1
|
Zhu X, Zhang B, Wang J, He Y, Chen Z, Chang W, Xie X, Zhu H. Cu 2O nanoparticles with morphology-dependent peroxidase mimic activity: a novel colorimetric biosensor for deoxynivalenol detection. Mikrochim Acta 2024; 191:588. [PMID: 39256210 DOI: 10.1007/s00604-024-06676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01 ng/mL, and a wide linear range from 2 to 100 ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.
Collapse
Affiliation(s)
- Xiaodong Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - BoBo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Junhao Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yangchun He
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyue Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weidan Chang
- Department of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450002, China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
- Agricultural Engineering Postdoctoral Research Station, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Wang J, de Bruijn V, Rietjens IM, Kramer NI, Bouwmeester H. Use of Physiologically Based Kinetic Modeling to Predict Deoxynivalenol Metabolism and Its Role in Intestinal Inflammation and Bile Acid Kinetics in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:761-772. [PMID: 38131302 PMCID: PMC10786035 DOI: 10.1021/acs.jafc.3c07137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Current points of departure used to derive health-based guidance values for deoxynivalenol (DON) are based on studies in laboratory animals. Here, an animal-free testing approach was adopted in which a reverse dosimetry physiologically based kinetic (PBK) modeling is used to predict in vivo dose response curves for DON's effects on intestinal pro-inflammatory cytokine secretion and intestinal bile acid reabsorption in humans from concentration-effect relationships for DON in vitro. The calculated doses for inducing a 5% added effect above the background level (ED5) of DON for increasing IL-1β secretion in intestinal tissue and for increasing the amounts in the colon lumen of glycochenodeoxycholic acid (GCDCA) were 246 and 36 μg/kg bw/day, respectively. These in vitro-in silico-derived ED5 values were compared to human dietary DON exposure levels, indicating that the risk of DON's effects on these end points occurring in various human populations cannot be excluded. This in vitro-in silico approach provides a novel testing strategy for hazard and risk assessment without using laboratory animals.
Collapse
Affiliation(s)
- Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Veronique de Bruijn
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Ivonne M.C.M. Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| |
Collapse
|
3
|
Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chem 2022; 405:134842. [DOI: 10.1016/j.foodchem.2022.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
4
|
Dasí-Navarro N, Lozano M, Llop S, Esplugues A, Cimbalo A, Font G, Manyes L, Mañes J, Vila-Donat P. Development and Validation of LC-Q-TOF-MS Methodology to Determine Mycotoxin Biomarkers in Human Urine. Toxins (Basel) 2022; 14:651. [PMID: 36287920 PMCID: PMC9612178 DOI: 10.3390/toxins14100651] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mycotoxin contamination of foodstuffs is a health concern worldwide and monitoring human exposure to mycotoxins is a key concern. Most mycotoxins and their metabolites are excreted in urine, but a reliable detection method is required, considering the low levels present in this biological sample. The aim of this work is to validate a sensitive methodology capable of simultaneously determining ten targeted mycotoxins as well as detecting untargeted ones by using Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry (LC-Q-TOF-MS). The targeted mycotoxins were: enniatin A, B, A1, and B1, beauvericine, aflatoxin B1, B2, G1 and G2, and ochratoxin A. Several extraction procedures such as liquid-liquid extraction, dilute and shoot, and QuEChERS were assessed. Finally, a modified simple QuEChERS extraction method was selected. Creatinine adjustment and matrix-matched calibration curves are required. The limit of detection and limit of quantification values ranged from 0.1 to 1.5 and from 0.3 to 5 ng/mL, respectively. Recoveries achieved were higher than 65% for all mycotoxins. Later, the method was applied to 100 samples of women's urine to confirm the applicability and determine their internal exposure. The untargeted mycotoxins most found were trichothecenes, zearalenones, and ochratoxins.
Collapse
Affiliation(s)
- Nuria Dasí-Navarro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, FISABIO—Universitat Jaume I—Universitat de València, 46020 València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Jordi Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|