1
|
Fu Z, Chen L, Zhou S, Hong Y, Zhang X, Chen H. Analysis of differences in the accumulation of tea compounds under various processing techniques, geographical origins, and harvesting seasons. Food Chem 2024; 430:137000. [PMID: 37531914 DOI: 10.1016/j.foodchem.2023.137000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The processing techniques, geographical origins, and harvesting seasons have a significant impact on tea compound accumulation, leading to different flavor characteristics and consumer preferences for tea. Herein, six categories of tea involving 1329 samples revealed the distribution characteristics via compound accumulation, as well as the impact of production regions and harvesting seasons on flavor chemicals. With the increasing fermentation degree, the average content of tea polyphenols, catechins, and theanine in dark tea decreased by 57.78%, 94.64%, and 98.57% compared to green tea, respectively. The compounds in tea fluctuate with the geographical origins and seasons, with theanine and free amino acids being more accumulated in the Jiangnan tea region in spring tea, while total polyphenols and catechins were more abundant in Southwest China's tea region in summer and autumn tea. This study comprehensively understands the accumulation characteristics of tea compounds corresponding to processing techniques and the geographical origins of Chinese tea.
Collapse
Affiliation(s)
- Zhouping Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Liyan Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Sujuan Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Yiwei Hong
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
2
|
Liu C, Lin H, Wang K, Zhang Z, Huang J, Liu Z. Study on the Trend in Microbial Changes during the Fermentation of Black Tea and Its Effect on the Quality. Foods 2023; 12:foods12101944. [PMID: 37238765 DOI: 10.3390/foods12101944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The role of tea endophytes in black tea fermentation and their impact on black tea quality remain unclear. We collected fresh leaves of Bixiangzao and Mingfeng tea and processed them into black tea, while testing the biochemical composition of both the fresh leaves and the black tea. We also used high-throughput techniques, such as 16S rRNA, to analyze the dynamic changes in the microbial community structure and function during black tea processing in order to investigate the influence of dominant microorganisms on the quality of black tea formation. Our results showed that bacteria, such as Chryseobacterium and Sphingomonas, and Pleosporales fungi dominated the entire black tea fermentation process. Predicted functional analysis of the bacterial community indicated that glycolysis-related enzymes, pyruvate dehydrogenase, and tricarboxylic acid cycle-related enzymes were significantly elevated during the fermentation stage. Amino acids, soluble sugars, and tea pigment content also increased considerably during fermentation. Pearson's correlation analysis revealed that the relative bacterial abundance was closely related to the content of tea polyphenols and catechins. This study provides new insights into the changes in microbial communities during the fermentation of black tea and demonstrates understanding of the basic functional microorganisms involved in black tea processing.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
| | - Zhixu Zhang
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultrual University, Changsha 410128, China
| |
Collapse
|
3
|
Hong L, Wang Y, Zhang Q, Wang Y, Chen M, Li M, Huang Y, Wu Z, Ye J, Wang H. Effects of processing procedures on the formation of aroma intensity and odor characteristic of Benshan tea (Oolong tea, Camellia sentences). Heliyon 2023; 9:e14855. [PMID: 37025800 PMCID: PMC10070919 DOI: 10.1016/j.heliyon.2023.e14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Benshan tea is a kind of oolong tea, and Benshan (Camellia sinensis) tea tree originates from Anxi County of Fujian Province in China, which is a national tea tree breed. Tea processing is the key to the formation of its odor characteristics. It is extremely important to step by step analyze effects of tea processing on aroma intensity and the formation of odor characteristics for optimizing tea processing process and improving tea quality. The results of this study showed that processing resulted in a significant increase in the content of volatile compounds in tea leaves, i.e., from 25.213 μg/kg to 111.223 μg/kg, in which the volatile compounds were mainly terpenoids. Secondly, the analysis found that 20 kinds of key compounds constituted to odor characteristics of Benshan tea leaves, among which geraniol, trans-β-ionone, gerol, citronellol, benzeneacetaldehyde, and trans-nerolidol were the most key six. Floral and fruity aromas, especially floral aroma, mainly formed odor characteristics of Benshan tea after processing, while floral aroma mainly came from the contribution of geraniol, which was the foremost compound in the formation of floral aroma of Benshan tea.
Collapse
|
4
|
Ye J, Wang Y, Lin S, Hong L, Kang J, Chen Y, Li M, Jia Y, Jia X, Wu Z, Wang H. Effect of processing on aroma intensity and odor characteristics of Shuixian (Camellia sinensis) tea. Food Chem X 2023; 17:100616. [PMID: 36974179 PMCID: PMC10039254 DOI: 10.1016/j.fochx.2023.100616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Processing is extremely important for the formation of aroma characteristic of tea leaves. In this study, the effects of processing on the content of volatile compounds, aroma intensity and odor characteristic of Shuixian tea were analyzed. The results showed that the content of volatile compounds in Shuixian tea increased significantly after processing, among which terpenoids and esters were the highest. There were 18 key compounds constituting the aroma characteristics of Shuixian tea, among which geraniol and nerol were the most important compounds, which contributed 96.28% to the aroma of Shuixian tea. The odor characteristics of Shuixian tea were mainly floral and fruity and the contribution of floral mainly came from geraniol, while fruity mainly came from nerol. Geraniol and nerol compounds increased rapidly after the withering process of tea leaves. This study provided an important reference for the improvement of processing technology and quality enhancement of Shuixian tea.
Collapse
|
5
|
Insights into Characteristic Volatiles in Wuyi Rock Teas with Different Cultivars by Chemometrics and Gas Chromatography Olfactometry/Mass Spectrometry. Foods 2022; 11:foods11244109. [PMID: 36553850 PMCID: PMC9777755 DOI: 10.3390/foods11244109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS). A total of 166, 169, 166, and 169 VFCs were identified for Dahongpao (DHP), Rougui (RG), Shuixian (SX), and Jinfo (JF), respectively; and 40 components were considered as the key differential VFCs among WRTs by multivariate statistical analysis. Furthermore, 56 aroma-active compounds were recognized with predominant performances in "floral & fruity", "green & fresh", "roasted and caramel", "sweet", and "herbal" attributes. The comprehensive analysis of the chemometrics and GC-O/MS results indicated that methyl salicylate, p-cymene, 2,5-dimethylpyrazine, and 1-furfurylpyrrole in DHP; phenylethyl alcohol, phenethyl acetate, indole, and (E)-β-famesene in RG; linalool, phenethyl butyrate, hexyl hexanoate, and dihydroactinidiolide in JF; and naphthalene in SX were the characteristic volatiles for each type of WRT. The obtained results provide a fundamental basis for distinguishing tea cultivars, recombination, and simulation of the WRT aroma.
Collapse
|
6
|
Study on the Suitability of Tea Cultivars for Processing Oolong Tea from the Perspective of Aroma Based on Olfactory Sensory, Electronic Nose, and GC-MS Data Correlation Analysis. Foods 2022; 11:foods11182880. [PMID: 36141008 PMCID: PMC9498329 DOI: 10.3390/foods11182880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
The oolong tea aroma is shown to consist of cultivar aroma and technical aroma in this study based on the aroma differences between oolong tea products of cultivars of different suitability, as determined by correlation analysis of olfactory, sensory, electronic nose, and GC-MS data. Human senses were significantly affected by the aroma components, which included eight terpene metabolites (β-Ocimene, (Z)-Furan linalool oxide, linalool, (3E)-4,8-Dimethyl-1,3,7-nonatriene, (E)-Pyranoid linalool oxide, γ-Elemene, Humulene, (Z,E)-α-Farnesene), three carotenoid metabolites (β-Ionone, (Z)-Geranylacetone and 6-methyl-5-Hepten -2-one), three lipid metabolites ((Z)-3-Hexenyl (Z)-3-hexenoate, Butanoic acid hexyl ester, and (Z)-Jasmone), four amino acid metabolites (Methyl salicylate, Geranyl isovalerate, indole, and Phenylethyl alcohol), and six thermal reaction products (2-Pentylfuran, Octanal, Decanal, (E,E)-2,4-Nonadienal, (Z)-2-Decenal, and (E)-2-Undecenal). Meanwhile, several aroma compounds (such as (E)-Nerolidol and α-Farnesene), mainly comprising the “technical aroma” formed in the processing mode, were noted to be less closely related to cultivar suitability. This study sheds light on the aroma characteristics of different tea cultivars for oolong tea processing.
Collapse
|
7
|
Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Dynamic Changes in Volatile Compounds of Shaken Black Tea during Its Manufacture by GC × GC-TOFMS and Multivariate Data Analysis. Foods 2022; 11:foods11091228. [PMID: 35563951 PMCID: PMC9102106 DOI: 10.3390/foods11091228] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in key odorants of shaken black tea (SBT) during its manufacture were determined using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography−time-of-flight mass spectrometry (GC × GC−TOFMS) and multivariate data analysis. A total of 241 volatiles was identified, comprising 49 aldehydes, 40 esters, 29 alcohols, 34 ketones, 30 aromatics, 24 alkenes, 17 alkanes, 13 furans, and 5 other compounds. A total of 27 volatiles had average relative odor activity values (rOAVs) greater than 1, among which (E)-β-ionone, (E,Z)-2,6-nonadienal, and 1-octen-3-one exhibited the highest values. According to the criteria of variable importance in projection (VIP) > 1, p < 0.05, and |log2FC| > 1, 61 discriminatory volatile compounds were screened out, of which 26 substances were shared in the shaking stage (FL vs. S1, S1 vs. S2, S2 vs. S3). The results of the orthogonal partial least squares discriminate analysis (OPLS-DA) differentiated the influence of shaking, fermentation, and drying processes on the formation of volatile compounds in SBT. In particular, (Z)-3-hexenol, (Z)-hexanoic acid, 3-hexenyl ester, (E)-β-farnesene, and indole mainly formed in the shaking stage, which promoted the formation of the floral and fruity flavor of black tea. This study enriches the basic theory of black tea flavor quality and provide the theoretical basis for the further development of aroma quality control.
Collapse
|
9
|
Abudureheman B, Yu X, Fang D, Zhang H. Enzymatic Oxidation of Tea Catechins and Its Mechanism. Molecules 2022; 27:942. [PMID: 35164208 PMCID: PMC8840101 DOI: 10.3390/molecules27030942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tea (Camellia sinensis, Theaceae) is one of the most widely consumed beverages in the world. The three major types of tea, green tea, oolong tea, and black tea, differ in terms of the manufacture and chemical composition. Catechins, theaflavins, and thearubigins have been identified as the major components in tea. Other minor oligomers have also been found in tea. Different kinds of ring fission and formation elucidate the major transformed pathways of tea catechins to their dimers and polymers. The present review summarizes the data concerning the enzymatic oxidation of catechins, their dimers, and thearubigins in tea.
Collapse
Affiliation(s)
- Buhailiqiemu Abudureheman
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843000, China; (B.A.); (D.F.)
| | - Xiaochun Yu
- College of Food Science and Engineering, Tonghua Normal University, Tonghua 134002, China;
| | - Dandan Fang
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu 843000, China; (B.A.); (D.F.)
| | - Henghui Zhang
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
| |
Collapse
|
10
|
Du Y, Yang W, Yang C, Yang X. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|