1
|
Yu Q, He P, Qi Y, He P, Ahmed A, Zhang X, Zhang H, Wu Y, Munir S, He Y. Insight into Antifungal Metabolites from Bacillus stercoris 92p Against Banana Cordana Leaf Spot Caused by Neocordana musae. Biomolecules 2024; 14:1495. [PMID: 39766203 PMCID: PMC11672926 DOI: 10.3390/biom14121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Banana crop ranks among the most crucial fruit and food crops in tropical and subtropical areas. Despite advancements in production technology, diseases such as cordana leaf spot, caused by Neocordana musae, remain a significant challenge, reducing productivity and quality. Traditional chemical controls are becoming less effective due to the development of resistance in target pathogens, which pose significant environmental and health concerns. Consequently, there is growing attention toward the development of biocontrol strategies. Here, we identified a new bacterial strain, Bacillus stercoris 92p, from the rhizosphere soil of banana. We evaluated its ability to suppress the growth of N. musae and other fungal pathogens that cause leaf spot disease in bananas. The inhibitory effect of B. stercoris 92p were checked using dual culture assays, microscopic observations, and pot experiments. Furthermore, the biocontrol mechanisms were investigated using whole-genome sequencing and biochemical analyses. The results showed that B. stercoris 92p exhibited significant antifungal activity against N. musae and other fungal pathogens, with inhibition rates exceeding 70%. Microscopic examination revealed significant morphological alterations in the hyphae and conidia of the tested pathogens. In pot experiments, B. stercoris 92p effectively reduced the severity of cordana leaf spot, achieving a biocontrol efficacy of 61.55%. Genomic analysis and biochemical tests indicated that B. stercoris 92p produces various antifungal compounds, including lipopeptides (fengycins and surfactins), hydrolytic enzymes (proteases and amylases), and phosphate-solubilizing metabolites. In conclusion, the study highlights that B. stercoris could potentially be used as a potential biological control agent against cordana leaf spot.
Collapse
Affiliation(s)
- Qunfang Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yanxiang Qi
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xin Zhang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - He Zhang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Li S, Dai S, Huang L, Cui Y, Ying M. Biocontrol Ability of Strain Bacillus amyloliquefaciens SQ-2 against Table Grape Rot Caused by Aspergillus tubingensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24374-24386. [PMID: 39437432 DOI: 10.1021/acs.jafc.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Bacillus amyloliquefaciens strain SQ-2, isolated from a cured product, has been demonstrated to exhibit a highly efficacious performance against phytopathogens, including Stemphylium solani, Fusarium moniliforme, Fusarium graminearum, and Aspergillus tubingensis. In particular, with regard to A. tubingensis, which causes summer bunch rot, SQ-2 has been observed to suppress the mycelial growth of all tested grape cultivars by over 40%. Especially on Kyoho grapes, it has the highest inhibition rate of 53%. Scanning electron microscopy (SEM) confirms that SQ-2 is an effective agent for suppressing the mycelia proliferation, differentiation, and spore formation of A. tubingensis. Furthermore, an LC/MS analysis revealed that SQ-2 produces two principal lipopeptides, namely, bacillibactin and surfactin, in addition to a polyketide, bacillaene. Further analysis through gas chromatography-mass spectrometry (GC/MS) identified 41 distinct volatile organic compounds secreted by SQ-2. Transcriptomic analysis indicated that exposure to the metabolite of SQ-2 induced substantial gene expression alterations in A. tubingensis. These data suggest that B. amyloliquefaciens strain SQ-2 exhibits promising crop protection potential of inhibiting plant pathogens through the secretion of bacillibactin, surfactin, bacillaene, and VOCs.
Collapse
Affiliation(s)
- Suran Li
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Shuangshuang Dai
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Huang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Yumeng Cui
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Ming Ying
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
3
|
Feng S, Zhao Y, Wang Q, Zhang J, Liang X, Fu Z, Li Y, Dong W, Ji W. Biocontrol of rusted root rot in Panax ginseng by a combination of extracts from Bacillus amyloliquefaciens YY8 crude protein and Enterobacteriaceae YY115 ethyl acetate. BMC Microbiol 2024; 24:317. [PMID: 39223475 PMCID: PMC11367842 DOI: 10.1186/s12866-024-03475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Rusted root rot is one of the most common root diseases in Panax ginseng, and Cylindrocarpon destructans is one of the main pathogenic fungus. The objective of this study was to screen and explore the extracts of biocontrol bacteria isolated from ginseng rhizosphere soil against Cylindrocarpon destructans. RESULTS Bacterial strains Bacillus amyloliquefaciens YY8 and Enterobacteriacea YY115 were isolated and found to exhibit in vitro antifungal activity against C. destructans. A combination of crude protein extract from B. amyloliquefaciens YY8 and ethyl acetate extract from Enterobacteriacea YY115 in a 6:4 ratio exhibited the strongest antifungal activity against C. destructans. Measurements of electrical conductivity, protein content, and nucleic acid content in suspension cultures of C. destructans treated with a mixture extracts indicated that the extracts disrupted the cell membranes of rusted root rot mycelia, resulting in the leakage of electrolytes, proteins, and nucleic acids from the cells, and ultimately inhibiting the growth of C. destructans. The combined extracts suppressed the infection of ginseng roots discs by C. destructans effectively. CONCLUSION The extracts obtained from the two bacterial strains effectively inhibited C. destructans in P. ginseng. It can provide scientific basis for the development of new biological control pesticides, reduce the use of chemical pesticides, and promote the sustainable development of agriculture.
Collapse
Affiliation(s)
- Shuaiqi Feng
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yuchi Zhao
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Qiuyu Wang
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Jiyue Zhang
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Xue Liang
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Zhuoyue Fu
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China
| | - Yanjie Li
- College of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, Jilin Province, China.
| | - Weiwei Dong
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China.
| | - Wenxiu Ji
- College of Agriculture, Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|
4
|
Dai J, Xu Z, Yang N, Tuerxunjiang H, Shan X, Diao Y, Zhao J, Ma M, Li X, Xiao M, Pei J. Investigation of the biocontrol mechanism of a novel Pseudomonas species against phytopathogenic Fusarium graminearum revealed by multi-omics integration analysis. Appl Environ Microbiol 2024; 90:e0045524. [PMID: 38809045 PMCID: PMC11218632 DOI: 10.1128/aem.00455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Phytopathogenic Fusarium graminearum poses significant threats to crop health and soil quality. Although our laboratory-cultivated Pseudomonas sp. P13 exhibited potential biocontrol capacities, its effectiveness against F. graminearum and underlying antifungal mechanisms are still unclear. In light of this, our study investigated a significant inhibitory effect of P13 on F. graminearum T1, both in vitro and in a soil environment. Conducting genomic, metabolomic, and transcriptomic analyses of P13, we sought to identify evidence supporting its antagonistic effects on T1. The results revealed the potential of P13, a novel Pseudomonas species, to produce active antifungal components, including phenazine-1-carboxylate (PCA), hydrogen cyanide (HCN), and siderophores [pyoverdine (Pvd) and histicorrugatin (Hcs)], as well as the dynamic adaptive changes in the metabolic pathways of P13 related to these active ingredients. During the logarithmic growth stage, T1-exposed P13 strategically upregulated PCA and HCN biosynthesis, along with transient inhibition of the tricarboxylic acid (TCA) cycle. However, with growth stabilization, upregulation of PCA and HCN synthesis ceased, whereas the TCA cycle was enhanced, increasing siderophores secretion (Pvd and Hcs), suggesting that this mechanism might have caused continuous inhibition of T1. These findings improved our comprehension of the biocontrol mechanisms of P13 and provided the foundation for potential application of Pseudomonas strains in the biocontrol of phytopathogenic F. graminearum. IMPORTANCE Pseudomonas spp. produces various antifungal substances, making it an effective natural biocontrol agent against pathogenic fungi. However, the inhibitory effects and the associated antagonistic mechanisms of Pseudomonas spp. against Fusarium spp. are unclear. Multi-omics integration analyses of the in vitro antifungal effects of novel Pseudomonas species, P13, against F. graminearum T1 revealed the ability of P13 to produce antifungal components (PCA, HCN, Pvd, and Hcs), strategically upregulate PCA and HCN biosynthesis during logarithmic growth phase, and enhance the TCA cycle during stationary growth phase. These findings improved our understanding of the biocontrol mechanisms of P13 and its potential application against pathogenic fungi.
Collapse
Affiliation(s)
- Jiawei Dai
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhaofeng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ning Yang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | | | - Xin Shan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuting Diao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jiahui Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Meiqi Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiang Li
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ming Xiao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Junmin Pei
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
5
|
De Troyer L, De Zutter N, De Saeger S, Dumoulin F, Croubels S, De Baere S, De Gelder L, Audenaert K. Actinobacteria as Promising Biocontrol Agents for In Vitro and In Planta Degradation and Detoxification of Zearalenone. Toxins (Basel) 2024; 16:253. [PMID: 38922147 PMCID: PMC11209476 DOI: 10.3390/toxins16060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.
Collapse
Affiliation(s)
- Larissa De Troyer
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bio-Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Frédéric Dumoulin
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bio-Analysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Leen De Gelder
- Laboratory of Environmental Biotechnology, Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Hussain S, Tai B, Ali M, Jahan I, Sakina S, Wang G, Zhang X, Yin Y, Xing F. Antifungal potential of lipopeptides produced by the Bacillus siamensis Sh420 strain against Fusarium graminearum. Microbiol Spectr 2024; 12:e0400823. [PMID: 38451229 PMCID: PMC10986469 DOI: 10.1128/spectrum.04008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
Biological control is a more sustainable and environmentally friendly alternative to chemical fungicides for controlling Fusarium spp. infestations. In this work, Bacillus siamensis Sh420 isolated from wheat rhizosphere showed a high antifungal activity against Fusarium graminearum as a secure substitute for fungicides. Sh420 was identified as B. siamensis using phenotypic evaluation and 16S rDNA gene sequence analysis. An in vitro antagonistic study showed that Sh420's lipopeptide (LP) extract exhibited strong antifungal properties and effectively combated F. graminearum. Meanwhile, lipopeptides have the ability to decrease ergosterol content, which has an impact on the overall structure and stability of the plasma membrane. The PCR-based screening revealed the presence of antifungal LP biosynthetic genes in this strain's genomic DNA. In the crude LP extract of Sh420, we were able to discover several LPs such as bacillomycin, iturins, fengycin, and surfactins using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations (fluorescent/transmission electron microscopy) revealed deformities and alterations in the morphology of the phytopathogen upon interaction with LPs. Sh420 LPs have been shown in grape tests to be effective against F. graminearum infection and to stimulate antioxidant activity in fruits by avoiding rust and gray lesions. The overall findings of this study highlight the potential of Sh420 lipopeptides as an effective biological control agent against F. graminearum infestations.IMPORTANCEThis study addresses the potential of lipopeptide (LP) extracts obtained from the strain identified as Bacillus siamensis Sh420. This Sh420 isolate acts as a crucial player in providing a sustainable and environmentally friendly alternative to chemical fungicides for suppressing Fusarium graminearum phytopathogen. Moreover, these LPs can reduce ergosterol content in the phytopathogen influencing the overall structure and stability of its plasma membrane. PCR screening provided confirmation regarding the existence of genes responsible for biosynthesizing antifungal LPs in the genomic DNA of Sh420. Several antibiotic lipopeptide compounds were identified from this bacterial crude extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations revealed deformities and alterations in the morphology of F. graminearum upon interaction with LPs. Furthermore, studies on fruit demonstrated the efficacy of Sh420 LPs in mitigating F. graminearum infection and stimulating antioxidant activity in fruits, preventing rust and gray lesions.
Collapse
Affiliation(s)
- Sarfaraz Hussain
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Bowen Tai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Israt Jahan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suha Sakina
- Department of Agriculture and Food Technology, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Gang Wang
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinlong Zhang
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Yixuan Yin
- Shandong Xinfurui Agriculture Science Co., Ltd, Liaocheng, Shandong, China
| | - Fuguo Xing
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Zhao S, Wang H, Wang J. Synthesis and application of a compound microbial inoculant for effective soil remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120915-120929. [PMID: 37945959 DOI: 10.1007/s11356-023-30887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Currently, there is a noticeable scarcity of applications that harness composite microbial inoculants to stimulate straw decomposition, nitrogen fixation, and crop growth. This study addresses this gap by selecting and coculturing three bacterial strains to create a composite microbial inoculant named HY-1. This innovative inoculant exhibits multifunctional capabilities, including nitrogen fixation, straw decomposition, and crop growth promotion. Furthermore, we aimed to explore its impact on soil microbial communities. The results showed that the optimal preparation conditions for the compound microbial inoculant HY-1 were 28.5 ± 0.6 °C, pH = 7.34 ± 0.40, and bacteriophage ratio 1:2:1 (Microbacterium: Streptomyces fasciatus: Bacillus amyloliquefaciens). Compared to single strains, the combination exhibited higher levels of cellulose-degrading and nitrogen-fixing enzyme activity, increased the straw degradation rate by 37.91% within 180 days, and significantly promoted the growth of corn seedlings. Under the condition of straw return, the compound bio-fungicide HY-1 effectively improved the soil microbial diversity. At that time, the soil had the highest number of unique bacterial operational taxonomic units (166), and the abundance of Proteobacteria in the soil increased by 7.24%, while that of Acidobacteriota decreased by 2.27%. The biosynthetic function of the cell wall/membrane/periplasm and the metabolic function of transporting inorganic ions were significantly enhanced. In this study, we discovered that employing coculturing techniques to produce the composite microbial inoculant HY-1 and applying it in the field effectively compensates for the limitations of single-strain inoculants, which often exhibit fewer functions and less pronounced effects. This approach demonstrates significant potential for enhancing the quality of agricultural soils.
Collapse
Affiliation(s)
- Shengchen Zhao
- College of Resource and Environment, Department of Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Hongru Wang
- College of Resource and Environment, Department of Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jihong Wang
- College of Resource and Environment, Department of Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
8
|
Li Z, Li J, Yu M, Quandahor P, Tian T, Shen T. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants. PLoS One 2023; 18:e0286971. [PMID: 37319286 PMCID: PMC10270589 DOI: 10.1371/journal.pone.0286971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Botrytis cinerea causing tomato gray mold is a major cause of economic loss in tomato production. It is urgent and necessary to seek an effective and environmentally friendly control strategy to control tomato grey mold disease. In this study, Bacillus velezensis FX-6 isolated from the rhizosphere of plants displayed significant inhibitory ability against B. cinerea and could promote tomato plant growth. FX-6 could effectively inhibit the growth of Botrytis cinerea mycelium in vitro and in vivo, and the inhibitory rate in vitro could reach 78.63%. According to morphological observations and phylogenetic trees based on sequences of the 16S rDNA and gyrA (DNA gyrase subunit A) genes, the strain FX-6 was identified as Bacillus velezensis. In addition, B. velezensis FX-6 showed antagonistic activity against seven phytopathogens, this indicated that FX-6 had broad-spectrum biocontrol activity. We also found that FX-6 fermentation broth had the strongest antagonistic activity against B. cinerea when the culture time was 72 hours, and the inhibition rate was 76.27%. The growth promotion test revealed that strain FX-6 significantly promoted tomato seed germination and seedling growth. Further deeply study on growth-promoting mechanism indicated that the FX-6 produced IAA and siderophore, and had ACC deaminase activity. The trait of significant biological control activity and growth promoting effect on tomato imply that B. velezensis FX-6 has the potential to be used as a biocontrol agent for tomato gray mold management.
Collapse
Affiliation(s)
- Zhaoyu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | - Jiajia Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | - Mei Yu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | | | - Tian Tian
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| | - Tong Shen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, China
| |
Collapse
|
9
|
Supronienė S, Kadžienė G, Shamshitov A, Veršulienė A, Šneideris D, Ivanauskas A, Žvirdauskienė R. Soil Fungistasis against Fusarium Graminearum under Different tillage Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:966. [PMID: 36840316 PMCID: PMC9961288 DOI: 10.3390/plants12040966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The establishment of the harmful pathogen Fusarium graminearum in different agroecosystems may strongly depend on the ability of the soils to suppress its development and survival. This study aimed to evaluate the influence of different soil tillage systems (i.e., conventional tillage, reduced tillage and no-tillage) on soil fungistasis against F. graminearum. Soil samples were collected three times during the plant growing season in 2016 and 2017 from a long-term, 20-year soil tillage experiment. The F. graminearum in the soil samples was quantified by real-time qPCR. The soil fungistasis was evaluated by the reduction in the radial growth of F. graminearum in an in vitro assay. The antagonistic activity of the soil bacteria was tested using the dual culture method. The F. graminearum DNA contents in the soils were negatively correlated with soil fungistasis (r = -0.649 *). F. graminearum growth on the unfumigated soil was reduced by 70-87% compared to the chloroform fumigated soil. After the plant vegetation renewal, the soil fungistasis intensity was higher in the conventionally tilled fields than in the no-tillage. However, no significant differences were obtained among the tillage treatments at the mid-plant growth stage and after harvesting. 23 out of 104 bacteria isolated from the soil had a moderate effect, and only 1 had a strong inhibitory effect on the growth of F. graminearum. This bacterium was assigned 100% similarity to the Bacillus amyloliquefaciens Hy7 strain (gene bank no: JN382250) according to the sequence of the 16S ribosome subunit coding gene. The results of our study suggest that the presence of F. graminearum in soil is suppressed by soil fungistasis; however, the role of tillage is influenced by other factors, such as soil biological activity, type and quantity of plant residues and environmental conditions.
Collapse
Affiliation(s)
- Skaidrė Supronienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Gražina Kadžienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Arman Shamshitov
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Agnė Veršulienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| | - Donatas Šneideris
- Nature Research Centre, Akademijos str. 2, LT−608412 Vilnius, Lithuania
| | | | - Renata Žvirdauskienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT−58344 Kedainiai Distr., Lithuania
| |
Collapse
|
10
|
Plant growth promotion of pearl millet (Pennisetum glaucum L.) by novel bacterial consortium with multifunctional attributes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Zhang Y, Hu J, Liu X, Jiang C, Sun J, Song X, Wu Y. Isolation and production optimization of a novel milk-clotting enzyme Bacillus velezensis DB219. AMB Express 2022; 12:149. [DOI: 10.1186/s13568-022-01493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe milk-clotting enzyme (MCE) is a crucial ingredient in cheese manufacture. Due to the limits of traditional MCE, finding viable substitute is a pressing issue. This study aims to isolate and identify a wild strain with high milk-clotting activity (MCA) and low proteolytic activity (PA) and optimize the fermentation conditions for MCE production. A strain of Bacillus velezensis DB219 with high MCA/PA value (9.2) was isolated from dairy soil (Wuchang, Heilongjiang, China) and identified through 16S rRNA from 40 strains. The optimal wheat bran, carbon, nitrogen, inoculum size, volume and initial pH were 60 g/L, soluble starch 12.5 g/L, corn steep liquor 3 g/L, 5%, 40 mL and 6.15, respectively for improving DB219 MCE production through single factor experiment. The wheat bran concentration, corn steep liquor concentration and volume were the most critical factor and their changed range was determined through Plackett–Burman design and the steepest ascent/descent experiments. The response surface analysis experiment of three factors and three levels was conducted by Box–Behnken design. The theoretical optimal fermentation conditions for DB219 MCE were as follows: wheat bran concentration 60.14 g/L, soluble starch 12.5 g/L, corn steep liquor 3 g/L, inoculum size 5%, volume 40.08 mL and initial pH 6.15. DB219 MCE achieved the maximal MCA (3164.84 SU/mL) that was 101.9% of the predicted value (3104.49 SU/mL) and 4.3-fold higher than the control.
Collapse
|
12
|
Zhang K, Wang L, Si H, Guo H, Liu J, Jia J, Su Q, Wang Y, Zang J, Xing J, Dong J. Maize stalk rot caused by Fusarium graminearum alters soil microbial composition and is directly inhibited by Bacillus siamensis isolated from rhizosphere soil. Front Microbiol 2022; 13:986401. [PMID: 36338067 PMCID: PMC9630747 DOI: 10.3389/fmicb.2022.986401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Maize stalk rot caused by Fusarium graminearum can reduce the yield of maize and efficiency of mechanized harvesting. Besides, deoxynivalenol and zearalenone toxins produced by F. graminearum can also affect domestic animals and human health. As chemical fungicides are expensive and exert negative effects on the environment, the use of biological control agents has become attractive in recent years. In the present study, we collected rhizosphere soil with severe stalk rot disease (ZDD), the rhizosphere soil with disease-free near by the ZDD (ZDH), and measured rhizosphere microbial diversity and microbial taxonomic composition by amplicon sequencing targeting either bacteria or fungi. The results showed that Fusarium stalk rot caused by the Fusarium species among which F. graminearum is frequent and can reduce the abundance and alpha diversity of rhizosphere microbial community, and shift the beta diversity of microorganisms. Furthermore, a bacterial strain, Bacillus siamensis GL-02, isolated from ZDD, was found to significantly affect growth of F. graminearum. In vitro and in vivo assays demonstrated that B. siamensis GL-02 had good capability to inhibit F. graminearum. These results revealed that B. siamensis GL-02 could be a potential biocontrol agent for the control of maize stalk rot.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Liming Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Helong Si
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Hao Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jianhu Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jiao Jia
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Qianfu Su
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jinping Zang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jihong Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- *Correspondence: Jihong Xing,
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- Jingao Dong,
| |
Collapse
|
13
|
Isolation and characterization of a new strain of Bacillus amyloliquefaciens and its effect on strawberry preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
15
|
A Lightweight Model for Wheat Ear Fusarium Head Blight Detection Based on RGB Images. REMOTE SENSING 2022. [DOI: 10.3390/rs14143481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Detection of the Fusarium head blight (FHB) is crucial for wheat yield protection, with precise and rapid FHB detection increasing wheat yield and protecting the agricultural ecological environment. FHB detection tasks in agricultural production are currently handled by cloud servers and utilize unmanned aerial vehicles (UAVs). Hence, this paper proposed a lightweight model for wheat ear FHB detection based on UAV-enabled edge computing, aiming to achieve the purpose of intelligent prevention and control of agricultural disease. Our model utilized the You Only Look Once version 4 (YOLOv4) and MobileNet deep learning architectures and was applicable in edge devices, balancing accuracy, and FHB detection in real-time. Specifically, the backbone network Cross Stage Partial Darknet53 (CSPDarknet53) of YOLOv4 was replaced by a lightweight network, significantly decreasing the network parameters and the computing complexity. Additionally, we employed the Complete Intersection over Union (CIoU) and Non-Maximum Suppression (NMS) to regress the loss function to guarantee the detection accuracy of FHB. Furthermore, the loss function incorporated the focal loss to reduce the error caused by the unbalanced positive and negative sample distribution. Finally, mixed-up and transfer learning schemes enhanced the model’s generalization ability. The experimental results demonstrated that the proposed model performed admirably well in detecting FHB of the wheat ear, with an accuracy of 93.69%, and it was somewhat better than the MobileNetv2-YOLOv4 model (F1 by 4%, AP by 3.5%, Recall by 4.1%, and Precision by 1.6%). Meanwhile, the suggested model was scaled down to a fifth of the size of the state-of-the-art object detection models. Overall, the proposed model could be deployed on UAVs so that wheat ear FHB detection results could be sent back to the end-users to intelligently decide in time, promoting the intelligent control of agricultural disease.
Collapse
|
16
|
Smaoui S, Agriopoulou S, D'Amore T, Tavares L, Mousavi Khaneghah A. The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11125-11152. [PMID: 35708071 DOI: 10.1080/10408398.2022.2087594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global crop and food contamination with mycotoxins are one of the primary worldwide concerns, while there are several restrictions regarding approaching conventional physical and chemical mycotoxins decontamination methods due to nutrition loss, sensory attribute reduction in foods, chemical residual, inconvenient operation, high cost of equipment, and high energy consumption of some methods. In this regard, the overarching challenges of mycotoxin contamination in food and food crops require the development of biological decontamination strategies. Using certain lactic acid bacteria (LAB) as generally recognized safe (GRAS) compounds is one of the most effective alternatives due to their potential to release antifungal metabolites against various fungal factors species. This review highlights the potential applications of LAB as biodetoxificant agents and summarizes their decontamination activities against Fusarium growth and Fusarium mycotoxins released into food/feed. Firstly, the occurrence of Fusarium and the instrumental and bioanalytical methods for the analysis of mycotoxins were in-depth discussed. Upgraded knowledge on the biosynthesis pathway of mycotoxins produced by Fusarium offers new insightful ideas clarifying the function of these secondary metabolites. Moreover, the characterization of LAB metabolites and their impact on the decontamination of the mycotoxin from Fusarium, besides the main mechanisms of mycotoxin decontamination, are covered. While the thematic growth inhibition of Fusarium and decontamination of their mycotoxin by LAB is very complex, approaching certain lactic acid bacteria (LAB) is worth deeper investigations.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, Kalamata, Greece
| | - Teresa D'Amore
- Chemistry Department, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Foggia, Italy
| | - Loleny Tavares
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, CEP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
17
|
Liu H, Qi Y, Wang J, Jiang Y, Geng M. Synergistic effects of crop residue and microbial inoculant on soil properties and soil disease resistance in a Chinese Mollisol. Sci Rep 2021; 11:24225. [PMID: 34930990 PMCID: PMC8688499 DOI: 10.1038/s41598-021-03799-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The soil-borne disease caused by Fusarium graminearum seriously affects the corn quality. Straw can greatly improve soil quality, but the effect is limited by its nature and environmental factors. This study explored the impact of straw-JF-1(biocontrol bacteria) combination on soil environment and soil disease resistance. The results showed that the combined treatment increased the proportion of soil large and small macro-aggregates by 22.50 and 3.84%, with soil organic carbon (SOC) content by 16.18 and 16.95%, respectively. Compared to treatment with returning straw to the field alone, the straw-JF-1 combination increased the soil content of humic acid, fulvic acid, and humin by 14.06, 5.50, and 4.37%, respectively. Moreover, A metagenomics showed that returning straw to the field alone increased the abundance of disease-causing fungi (Fusarium and Plectosphaerella), however, the straw-JF-1 combination significantly suppressed this phenomenon as well as improved the abundance of probiotic microorganisms such as Sphingomonas, Mortierella, Bacillus, and Pseudomonas. Functional analysis indicated that the combination of straw and JF-1 improved some bacterial functions, including inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperones and function unknown, fungal functions associated with plant and animal pathogens were effectively inhibited. Pot experiments showed that the straw-JF-1 combination effectively inhibited the Fusarium graminearum induced damage to maize seedlings. Therefore, the combination of straw and JF-1 could be a practical method for soil management.
Collapse
Affiliation(s)
- Haolang Liu
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuqi Qi
- Institute for Environment and Climate Research, Jinan University, Guangzhou, Guangdong, China
| | - Jihong Wang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.
| | - Yan Jiang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Mingxin Geng
- Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|