-sanshool and chelerythrine were established by identifying the metabolites. Bacterial diversity was shift significantly, and the relative abundance of Lactobacillus increased from 0.10% to 99.0% after fermentation. In conclusion, this study introduced a reliable strategy for processing ZBM as a feed additive.
Collapse
Affiliation(s)
- Chenman Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yongli Du
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| |
Collapse
|
29
|
Mahato DK, Kamle M, Sharma B, Pandhi S, Devi S, Dhawan K, Selvakumar R, Mishra D, Kumar A, Arora S, Singh NA, Kumar P. Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon 2021; 198:12-23. [PMID: 33933519 DOI: 10.1016/j.toxicon.2021.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/09/2023]
Abstract
The mycotoxin patulin is primarily produced as a secondary metabolite by numerous fungal species and predominantly by Aspergillus, Byssochlamys, and Penicillium species. It is generally associated with fungal infected food materials. Penicillium expansum is considered the only fungal species liable for patulin contamination in pome fruits, especially in apples and apple-based products. This toxin in food poses serious health concerns and economic threat, which has aroused the need to adopt effective detection and mitigation strategies. Understanding its origin sources and biosynthetic mechanism stands essential for efficiently designing a management strategy against this fungal contamination. This review aims to present an updated outline of the sources of patulin occurrence in different foods and their biosynthetic mechanisms. It further provides information regarding the detrimental effects of patulin on human and agriculture as well as its effective detection, management, and control strategies.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sheetal Devi
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India.
| | - Kajal Dhawan
- Department of Food Technology and Nutrition, School of Agriculture Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Raman Selvakumar
- ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| | - Diwakar Mishra
- Department of Dairy Technology, Birsa Agricultural University, Dumka, 814145, Jharkhand, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Shalini Arora
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India.
| | - Namita Ashish Singh
- Department of Microbiology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India.
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, Arunachal Pradesh, India.
| |
Collapse
|
30
|
Sohrabi H, Arbabzadeh O, Khaaki P, Khataee A, Majidi MR, Orooji Y. Patulin and Trichothecene: characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Crit Rev Food Sci Nutr 2021; 62:5540-5568. [PMID: 33624529 DOI: 10.1080/10408398.2021.1887077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patulin and Trichothecene as the main groups of mycotoxins in significant quantities can cause health risks from allergic reactions to death on both humans and animals. Accordingly, rapid and highly sensitive determination of these toxics agents is of great importance. This review starts with a comprehensive outlook regarding the characteristics, occurrence and toxic effects of Patulin and Trichothecene. In the following, numerous clinical and analytical approaches have been extensively discussed. The main emphasis of this review is placed on the utilization of novel nanomaterial based electrochemical sensing/biosensing tools for highly sensitive determination of Patulin and Trichothecene. Furthermore, a detailed and comprehensive comparison has been performed between clinical, analytical and sensing methods. Subsequently, the nanomaterial based electrochemical sensing platforms have been approved as reliable tools for on-site analysis of Patulin and Trichothecene in food processing and manufacturing industries. Different nanomaterials in improving the performance of detecting assays were investigated and have various benefits toward clinical and analytical methods. This paper would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Рeoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
Zheng X, Wei W, Zhou W, Li H, Rao S, Gao L, Yang Z. Prevention and detoxification of patulin in apple and its products: A review. Food Res Int 2020; 140:110034. [PMID: 33648261 DOI: 10.1016/j.foodres.2020.110034] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023]
Abstract
Patulin-producing fungi pose an unavoidable problem for apple and its product quality, thereby threatening human and/or animal health. Studies on controlling the patulin-producing fungal growth and patulin contamination in apple and its products by physical methods, chemical fungicides, and biological methods have been performed for decades, but patulin contamination has not been addressed. Here, the important of studying regulation mechanism of patulin production in apple at the protein expression and metabolism levels is proposed, which will facilitate the development of controlling patulin production by using physical, chemical, and biological methods. Furthermore, the advantages or disadvantages and effects or mechanisms of using physical, chemical, biological methods to control the decay caused by Penicillium expansum and to remove patulin in food was discussed. The development of physical methods to remove patulin depends on the development of special equipment. Chemical methods are economical and efficient, if we have ensured that there are no unknown reactions or toxic by-products by using these chemicals. The biological method not only effectively controls the decay caused by Penicillium espansum, but also removes the toxins that already exist in the food. Degradation of patulin by microorganisms or biodegradation enzymes is an efficient and promising method to remove patulin in food if the microorganisms used and the degradation products are completely non-toxic.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wanning Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
32
|
Ngolong Ngea GL, Yang Q, Tchabo W, Castoria R, Zhang X, Zhang H. Leuconostoc mesenteroides subsp. mesenteroides LB7 isolated from apple surface inhibits P. expansum in vitro and reduces patulin in fruit juices. Int J Food Microbiol 2020; 339:109025. [PMID: 33360297 DOI: 10.1016/j.ijfoodmicro.2020.109025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 01/27/2023]
Abstract
This research aimed to isolate lactic acid bacteria (LAB) from apple surface and to reveal their potential to inhibit the growth of Penicillium expansum. Besides, their ability to detoxify fruit juices contaminated with mycotoxin patulin, produced by this fungi, was also studied. The isolation was performed on a typical MRS medium under ambient conditions. The molecular identification of the strains was done by sequencing the 16S rRNA genes. Antifungal activities of the isolated strains have been evaluated using dual agar plate assay protocol. A total of 11 LAB isolates was obtained from apples. These isolates showed phenotypic traits consistent with the genera of LAB. They have been identified as Leuconostoc mesenteroides subsp. mesenteroides and Weissella paramesenteroides. Among them, the strain LB7 showed exciting inhibitory activities in vitro against P. expansum. LB7 also successfully detoxified homemade and commercial fruit juices contaminated with patulin. Further research will bring the application prospects of these LABs in food biocontrol and biopreservation strategies.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Institute of Fisheries Sciences, University of Douala, Douala 24157, Cameroon
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - William Tchabo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Department of Food Science and Nutrition, National Advanced School of Agro-Industrial Sciences (ENSAI), University of Ngaoundere, PO Box 455, Ngaoundere, Cameroon
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, via Francesco de Sanctis snc, 86100 Campobasso, Italy
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
33
|
The characteristics of patulin detoxification by Lactobacillus plantarum 13M5. Food Chem Toxicol 2020; 146:111787. [PMID: 33031840 DOI: 10.1016/j.fct.2020.111787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Patulin (PAT) is a widespread mycotoxin that harms the health of both humans and animals. In this study, among the 17 tested Lactobacillus plantarum strains, L. plantarum 13M5, isolated from traditional Chinese fermented foods, showed the highest PAT degradation rate of up to 43.8% (PAT 5 mg/L). Evaluation of the living and dead 13M5 cells revealed that only the living cells had the ability to remove PAT and degrade it into E-ascladiol. A cell-based assay revealed that L. plantarum 13M5 administration alleviated PAT-induced injuries in Caco-2 cells, including cytotoxicity, oxidative stress, and tight junction disruption. Our results suggest that L. plantarum 13M5 has the potential to reduce PAT toxicity and can thus be used as a probiotic supplement to reduce or eliminate the toxicity of PAT ingested from diet.
Collapse
|
34
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|
35
|
Ngolong Ngea GL, Yang Q, Castoria R, Zhang X, Routledge MN, Zhang H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr Rev Food Sci Food Saf 2020; 19:2447-2472. [PMID: 33336983 DOI: 10.1111/1541-4337.12599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Patulin (PAT) is a mycotoxin that can contaminate many foods and especially fruits and fruit-based products. Therefore, accurate and effective testing is necessary to enable producers to comply with regulations and promote food safety. Traditional approaches involving the use of chemical compounds or physical treatments in food have provided practical methods that have been used to date. However, growing concerns about environmental and health problems associated with these approaches call for new alternatives. In contrast, recent advances in biotechnology have revolutionized the understanding of living organisms and brought more effective biological tools. This review, therefore, focuses on the study of biotechnology approaches for the detection, control, and mitigation of PAT in food. Future aspects of biotechnology development to overcome the food safety problem posed by PAT were also examined. We find that biotechnology advances offer novel, more effective, and environmental friendly approaches for the control and elimination of PAT in food compared to traditional methods. Biosensors represent the future of PAT detection and use biological tools such as aptamer, enzyme, and antibody. PAT prevention strategies include microbial biocontrol, the use of antifungal biomolecules, and the use of microorganisms in combination with antifungal molecules. PAT detoxification aims at the breakdown and removal of PAT in food by using enzymes, microorganisms, and various adsorbent biopolymers. Finally, biotechnology advances will be dependent on the understanding of fundamental biology of living organisms regarding PAT synthesis and resistance mechanisms.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Fisheries Sciences, University of Douala, Douala, Cameroon
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|