1
|
Wen Y, Sun D, Zhang Y, Zhang Z, Chen L, Li J. Molecular imprinting-based ratiometric fluorescence sensors for environmental and food analysis. Analyst 2023; 148:3971-3985. [PMID: 37528730 DOI: 10.1039/d3an00483j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Environmental protection and food safety are closely related to the healthy development of human society; there is an urgent need for relevant analytical methods to determine environmental pollutants and harmful substances in food. Molecular imprinting-based ratiometric fluorescence (MI-RFL) sensors, constructed by combining molecular imprinting recognition and ratiometric fluorescence detection, possess remarkable advantages such as high selectivity, anti-interference ability, high sensitivity, non-destruction and convenience, and have attracted increasing interest in the field of analytical determination. Herein, recent advances in MI-RFL sensors for environmental and food analysis are reviewed, aiming at new construction strategies and representative determination applications. Firstly, fluorescence sources and possible sensing principles are briefly outlined. Secondly, new imprinting techniques and dual/ternary-emission fluorescence types that improve sensing performances are highlighted. Thirdly, typical analytical applications of MI-RFL sensors in environmental and food samples are summarized. Lastly, the challenges and perspectives of the MI-RFL sensors are proposed, focusing on improving sensitivity/visualization and extending applications.
Collapse
Affiliation(s)
- Yuhao Wen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Dani Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yue Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- School of Pharmacy, Binzhou Medical College, Yantai 264003, China
| | - Jinhua Li
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Xiao X, Shen Y, Zhou X, Sun B, Wang Y, Cao J. Innovative nanotechnology-driven fluorescence assays for reporting hydrogen sulfide in food-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Multicolor fluorescence assay of tetracycline: lanthanide complexed amino clay loaded with copper nanoclusters. Mikrochim Acta 2022; 189:462. [DOI: 10.1007/s00604-022-05546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
4
|
Chen C, Zhang HD, Tao Y, Liang LJ, He C, Su BC, Li HY, Huang FP. Tracking the Stepwise Formation of a Water-Soluble Fluorescent Tb 12 Cluster for Efficient Doxorubicin Detection. Inorg Chem 2022; 61:9385-9391. [PMID: 35687833 DOI: 10.1021/acs.inorgchem.1c03785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Doxorubicin (DOX) is an anthraquinone drug used for the efficient treatment of a variety of tumors in human beings. Unfortunately, its poor biodegradability causes incomplete metabolism in the body. Therefore, it is of great significance to synthesize a sensitive and selective material for DOX detection. In this paper, we report a water-soluble Tb12 cluster and track its step-by-step formation (L → Tb1L1 → Tb2L1 → Tb2L2 → Tb3L2 → Tb4L2 → Tb12L6). Tb12 can be used to determine the presence of DOX, which quenches the luminescence of the Tb12 aqueous solution, and the detection limit can reach 13 nM (KSV = 8.7 × 105 M-1). Tb12 has advantages of high sensitivity and high selectivity for the detection of DOX in a simulated environment of human urine and serum.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hong-Da Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ye Tao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Long-Jin Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Cui He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Bai-Chao Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ye Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
5
|
Fan Y, Yu W, Liao Y, Jiang X, Wang Z, Cheng Z. Ratiometric detection of doxycycline in pharmaceutical based on dual ligands-enhanced copper nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120509. [PMID: 34688060 DOI: 10.1016/j.saa.2021.120509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
A water-soluble, stable, simple and dual ligands (bovine serum albumin and L-histidine)-enhanced copper nanoclusters (BSA-CuNCs@L-His) was synthesized by one-step wet chemical method. Interestingly, the introduction of L-His ligand could improve evidently the quantum yields (QYs, 3.47%) and stability of BSA-CuNCs due to forming the stronger interaction of L-His and Cu and producing bigger diameter CuNCs by coordination-induced aggregation. Thus, a new ratiometric fluorescent probe (RF-probe) was successfully exploited for sensitively and selectively mensurating doxycycline (DOX) because DOX could simultaneously regulate the fluorescence (FL) intensities of BSA-CuNCs@L-His at 410 and 520 nm. The FL quenching of BSA-CuNCs@L-His at 410 nm by DOX was mainly originated from the static quenching process, while DOX could bind to Trp-212 in BSA from the skeleton of BSA-CuNCs@L-His by electrostatic interaction causing the appearance of new emission peak at 520 nm. The content of DOX was monitored by the RF-probe with a linear range of 0.05-14.0 μM and a LOD (limit of detection) and LOQ (limit of quantification) of 6.4 and 21.3 nM (at 3σ/slope and 10σ/slope). Moreover, compared to the standard HPLC method, the proposed RF-probe was extended to the detection of DOX in doxycycline hydrochloride (DOXH) tablets, DOXH injections and DOXH capsules with satisfactory results.
Collapse
Affiliation(s)
- Yucong Fan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Weihua Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|