1
|
Leanse LG, dos Anjos C, Kaler KR, Hui J, Boyd JM, Hooper DC, Anderson RR, Dai T. Blue Light Potentiates Antibiotics in Bacteria via Parallel Pathways of Hydroxyl Radical Production and Enhanced Antibiotic Uptake. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303731. [PMID: 37946633 PMCID: PMC10754126 DOI: 10.1002/advs.202303731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Indexed: 11/12/2023]
Abstract
In the age of antimicrobial resistance, the urgency by which novel therapeutic approaches need to be introduced into the clinical pipeline has reached critical levels. Antimicrobial blue light (aBL), as an alternative approach, has demonstrated promise as a stand-alone therapeutic method, albeit with a limited window of antimicrobial activity. Work by others indicates that treatment with antibiotics increases the production of reactive oxygen species (ROS) which may, in part, contribute to the bactericidal effects of antibiotics. These findings suggest that there may be potential for synergistic interactions with aBL, that similarly generates ROS. Therefore, in this study, the mechanism of aBL is investigated, and the potential for aBL to synergistically promote antibiotic activity is similarly evaluated. Furthermore, the translatability of using aBL and chloramphenicol in combination within a mouse model of Acinetobacter baumanii burn infection is assessed. It is concluded that porphyrins and hydroxyl radicals driven by "free iron" are paramount to the effectiveness of aBL; and aBL is effective at promoting multiple antibiotics in different multidrug-resistant bacteria. Moreover, rROS up-regulation, and promoted antibiotic uptake are observed during aBL+antibiotic exposure. Lastly, aBL combined with chloramphenicol appears to be both effective and safe for the treatment of A. baumannii burn infection. In conclusion, aBL may be a useful adjunct therapy to antibiotics to potentiate their action.
Collapse
Affiliation(s)
- Leon G. Leanse
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
- Health and Sports Sciences HubUniversity of Gibraltar, Europa Point CampusGibraltarGX11 1AAGibraltar
| | - Carolina dos Anjos
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - Kylie Ryan Kaler
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| | - Jie Hui
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - Jeffrey M. Boyd
- Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickNew Jersey08901USA
| | - David C. Hooper
- Division of Infectious DiseasesMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - R. Rox Anderson
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| | - Tianhong Dai
- Wellman Center for PhotomedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
2
|
Huang S, Qin H, Liu M. Photoinactivation of Escherichia coli by 405 nm and 450 nm light-emitting diodes: Comparison of continuous wave and pulsed light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112799. [PMID: 37832394 DOI: 10.1016/j.jphotobiol.2023.112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Antimicrobial blue light (ABL) therapy is one of the novel non-antibiotic approaches and recent studies showed the potential of pulsed ABL. PURPOSE Comparing photoinactivation effect of continuous wave (CW) and pulsed blue light and investigating the impact of varying light parameters. METHODS E. coli cells in planktonic were treated with CW and pulsed light (405 nm and 450 nm) at 60 mW/cm2, and the samples were taken to assess survival, reactive oxygen species (ROS) level, damage of cell membrane and metabolic activity. Further, a ROS scavenger was used to find the role of ROS played in ABL therapy. RESULTS E. coli was more sensitive to 405 nm light and the photoinactivation was dose-dependent. Pulsed 405 nm light showed the better antimicrobial effect on E. coli and caused increasing damage of cell membrane. It might be attributed to the ROS production in bacteria. CONCLUSION Pulsed light has a potential of improving the efficacy of ABL therapy and is worth to be explored deeply further.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Rd, Zhongshan City 528403, China.
| |
Collapse
|
3
|
Chen P, Liu Y, Li C, Hua S, Sun C, Huang L. Antibacterial mechanism of vanillin against Escherichia coli O157: H7. Heliyon 2023; 9:e19280. [PMID: 37662745 PMCID: PMC10474422 DOI: 10.1016/j.heliyon.2023.e19280] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Vanillin, a plant-derived antimicrobial volatile substance, has potential microbial control applications in the food industry. However, the effect of vanillin on the food-borne pathogen Escherichia coli (E. coli) O157:H7 has not been well studied. This study aims to explore the antibacterial mechanism of vanillin against E. coli O157:H7. The minimum inhibitory concentration (MIC) and antibacterial effect of vanillin were determined by microdilution. Scanning electron microscopy (SEM) was used to observe the damage of vanillin to the cell membrane, while cell membrane potential and the leakage of nucleic acid protein were measured to explore the effect of vanillin on the membrane system. Confocal laser scanning and intracellular adenosine triphosphate (ATP) concentration determination were utilized to investigate the effects of vanillin on the energy, life, and death of E. coli. Finally, transcriptome sequencing was conducted to investigate the gene expression differences induced by vanillin treatment. The results showed that vanillin treatment effectively controlled E. coli O157:H7 with an MIC of 2 mg/mL. After treatment, damage to the membrane system, depolarization of the membrane, and leakage of nucleic acid and protein were observed. Meanwhile, vanillin treatment caused decreased ATP content and cell death. Transcriptome analysis showed that vanillin treatment significantly affected the expression of genes involved in cell membrane formation, tricarboxylic acid (TCA) cycling pathway, and oxidative phosphorylation pathway in E. coli O157:H7. In conclusion, membrane damage and energy metabolism disruption are important mechanisms of vanillin's inhibitory effect on E. coli O157:H7. This study provides new insights into the molecular reaction mechanism of vanillin against E. coli O157:H7, highlighting its potential as an antibacterial substance for preventing E. coli contamination in the food industry.
Collapse
Affiliation(s)
- Peiyao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yinxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cheng Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuhao Hua
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cui Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
4
|
Huang S, Lin S, Qin H, Jiang H, Liu M. The Parameters Affecting Antimicrobial Efficiency of Antimicrobial Blue Light Therapy: A Review and Prospect. Biomedicines 2023; 11:biomedicines11041197. [PMID: 37189815 DOI: 10.3390/biomedicines11041197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Antimicrobial blue light (aBL) therapy is a novel non-antibiotic antimicrobial approach which works by generating reactive oxygen species. It has shown excellent antimicrobial ability to various microbial pathogens in many studies. However, due to the variability of aBL parameters (e.g., wavelength, dose), there are differences in the antimicrobial effect across different studies, which makes it difficult to form treatment plans for clinical and industrial application. In this review, we summarize research on aBL from the last six years to provide suggestions for clinical and industrial settings. Furthermore, we discuss the damage mechanism and protection mechanism of aBL therapy, and provide a prospect about valuable research fields related to aBL therapy.
Collapse
Affiliation(s)
- Shijie Huang
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, 2005th Songhu Road, Shanghai 200438, China
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan 528403, China
| |
Collapse
|
5
|
dos Anjos C, Leanse LG, Ribeiro MS, Sellera FP, Dropa M, Arana-Chavez VE, Lincopan N, Baptista MS, Pogliani FC, Dai T, Sabino CP. New Insights into the Bacterial Targets of Antimicrobial Blue Light. Microbiol Spectr 2023; 11:e0283322. [PMID: 36809152 PMCID: PMC10101057 DOI: 10.1128/spectrum.02833-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial blue light (aBL) offers efficacy and safety in treating infections. However, the bacterial targets for aBL are still poorly understood and may be dependent on bacterial species. Here, we investigated the biological targets of bacterial killing by aBL (λ = 410 nm) on three pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Initially, we evaluated the killing kinetics of bacteria exposed to aBL and used this information to calculate the lethal doses (LD) responsible for killing 90 and 99.9% of bacteria. We also quantified endogenous porphyrins and assessed their spatial distribution. We then quantified and suppressed reactive oxygen species (ROS) production in bacteria to investigate their role in bacterial killing by aBL. We also assessed aBL-induced DNA damage, protein carbonylation, lipid peroxidation, and membrane permeability in bacteria. Our data showed that P. aeruginosa was more susceptible to aBL (LD99.9 = 54.7 J/cm2) relative to S. aureus (LD99.9 = 158.9 J/cm2) and E. coli (LD99.9 = 195 J/cm2). P. aeruginosa exhibited the highest concentration of endogenous porphyrins and level of ROS production relative to the other species. However, unlike other species, DNA degradation was not observed in P. aeruginosa. Sublethal doses of blue light (LD99.9). We conclude that the primary targets of aBL depend on the species, which are probably driven by variable antioxidant and DNA-repair mechanisms. IMPORTANCE Antimicrobial-drug development is facing increased scrutiny following the worldwide antibiotic crisis. Scientists across the world have recognized the urgent need for new antimicrobial therapies. In this sense, antimicrobial blue light (aBL) is a promising option due to its antimicrobial properties. Although aBL can damage different cell structures, the targets responsible for bacterial inactivation have still not been completely established and require further exploration. In our study, we conducted a thorough investigation to identify the possible aBL targets and gain insights into the bactericidal effects of aBL on three relevant pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This research not only adds new content to blue light studies but opens new perspectives to antimicrobial applications.
Collapse
Affiliation(s)
- Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leon G. Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Gibraltar, Europa Point Campus, Gibraltar
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, Brazil
| | - Fábio P. Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Milena Dropa
- MicroRes Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício S. Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fabio C. Pogliani
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caetano P. Sabino
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Biolambda, Scientific and Commercial Ltd., São Paulo, Brazil
| |
Collapse
|
6
|
Oh YJ, Kim S, Lee DY, Hong J. Effects of blue
LED
irradiation on the quality characteristics of Mukeunji, a long‐term fermented kimchi, during refrigerated storage. J Food Saf 2023. [DOI: 10.1111/jfs.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yeong Ji Oh
- Department of Food and Animal Biotechnology Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University Seoul Republic of Korea
| | - Selim Kim
- Division of Applied Food System College of Natural Science, Seoul Women's University Seoul Republic of Korea
| | - Do Yup Lee
- Department of Food and Animal Biotechnology Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University Seoul Republic of Korea
| | - Jungil Hong
- Division of Applied Food System College of Natural Science, Seoul Women's University Seoul Republic of Korea
| |
Collapse
|
7
|
dos Anjos C, Leanse LG, Liu X, Miranda HV, Anderson RR, Dai T. Antimicrobial Blue Light for Prevention and Treatment of Highly Invasive Vibrio vulnificus Burn Infection in Mice. Front Microbiol 2022; 13:932466. [PMID: 35903474 PMCID: PMC9315199 DOI: 10.3389/fmicb.2022.932466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio vulnificus is an invasive marine bacterium that causes a variety of serious infectious diseases. With the increasing multidrug-resistant variants, treatment of V. vulnificus infections is becoming more difficult. In this study, we explored antimicrobial blue light (aBL; 405 nm wavelength) for the treatment of V. vulnificus infections. We first assessed the efficacy of aBL against five strains of V. vulnificus in vitro. Next, we identified and quantified intracellular porphyrins in V. vulnificus to provide mechanistic insights. Additionally, we measured intracellular reactive oxygen species (ROS) production and bacterial membrane permeabilization following aBL exposures. Lastly, we conducted a preclinical study to investigate the efficacy and safety of aBL for the prevention and treatment of burn infections caused by V. vulnificus in mice. We found that aBL effectively killed V. vulnificus in vitro in both planktonic and biofilm states, with up to a 5.17- and 4.57-log10 CFU reduction being achieved, respectively, following an aBL exposure of 216 J/cm2. Protoporphyrin IX and coproporphyrins were predominant in all the strains. Additionally, intracellular ROS was significantly increased following aBL exposures (P < 0.01), and there was evidence of aBL-induced permeabilization of the bacterial membrane (P < 0.0001). In the preclinical studies, we found that female mice treated with aBL 30 min after bacterial inoculation showed a survival rate of 81% following 7 days of observation, while only 28% survival was observed in untreated female mice (P < 0.001). At 6 h post-inoculation, an 86% survival was achieved in aBL-treated female mice (P = 0.0002). For male mice, 86 and 63% survival rates were achieved when aBL treatment was given 30 min and 6 h after bacterial inoculation, respectively, compared to 32% survival in the untreated mice (P = 0.0004 and P = 0.04). aBL did not reduce cellular proliferation or induce apoptosis. We found five cytokines were significantly upregulated in the males after aBL treatment, including MCSF (P < 0.001), MCP-5 (P < 0.01), TNF RII (P < 0.01), CXCL1 (P < 0.01), and TIMP-1 (P < 0.05), and one in the females (TIMP-1; P < 0.05), suggesting that aBL may induce certain inflammatory processes. In conclusion, aBL may potentially be applied to prevent and treat V. vulnificus infections.
Collapse
Affiliation(s)
- Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Leon G. Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaojing Liu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hugo V. Miranda
- Naval Medical Research Center, Silver Spring, MD, United States
| | - R. Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Tianhong Dai
| |
Collapse
|
8
|
Lawrence C, Waechter S, Alsanius BW. Blue Light Inhibits E. coli, but Decisive Parameters Remain Hidden in the Dark: Systematic Review and Meta-Analysis. Front Microbiol 2022; 13:867865. [PMID: 35464944 PMCID: PMC9023763 DOI: 10.3389/fmicb.2022.867865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
Blue light (400-500 nm) alleviates overexposure risks associated to UV light and has therefore gained increased interest in multiple applications. This meta-analysis deals with decontamination of E. coli through the use of blue light based from nine recent publications identified via a systematic literature search. In these studies, various pathogenic and non-pathogenic E. coli strains grown in nutritional broths were exposed to wavelengths ranging from 395 to 460 nm. Five meta-analyses were performed using Cochrane's software for meta-analyses (Review Manager): one including all studies to estimate the effect of E. coli reduction and four subgroup-analyses considering reported intensities, wavelengths, exposure dose as well as serovars/pathovars. Random effects models were used. All included studies used colony-forming units to estimate the impact of E. coli reduction. None of the included studies involved an organic matrix (e.g., skin, food related surface). Exposure to blue light had a significant and large reducing effect on viable counts of E. coli. However, substantial heterogeneity across studies was observed. Among subgroups, reported intensity and wavelength showed the clearest impact on E. coli reduction. With respect to the reported exposure dose, the picture across the spectrum was scattered, but effect sizes tend to increase with increasing exposure dose. Substantial heterogeneity was also present with respect to all serovar/pathovar subgroups among the included studies. The present body of reports does not display a strong basis for recommendation of relevant intensities, wavelengths and exposure doses for superficial blue light decontamination in medical or food safety contexts. A serious shortcoming in most studies is the absence of a clear documentation of inoculum preparation and of study parameters. We suggest improvement for study protocols for future investigations.
Collapse
Affiliation(s)
- Connor Lawrence
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Beatrix W. Alsanius
- Microbial Horticulture Unit, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Yu X, Zheng P, Zou Y, Ye Z, Wei T, Lin J, Guo L, Yuk HG, Zheng Q. A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2022; 63:7692-7707. [PMID: 35369810 DOI: 10.1080/10408398.2022.2049201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.
Collapse
Affiliation(s)
- Xinpeng Yu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
10
|
Poonia A, Pandey S, Vasundhara. Application of light emitting diodes (LEDs) for food preservation, post-harvest losses and production of bioactive compounds: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractLight-emitting diode (LED) technology is a new non-thermal food preservation method that works by converting light energy into heat. LED has potential to revolutionize crop production, protection and preservation. This technology is economical and environmentally friendly. LEDs have been shown to improve the nutritive quality and shelf life of foods, control the ripening of fruits, induce the synthesis of bioactive compounds and antioxidants and reduce the microbial contamination. This technology also has great scope in countries, where safety, hygiene, storage and distribution of foods are serious issues. While comparing this technology with other lighting technologies, LEDs can bring numerous advantages to food supply chain from farm to fork. In case of small growing amenities which exploit only LEDs, energy expenditure has been successfully reduced while producing nutritious food. LEDs can be used to give us better understanding and control over production and preservation of food with relation to spectral composition of light. LEDs also play significant role in food safety by inactivating the food borne pathogens. Therefore, LED lighting is a very effective and promising technology for extending shelf life of agricultural produce by increasing disease resistance and with increased nutritional values.
Graphical abstract
Collapse
|
11
|
Leanse LG, Dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: A 'Magic Bullet' for the 21st century and beyond? Adv Drug Deliv Rev 2022; 180:114057. [PMID: 34800566 PMCID: PMC8728809 DOI: 10.1016/j.addr.2021.114057] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
Over the past decade, antimicrobial blue light (aBL) at 400 - 470 nm wavelength has demonstrated immense promise as an alternative approach for the treatment of multidrug-resistant infections. Since our last review was published in 2017, there have been numerous studies that have investigated aBL in terms of its, efficacy, safety, mechanism, and propensity for resistance development. In addition, researchers have looked at combinatorial approaches that exploit aBL and other traditional and non-traditional therapeutics. To that end, this review aims to update the findings from numerous studies that capitalize on the antimicrobial effects of aBL, with a focus on: efficacy of aBL against different microbes, identifying endogenous chromophores and targets of aBL, Resistance development to aBL, Safety of aBL against host cells, and Synergism of aBL with other agents. We will also discuss our perspective on the future of aBL.
Collapse
Affiliation(s)
- Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Sana Mushtaq
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Pakistan
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|