1
|
Nowruzi B, Beiranvand H, Aghdam FM, Barandak R. The effect of plasma activated water on antimicrobial activity of silver nanoparticles biosynthesized by cyanobacterium Alborzia kermanshahica. BMC Biotechnol 2024; 24:75. [PMID: 39375636 PMCID: PMC11460180 DOI: 10.1186/s12896-024-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Silver nanoparticles are extensively researched for their antimicrobial properties. Cold atmospheric plasma, containing reactive oxygen and nitrogen species, is increasingly used for disinfecting microbes, wound healing, and cancer treatment. Therefore, this study examined the effect of water activated by dielectric barrier discharge (DBD) plasma and gliding arc discharge plasma on the antimicrobial activity of silver nanoparticles from Alborzia kermanshahica. METHODS Silver nanoparticles were synthesized using the boiling method, as well as biomass from Alborzia kermanshahica extract grown in water activated by DBD and GA plasma. The physicochemical properties of the synthesized nanoparticles were evaluated using UV-vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, the disk diffusion method was used to assess the antimicrobial efficacy of the manufactured nanoparticles against both Gram-positive and Gram-negative bacteria. RESULTS The spectroscopy results verified the presence of silver nanoparticles, indicating their biosynthesis. The highest amount of absorption (1.049) belonged to the nanoparticles synthesized by boiling under GA plasma conditions. Comparing the FTIR spectra of the plasma-treated samples with DBD and GA revealed that the DBD-treated samples had more intense peaks, indicating that the DBD method proved to be more effective in enhancing the functional groups on the silver nanoparticles. The DLS results revealed that the boiling method synthesized silver nanoparticles under DBD plasma treatment had a smaller particle size (149.89 nm) with a PDI of 0.251 compared to the GA method, and the DBD method produced nanoparticles with a higher zeta potential (27.7 mV) than the GA method, indicating greater stability of the biosynthesized nanoparticles. Moreover, the highest antimicrobial properties against E. coli (14.333 ± 0.47 mm) were found in the DBD-treated nanoparticles. TEM tests confirmed that spherical nanoparticles attacked the E. coli bacterial membrane, causing cell membrane destruction and cell death. The GC-MS results showed that compounds like 2-methylfuran, 3-methylbutanal, 2-methylbutanal, 3-hydroxy-2-butanone, benzaldehyde, 2-phenylethanol, and 3-octen-2-ol were much higher in the samples that were treated with DBD compared to the samples that were treated with GA plasma. CONCLUSION The research indicated that DBD plasma was more efficient than GA plasma in boosting the antimicrobial characteristics of nanoparticles. These results might be a cornerstone for future advancements in utilizing cold plasma to create nanoparticles with enhanced antimicrobial properties.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Hassan Beiranvand
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Malihi Aghdam
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Rojan Barandak
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
2
|
Mirzapour-Kouhdasht A, Garcia-Vaquero M, Huang JY. Algae-derived compounds: Bioactivity, allergenicity and technologies enhancing their values. BIORESOURCE TECHNOLOGY 2024; 406:130963. [PMID: 38876282 DOI: 10.1016/j.biortech.2024.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
As a rapidly growing source of human nutrients, algae biosynthesize diverse metabolites which have promising bioactivities. However, the potential allergenicity of algal components hinder their widespread adoption. This review provides a comprehensive review of various macro and micronutrients derived from algal biomass, with particular focus on bioactive compounds, including peptides, polyphenols, carotenoids, omega-3 fatty acids and phycocyanins. The approaches used to produce algal bioactive compounds and their health benefits (antioxidant, antidiabetic, cardioprotective, anti-inflammatory and immunomodulatory) are summarised. This review particularly focuses on the state-of-the-art of precision fermentation, encapsulation, cold plasma, high-pressure processing, pulsed electric field, and subcritical water to reduce the allergenicity of algal compounds while increasing their bioactivity and bioavailability. By providing insights into current challenges of algae-derived compounds and opportunities for advancement, this review contributes to the ongoing discourse on maximizing their application potential in the food nutraceuticals, and pharmaceuticals industries.
Collapse
Affiliation(s)
- Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, D04V1W8 Dublin, Ireland
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Akaber S, Ramezan Y, Reza Khani M. Effect of post-harvest cold plasma treatment on physicochemical properties and inactivation of Penicillium digitatum in Persian lime fruit. Food Chem 2024; 437:137616. [PMID: 37866339 DOI: 10.1016/j.foodchem.2023.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
Cold atmospheric plasma (CAP) treatment is used in this study to inactivate Penicillium digitatum in lime fruit at post-harvest. Limes were inoculated manually withP. digitatum spore (106 CFU/fruit) and then were treated with CAP at 30, 60, 90, and 120 s and compared with untreated samples. The results showed that increasing the exposure time of CAP reduced spores to less than 7 CFU/fruit in 120 s on the lime peel. In the treated samples, antioxidant activity had an upward trend. In addition, phenolic compounds, vitamin C, density, soluble solid content (SSC), color, and pH of the lime juice were increased (P < 0.05). Compared to the control sample, no significant changes were observed in the juice yield percentage, texture, acidity, chlorophyll, and carotenoid (P > 0.05). The best exposure for CAP treatment was 60 s since it increased phenolic compounds, antioxidant activity, and vitamin C content in the lime juice.
Collapse
Affiliation(s)
- Sana Akaber
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yousef Ramezan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition & Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Reza Khani
- Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, 1983963113, Iran
| |
Collapse
|
4
|
Kahar SP, Shelar A, Annapure US. Effect of pin-to-plate atmospheric cold plasma (ACP) on microbial load and physicochemical properties in cinnamon, black pepper, and fennel. Food Res Int 2024; 177:113920. [PMID: 38225121 DOI: 10.1016/j.foodres.2023.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
The current study aimed to investigate the influence of pin-to-plate atmospheric cold plasma treatment (ACP) on the microbial decontamination efficacy, physical (water activity, color, texture), and bioactive (total phenolic and anti-oxidant capacity, volatile oil profile) of three major spices cinnamon, black pepper, and fennel at three different voltages (170, 200, 230 V) and exposure time (5, 10, 15 min). The surface etching and oxidative reactions of cold plasma is anticipated to cause microbial decontamination of the spices. In accordance with this, the ACP treatment significantly reduced the yeast and mold count of cinnamon, black pepper, and fennel, resulting in 1.3 Log CFU/g, 1.1 Log CFU/g, and 1.0 Log CFU/g, respectively even at the lowest treatment at 170 V-5 min. While at the highest treatment of 230 V-15 min, complete decontamination in all the samples was observed due to the plasma-induced microbial cell disruption. The water activity of samples reduced post-treatment 0.69 ± 0.02 to 0.51 ± 0.03 for cinnamon, 0.61 ± 0.03 to 0.49 ± 0.01 for pepper, and 0.60 ± 0.02 to 0.43 ± 0.02 for fennel which further reassures better microbial stability. The color and textural properties were significantly unaffected (p > 0.05) preserving the fresh-like attributes. The total phenolic content was increased for cinnamon (2.26 %), black pepper (0.11 %), and fennel (0.33 %) after plasma treatment at 230 V-15 min due to the cold plasma surface etching phenomenon. However, the essential oil composition revealed no significant variation in all three spices' control and treated samples. Thus, the study proves the potential of the atmospheric pressure cold plasma for the complete decontamination of the investigated spices (cinnamon, pepper, fennel) without remarkable changes in the volatile oil profile.
Collapse
Affiliation(s)
- Suraj P Kahar
- Department of Food Engineering & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Ashutosh Shelar
- Department of Food Engineering & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Uday S Annapure
- Department of Food Engineering & Technology, Institute of Chemical Technology, Mumbai, Maharashtra, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
5
|
Jayasena DD, Kang T, Wijayasekara KN, Jo C. Innovative Application of Cold Plasma Technology in Meat and Its Products. Food Sci Anim Resour 2023; 43:1087-1110. [PMID: 37969327 PMCID: PMC10636222 DOI: 10.5851/kosfa.2023.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 11/17/2023] Open
Abstract
The growing demand for sustainable food production and the rising consumer preference for fresh, healthy, and safe food products have been driving the need for innovative methods for processing and preserving food. In the meat industry, this demand has led to the development of new interventions aimed at extending the shelf life of meats and its products while maintaining their quality and nutritional value. Cold plasma has recently emerged as a subject of great interest in the meat industry due to its potential to enhance the microbiological safety of meat and its products. This review discusses the latest research on the possible application of cold plasma in the meat processing industry, considering its effects on various quality attributes and its potential for meat preservation and enhancement. In this regard, many studies have reported substantial antimicrobial efficacy of cold plasma technology in beef, pork, lamb and chicken, and their products with negligible changes in their physicochemical attributes. Further, the application of cold plasma in meat processing has shown promising results as a potential novel curing agent for cured meat products. Understanding the mechanisms of action and the interactions between cold plasma and food ingredients is crucial for further exploring the potential of this technology in the meat industry, ultimately leading to the development of safe and high-quality meat products using cold plasma technology.
Collapse
Affiliation(s)
- Dinesh D. Jayasena
- Department of Animal Science, Faculty of
Animal Science and Export Agriculture, Uva Wellassa
University, Badulla 90000, Sri Lanka
| | - Taemin Kang
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
| | - Kaushalya N. Wijayasekara
- Department of Animal Science, Faculty of
Animal Science and Export Agriculture, Uva Wellassa
University, Badulla 90000, Sri Lanka
| | - Cheorun Jo
- Department of Agricultural Biotechnology,
Center for Food and Bioconvergence, and Research Institute of Agriculture
and Life Science, Seoul National University, Seoul 08826,
Korea
- Institute of Green Bio Science and
Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
6
|
Li Z, Zhou T, Zhang Q, Liu T, Lai J, Wang C, Cao L, Liu Y, Ruan R, Xue M, Wang Y, Cui X, Liu C, Ren Y. Influence of cold atmospheric pressure plasma treatment of Spirulina platensis slurry over biomass characteristics. BIORESOURCE TECHNOLOGY 2023; 386:129480. [PMID: 37437813 DOI: 10.1016/j.biortech.2023.129480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Cold atmospheric pressure plasma (CAPP) technique is an innovative non-thermal approach for food preservation and decontamination. This study aimed to evaluate the effect of CAPP power density on microorganism inactivation and quality of Spirulina platensis (S. platensis) slurry. 91.31 ± 1.61% of microorganism were inactivated within 2.02 ± 0.11 min by 26.67 W/g CAPP treatment under 50 ℃. Total phenolic, Chlorophyll-a (Chl-a), and carotenoids contents were increased by 20.51%, 63.55%, and 70.04% after 20.00 W/g CAPP treatment. Phycobiliproteins (PBPs), protein, intracellular polysaccharide, and moisture content of S. platensis was decreased, while vividness, lightness, color of yellow and green, antioxidant activity, Essential Amino Acid Index were enhanced after CAPP treatment. The nutrient release and filaments breakage of CAPP-treated S. platensis improved its bio-accessibility. The findings provided a deep understanding and insight into the influence of CAPP treatment on S. platensis, which were meaningful for optimizing its sterilization and drying processing condition.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qi Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Jiangling Lai
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Canbo Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul MN 55108, USA
| | - Mingxiong Xue
- Beihai Spd Science Technology Co., LTD, Beihai, Guangxi 530021, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cuixia Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Yan Ren
- Zhejiang Suntown Environment Protection Co., LTD, Quzhou, Zhejiang 324000, China
| |
Collapse
|
7
|
Oner ME, Gultekin Subasi B, Ozkan G, Esatbeyoglu T, Capanoglu E. Efficacy of cold plasma technology on the constituents of plant-based food products: Principles, current applications, and future potentials. Food Res Int 2023; 172:113079. [PMID: 37689859 DOI: 10.1016/j.foodres.2023.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
Cold plasma (CP) is one of the novel non-thermal food processing technologies, which has the potential to extend the shelf-life of plant-based food products without adversely affecting the nutritional value and sensory characteristics. Besides microbial inactivation, this technology has been explored for food functionality, pesticide control, and allergen removals. Cold plasma technology presents positive results in applications related to food processing at a laboratory scale. This review discusses applications of CP technology and its effect on the constituents of plant-based food products including proteins, lipids, carbohydrates, and polar and non-polar secondary plant metabolites. As proven by the publications in the food field, the influence of CP on the food constituents and sensory quality of various food materials are mainly based on CP-related factors such as processing time, voltage level, power, frequency, type of gas, gas flow rate as well as the amount of sample, type, and content of food constituents. In addition to these, changes in the secondary plant metabolites depend on the action of CP on both cell membrane breakdown and increase/decrease in the scavenging compounds. This technology offers a good alternative to conventional methods by inactivating enzymes and increasing antioxidant levels. With a waterless and chemical-free property, this sustainable and energy-efficient technology presents several advantages in food applications. However, scaling up CP by ensuring uniform plasma treatment is a major challenge. Further investigation is required to provide information regarding the toxicity of plasma-treated food products.
Collapse
Affiliation(s)
- Manolya Eser Oner
- Department of Food Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, 07425 Alanya, Antalya, Turkey; Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Busra Gultekin Subasi
- Chalmers University of Technology, Food and Nutrition Science, 41258 Göteborg, Sweden
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
8
|
Air Atmospheric Pressure Plasma Jet to Improve Fruiting Body Production and Enhance Bioactive Phytochemicals from Mutant Cordyceps militaris (White Cordyceps militaris). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Wang LH, Li Z, Qin J, Huang Y, Zeng XA, Aadil RM. Investigation on the impact of quality characteristics and storage stability of foxtail millet induced by air cold plasma. Front Nutr 2022; 9:1064812. [PMID: 36570165 PMCID: PMC9767948 DOI: 10.3389/fnut.2022.1064812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this work was to investigate the effects of dielectric barrier discharge-air cold plasma (DBD-ACP, 15-35 kV, 2-12 min) on the quality of foxtail millets. The L and b* values were evaluated by a digital colorimeter representing that the color of millets was significantly changed at 25 kV for 4-12 min or at 35 kV for 2-12 min. The results were consistent with the change of total yellow pigment in millets, indicating that DBD-ACP damaged the carotenoids if the treatment condition was too high. The activity of lipoxygenase and lipase, involving the oxidation and hydrolysis of lipids of millet, decreased significantly induced by DBD-ACP. For example, the lipoxygenase and lipase activity of Mizhi millet was decreased from 44.0 to 18.7 U g-1min-1, 56.0-15.1 U/(mg pro) (p<0.05) after being exposed to 25 kV for 2-12 min, respectively. Changes of color, lipoxygenase and lipase activity, and malondialdehyde content of millets were determined during accelerated storage (40 ± 2°C and 75% Relative Humidity) for 15 days after being treated by DBD-ACP under 15 and 25 kV for 4 min. Results showed that millets treated by DBD-ACP at 15 kV kept a better color with lower malondialdehyde content, and lower lipoxygenase and lipase activity compared to control. This work implied that DBD-ACP is an underlying approach for the storage of foxtail millets.
Collapse
Affiliation(s)
- Lang-Hong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China,College of Food Science and Technology, Northwest University, Xi’an, China,School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhongyan Li
- College of Food Science and Technology, Northwest University, Xi’an, China
| | - Jiale Qin
- College of Food Science and Technology, Northwest University, Xi’an, China
| | - Yanyan Huang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China,*Correspondence: Yanyan Huang,
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China,School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Xin-An Zeng,
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
10
|
Kumar S, Pipliya S, Srivastav PP. Effect of cold plasma on different polyphenol compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sitesh Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Sunil Pipliya
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
11
|
Zhao Y, Shao L, Jia L, Meng Z, Liu Y, Wang Y, Zou B, Dai R, Li X, Jia F. Subcellular inactivation mechanisms of Pseudomonas aeruginosa treated by cold atmospheric plasma and application on chicken breasts. Food Res Int 2022; 160:111720. [DOI: 10.1016/j.foodres.2022.111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
|
12
|
Zhao Y, Shao L, Jia L, Zou B, Dai R, Li X, Jia F. Inactivation effects, kinetics and mechanisms of air- and nitrogen-based cold atmospheric plasma on Pseudomonas aeruginosa. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. FOOD ENGINEERING REVIEWS 2022. [PMCID: PMC9226271 DOI: 10.1007/s12393-022-09316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractChanging consumers’ taste for chemical and thermally processed food and preference for perceived healthier minimally processed alternatives is a challenge to food industry. At present, several technologies have found usefulness as choice methods for ensuring that processed food remains unaltered while guaranteeing maximum safety and protection of consumers. However, the effectiveness of most green technology is limited due to the formation of resistant spores by certain foodborne microorganisms and the production of toxins. Cold plasma, a recent technology, has shown commendable superiority at both spore inactivation and enzymes and toxin deactivation. However, the exact mechanism behind the efficiency of cold plasma has remained unclear. In order to further optimize and apply cold plasma treatment in food processing, it is crucial to understand these mechanisms and possible factors that might limit or enhance their effectiveness and outcomes. As a novel non-thermal technology, cold plasma has emerged as a means to ensure the microbiological safety of food. Furthermore, this review presents the different design configurations for cold plasma applications, analysis the mechanisms of microbial spore and biofilm inactivation, and examines the impact of cold plasma on food compositional, organoleptic, and nutritional quality.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Kechrist Obileke
- Renewable and Sustainable Energy, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD UK
| |
Collapse
|
14
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
15
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
16
|
Sruthi NU, Josna K, Pandiselvam R, Kothakota A, Gavahian M, Mousavi Khaneghah A. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chem 2022; 368:130809. [PMID: 34450498 DOI: 10.1016/j.foodchem.2021.130809] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
Cold plasma processing is a technique that uses electricity and reactive carrier gases, such as oxygen, nitrogen, or helium, to inactivate enzymes, destroy microorganisms, preserve food, and maintain quality without employing chemical antimicrobial agents.The review collates the latest information on the interaction mechanism and impact of non-thermal plasma, as an emerging processing technology, on selected physical properties, low-molecular-weight functional components, and bioactive properties of food. Significant changes observed in the physicochemical and functional properties. For example, changes in pH, total soluble solids, water and oil absorption capacities, sensory properties such as color, aroma, and texture, bioactive components (e.g., polyphenols, flavonoids, and antioxidants), and food enzymes, antinutrients, and allergens were elaborated in the present manuscript. It was highlighted that the plasma reactive species result in both constructive and antagonistic outcomes on specific food components, and the associated mechanism was different in each case. However, the design's versatility, characteristic non-thermal nature, better economic standards, and safer environmental factors offer matchless benefits for cold plasma over conventional processing methods. Even so, a thorough insight on the impact of cold plasma on functional and bioactive food constituents is still a subject of imminent research and is imperative for its broad recognition as a modern non-conventional processing technique.
Collapse
Affiliation(s)
- N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - K Josna
- Processing and Food Engineering Department, Kelappaji College of Agricultural Engineering & Technology, Kerala Agricultural University, Malappuram 679573, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671 124, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan.
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| |
Collapse
|
17
|
Pina-Pérez MC, Úbeda-Manzanaro M, Beyrer M, Martínez A, Rodrigo D. In vivo Assessment of Cold Atmospheric Pressure Plasma Technology on the Bioactivity of Spirulina. Front Microbiol 2022; 12:781871. [PMID: 35140692 PMCID: PMC8819064 DOI: 10.3389/fmicb.2021.781871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The present study challenges the in vivo assessment of cold atmospheric pressure plasma (CAPP) technology on the bioactive activity (antioxidant/antiaging and antimicrobial potential) of Spirulina powder, using Caenorhabditis elegans as an animal model. Surface microdischarge cold atmospheric pressure plasma (SMD-CAPP) treatment was 3.3 W discharge power for 7 min. C. elegans lifespan and egg laying were used as indicators of antioxidant/antiaging potential of Spirulina (1 mg/mL), when grown with Spirulina CP-treated [E_SCP] and untreated [E_S], compared with a control [E_0] (non-supplemented with Spirulina). According to our results, under both Spirulina supplemented media [E_SCP and E_S] and for the first 17 days, nematodes experienced an increase in lifespan but without significant differences (p > 0.05) between control and Spirulina CP-treated. Regarding the in vivo assay of the antimicrobial potential of Spirulina against Salmonella enterica serovar Typhimurium (infected worms), no significant differences (p > 0.05) were found between the three exposure scenarios (control [S_0]; Spirulina supplemented media [S_S]; CP-treated Spirulina supplemented media [S_SCP]). According to present results, CAPP-treatment do not influence negatively the lifespan of C. elegans but a reduction in the Spirulina antiaging potential was found. No in vivo modifications in antimicrobial activity seem to be linked to CAPP-processed Spirulina.
Collapse
Affiliation(s)
- María Consuelo Pina-Pérez
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Valencia, Spain
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - María Úbeda-Manzanaro
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Michael Beyrer
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - Antonio Martínez
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Rodrigo
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Dolores Rodrigo,
| |
Collapse
|
18
|
|
19
|
Hemmati V, Garavand F, Khorshidian N, Cacciotti I, Goudarzi M, Chaichi M, Tiwari BK. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Pina-Pérez MC, Rodrigo D, Ellert C, Beyrer M. Surface Micro Discharge-Cold Atmospheric Pressure Plasma Processing of Common House Cricket Acheta domesticus Powder: Antimicrobial Potential and Lipid-Quality Preservation. Front Bioeng Biotechnol 2021; 9:644177. [PMID: 34277580 PMCID: PMC8283276 DOI: 10.3389/fbioe.2021.644177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
The growing world population and the need to reduce the environmental impact of food production drive the exploration of novel protein sources. Insects are being cultivated, harvested, and processed to be applied in animal and human nutrition. The inherent microbial contamination of insect matrices requires risk management and decontamination strategies. Thermal sterilization results in unfavorable cooking effects and oxidation of fatty acids. The present study demonstrates the risk management in Acheta domesticus (home cricket) powder with a low-energy (8.7-22.0 mW/cm2, 5 min) semi-direct surface micro discharge (SMD)-cold atmospheric pressure plasma (CAPP). At a plasma power density lower than 22 mW/cm2, no degradation of triglycerides (TG) or increased free fatty acids (FFA) content was detected. For mesophilic bacteria, 1.6 ± 0.1 log10 reductions were achieved, and for Enterobacteriaceae, there were close to 1.9 ± 0.2 log10 reductions in a layer of powder. Colonies of Bacillus cereus, Bacillus subtilis, and Bacillus megaterium were identified via the mass spectral fingerprint analyzed with matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (MS). The spores of these Bacillus strains resisted to a plasma power density of 22 mW/cm2. Additional inactivation effects at non-thermal, practically non-oxidative conditions are supposed for low-intensity plasma treatments combined with the powder's fluidization.
Collapse
Affiliation(s)
- Maria C Pina-Pérez
- Departamento de Microbiologia y Ecología, Universitat de València, Valencia, Spain.,School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| | - Dolores Rodrigo
- Departamento de Conservación y Calidad, Instituto de Agroquimica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Christoph Ellert
- School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| | - Michael Beyrer
- School of Engineering, Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland (HES-SO VS), Sion, Switzerland
| |
Collapse
|
21
|
Jadhav HB, Annapure US, Deshmukh RR. Non-thermal Technologies for Food Processing. Front Nutr 2021; 8:657090. [PMID: 34169087 PMCID: PMC8217760 DOI: 10.3389/fnut.2021.657090] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Food is subjected to various thermal treatments during processes to enhance its shelf-life. But these thermal treatments may result in deterioration of the nutritional and sensory qualities of food. With the change in the lifestyle of people around the globe, their food needs have changed as well. Today's consumer demand is for clean and safe food without compromising the nutritional and sensory qualities of food. This directed the attention of food professionals toward the development of non-thermal technologies that are green, safe, and environment-friendly. In non-thermal processing, food is processed at near room temperature, so there is no damage to food because heat-sensitive nutritious materials are intact in the food, contrary to thermal processing of food. These non-thermal technologies can be utilized for treating all kinds of food like fruits, vegetables, pulses, spices, meat, fish, etc. Non-thermal technologies have emerged largely in the last few decades in food sector.
Collapse
Affiliation(s)
- Harsh Bhaskar Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S. Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
22
|
Elimination of Aspergillus flavus from Pistachio Nuts with Dielectric Barrier Discharge (DBD) Cold Plasma and Its Impacts on Biochemical Indices. J FOOD QUALITY 2021. [DOI: 10.1155/2021/9968711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present research, the effects of different durations (0, 15, 30, 60, 90, 120, 150, and 180 sec) of dielectric barrier discharge (DBD) cold plasma on decontaminating Aspergillus flavus, detoxifying pure aflatoxin B1 (AFB1), and the quality attributes of pistachio nuts (total phenolic content, antioxidant activity, chlorophylls, total carotenoids, instrumental color, total soluble protein, and malondialdehyde determination) were studied. The results showed that the viable spore population reduced with the increase of plasma treatment duration, so that after 180 s of the treatment, a decrease by 4 logs was observed in the spore population. Chlorophyll a and b, as well as total carotenoid levels and color parameters, decreased, which led to darker pistachio samples and intensity reduction in soluble protein content and protein bands. Plasma treatment did not alter the total phenolic content but slightly increased the antioxidant activity of pistachio nuts samples. The malondialdehyde values significantly increased all the plasma treatment durations. The maximum reduction of AFB1 was observed after 180 s of the treatment, which was 64.63% and 52.42% for glass slides and pistachio nut samples, respectively. The present findings demonstrated that cold plasma could be used as an efficient decontamination method of food products without inducing undesirable quality changes in nuts.
Collapse
|
23
|
Hadi J, Brightwell G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021; 10:1226. [PMID: 34071292 PMCID: PMC8230205 DOI: 10.3390/foods10061226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023] Open
Abstract
Food security and environmental issues have become global crises that need transformative solutions. As livestock production is becoming less sustainable, alternative sources of proteins are urgently required. These include cultured meat, plant-based meat, insect protein and single-cell protein. Here, we describe the food safety aspects of these novel protein sources, in terms of their technological backgrounds, environmental impacts and the necessary regulatory framework for future mass-scale production. Briefly, cultured meat grown in fetal bovine serum-based media can be exposed to viruses or infectious prion, in addition to other safety risks associated with the use of genetic engineering. Plant-based meat may contain allergens, anti-nutrients and thermally induced carcinogens. Microbiological risks and allergens are the primary concerns associated with insect protein. Single-cell protein sources are divided into microalgae, fungi and bacteria, all of which have specific food safety risks that include toxins, allergens and high ribonucleic acid (RNA) contents. The environmental impacts of these alternative proteins can mainly be attributed to the production of growth substrates or during cultivation. Legislations related to novel food or genetic modification are the relevant regulatory framework to ensure the safety of alternative proteins. Lastly, additional studies on the food safety aspects of alternative proteins are urgently needed for providing relevant food governing authorities with sufficient data to oversee that the technological progress in this area is balanced with robust safety standards.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand;
- New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
24
|
Hemmati V, Garavand F, Goudarzi M, Sarlak Z, Cacciotti I, Tiwari BK. Cold atmospheric‐pressure plasma treatment of turmeric powder: microbial load, essential oil profile, bioactivity and microstructure analyses. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vahid Hemmati
- Department of Food Science & Engineering University of Tehran Daneshkade street Karaj Alborz Province4444Iran
| | - Farhad Garavand
- Department of Food Chemistry & Technology Teagasc Food Research Centre Fermoy, Co. Cork Moorepark Ireland
| | - Mostafa Goudarzi
- Department of Food Science & Engineering University of Tehran Daneshkade street Karaj Alborz Province4444Iran
| | - Zahra Sarlak
- Students Research Committee Department of Food Science and Technology Faculty of Nutrition Sciences, Food Science and Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Velenjak Tehran Tehran Province19839‐63113Iran
| | - Ilaria Cacciotti
- Department of Engineering INSTM RU University of Rome 'Niccolò Cusano' Via Don Carlo Gnocchi 3 Roma00166Italy
| | - Brijesh K. Tiwari
- Department of Food Chemistry & Technology Teagasc Food Research Centre Dublin 15 Ashtown Ireland
| |
Collapse
|
25
|
Ho KKHY, Redan BW. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit Rev Food Sci Nutr 2020; 62:508-526. [DOI: 10.1080/10408398.2020.1821598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kacie K. H. Y. Ho
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Benjamin W. Redan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Bedford Park, Illinois, USA
| |
Collapse
|