1
|
Ali M, Ali A, Ali S, Chen H, Wu W, Liu R, Chen H, Ahmed ZFR, Gao H. Global insights and advances in edible coatings or films toward quality maintenance and reduced postharvest losses of fruit and vegetables: An updated review. Compr Rev Food Sci Food Saf 2025; 24:e70103. [PMID: 39812151 PMCID: PMC11734098 DOI: 10.1111/1541-4337.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Transitioning to safe, nonthermal, and edible strategies for maintaining fruit and vegetable (F&V) quality, reducing postharvest losses (up to 55% annually), and ensuring food security requires extensive research and innovation in postharvest technologies. This review aims to provide an updated understanding of edible coatings or films (ECF), focusing on their role in reducing F&V postharvest losses, based on data from the last 40 years retrieved from the Web of Science database. The global ECF research network is represented by publication trends, majorly researched F&V, key research areas, influential and emerging authors, and global research ranking. The role of ECF in preserving F&V quality has been assessed by examining critical quality parameters, including weight loss, total soluble solids, titratable acidity, ripening, softening, sensory and organoleptic characteristics, browning, chilling injury, and microbial safety. Furthermore, recent advancements in ECF formulations, including nanoscale ingredients and application methodologies, have been critically discussed. Sources, categorization, application strategies, mode of action, functional properties, sustainable development goals (SDGs), challenges, safety, legislations, and future perspectives in ECF research have also been discussed. The key findings indicate that China (20.34%) and the USA (9.94%) are the leading countries in ECF research. Studies have demonstrated ECF's potential in reducing F&V postharvest losses by maintaining quality parameters through advanced nanoscale compositions and methodologies. Notably, ECF research supports multiple SDG targets, including SDGs 2, 3, 8, 9, 12, 13, and 15. Future ECF research should explore 3D-printed coatings, nonflavor-altering components, and potential crosslinking agents to enhance F&V quality and reduce postharvest losses.
Collapse
Affiliation(s)
- Maratab Ali
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
- Department of Food Science and Technology, School of Food and Agricultural SciencesUniversity of Management and TechnologyLahorePunjab ProvincePakistan
| | - Akhtar Ali
- Department of Health, Nutrition and Food SciencesFlorida State UniversityTallahasseeFloridaUSA
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPunjab ProvincePakistan
| | - Hangjun Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Weijie Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ruiling Liu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Huizhi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zienab F. R. Ahmed
- Integrative Agriculture Department, College of Agriculture and Veterinary MedicineUnited Arab Emirates UniversityAl AinUAE
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post‐Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co‐Construction by Ministry and Province), Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
2
|
Volpato Maroldi W, de Andrade Arruda Fernandes I, Demczuk Junior B, Cristina Pedro A, Maria Maciel G, Windson Isidoro Haminiuk C. Waste from the food industry: Innovations in biorefineries for sustainable use of resources and generation of value. BIORESOURCE TECHNOLOGY 2024; 413:131447. [PMID: 39245066 DOI: 10.1016/j.biortech.2024.131447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Biorefineries have attracted significant attention from the scientific community and various industrial sectors due to their use of unconventional biomass sources to produce biofuels and other value-added compounds. Various agro-industrial residues can be applied in biorefinery systems, making them economically and environmentally attractive. However, the cost, efficiency, and profitability of the process are directly affected by the choice of biomass, pre-treatments, and desired products. In biorefineries, the simultaneous production of different products during processing is a valuable approach. Chemical, physical, biological, or combined treatments can generate numerous compounds of high commercial interest, such as phenolic compounds. These treatments, in addition to modifying the biomass structure, are essential for the process's viability. Over the years, complex treatments with high costs and environmental impacts have been simplified and improved, becoming more specific in generating high-value resources as secondary outputs to the main process (generally related to the release of sugars from lignocelluloses to produce second-generation ethanol). Innovative methods involving microorganisms and enzymes are the most promising in terms of efficiency and lower environmental impact. Biorefineries enable the use of varied raw materials, such as different agro-industrial residues, allowing for more efficient resource utilization and reducing dependence on non-renewable sources. In addition to producing low-carbon biofuels, biorefineries generate a variety of high-value by-products, such as packaging materials, pharmaceuticals, and nutritional ingredients. This not only increases the profitability of biorefineries but also contributes to a circular economy.
Collapse
Affiliation(s)
- Wédisley Volpato Maroldi
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Brazil
| | | | - Bogdan Demczuk Junior
- Departamento Acadêmico de Alimentos e Engenharia Química (DAAEQ), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil
| | - Alessandra Cristina Pedro
- Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil
| | - Charles Windson Isidoro Haminiuk
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Brazil.
| |
Collapse
|
3
|
Miranda M, Bai J, Pilon L, Torres R, Casals C, Solsona C, Teixidó N. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods 2024; 13:2980. [PMID: 39335908 PMCID: PMC11431373 DOI: 10.3390/foods13182980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Challenges in global food supply chains include preserving postharvest quality and extending the shelf life of fruits and vegetables. The utilization of edible coatings (ECs) combined with biocontrol agents (BCAs) represents a promising strategy to enhance the postharvest quality and shelf life of these commodities. This review analyzes the most recent developments in EC technologies and their combination with BCAs, highlighting their synergistic effects on postharvest pathogen control and quality maintenance. Various types of ECs, including polysaccharides, proteins, and lipids, are discussed alongside coating fundamentals and the mechanisms through which BCAs contribute to pathogen suppression. The review also highlights the efficacy of these combined approaches in maintaining the physicochemical properties, sensory attributes, and nutritional value of fruits. Key challenges such as regulatory requirements, consumer acceptance, and the scalability of these technologies are addressed. Future research directions are proposed to optimize formulations, improve application techniques, and enhance the overall efficacy of these biocomposite coatings and multifunctional coatings. By synthesizing current knowledge and identifying gaps, this review provides a comprehensive understanding of the potential and limitations of using ECs and BCAs for sustainable postharvest management.
Collapse
Affiliation(s)
- Marcela Miranda
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Jinhe Bai
- US Horticultural Research Laboratory, United States Department of Agriculture (USDA)-ARS, Ft. Pierce, FL 34945, USA;
| | - Lucimeire Pilon
- Embrapa Vegetables—Brazilian Agricultural Research Corporation, Brasilia 70351-970, DF, Brazil;
| | - Rosario Torres
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Carla Casals
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Cristina Solsona
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| | - Neus Teixidó
- Institute of Agrifood Research and Technology (IRTA), Postharvest, Edifici Fruitcentre, Parc Agrobiotech Lleida, Parc de Gardeny, 25003 Lleida, Spain; (R.T.); (C.C.); (C.S.); (N.T.)
| |
Collapse
|
4
|
Tayyarcan EK, Evran E, Guven K, Ekiz E, Acar Soykut E, Boyaci IH. Evaluating the efficacy of a phage cocktail against Pseudomonas fluorescens group strains in raw milk: microbiological, physical, and chemical analyses. Arch Microbiol 2024; 206:283. [PMID: 38806864 DOI: 10.1007/s00203-024-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The objective of this study was to investigate the effectiveness of a phage cocktail against Pseudomonas fluorescens group and its effect on the microbial, physical and chemical properties of raw milk during different storage conditions. A phage cocktail consisting of Pseudomonas fluorescens, Pseudomonas tolaasii, and Pseudomonas libanensis phages was prepared. As a result, reductions in fluorescent Pseudomonas counts of up to 3.44 log units for the storage at 4 °C and 2.38 log units for the storage at 25 °C were achieved. Following the phage application, it is found that there was no significant difference in the total mesophilic aerobic bacteria and Enterobacteriaceae counts. However, it was observed that the number of lactic acid bacteria was higher in phage-treated groups. The results also showed that pH values in the phage added groups were lower than the others and the highest titratable acidity was obtained only in the bacteria-inoculated group. As a future perspective, this study suggests that, while keeping the number of target microorganisms under control in the milk with the use of phages during storage, the microbiota and accordingly the quality parameters of the milk can be affected. This work contributes to the development of effective strategies for maintaining the quality and extending the shelf life of milk and dairy products.
Collapse
Affiliation(s)
| | - Eylul Evran
- Food Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - Kubra Guven
- Food Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - Esra Ekiz
- Food Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - Esra Acar Soykut
- Food Engineering Department, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | | |
Collapse
|
5
|
Rindhe S, Khan A, Priyadarshi R, Chatli M, Wagh R, Kumbhar V, Wankar A, Rhim JW. Application of bacteriophages in biopolymer-based functional food packaging films. Compr Rev Food Sci Food Saf 2024; 23:e13333. [PMID: 38571439 DOI: 10.1111/1541-4337.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Recently, food spoilage caused by pathogens has been increasing. Therefore, applying control strategies is essential. Bacteriophages can potentially reduce this problem due to their host specificity, ability to inhibit bacterial growth, and extend the shelf life of food. When bacteriophages are applied directly to food, their antibacterial activity is lost. In this regard, bacteriophage-loaded biopolymers offer an excellent option to improve food safety by extending their shelf life. Applying bacteriophages in food preservation requires comprehensive and structured information on their isolation, culturing, storage, and encapsulation in biopolymers for active food packaging applications. This review focuses on using bacteriophages in food packaging and preservation. It discusses the methods for phage application on food, their use for polymer formulation and functionalization, and their effect in enhancing food matrix properties to obtain maximum antibacterial activity in food model systems.
Collapse
Affiliation(s)
- Sandeep Rindhe
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Manish Chatli
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Goats (CIRG), Makhdoom, India
| | - Rajesh Wagh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary Animal Sciences University, Ludhiana, India
| | - Vishal Kumbhar
- Department of Animal Husbandry, State Government, Maharashtra, India
| | - Alok Wankar
- Department of Veterinary Physiology, College of Veterinary and Animal Sciences, Maharashtra Animal and Fishery Sciences University, Nagpur, India
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Sezer B, Boyaci IH. Evaluation of long- and short-term storage conditions and efficiency of a novel microencapsulated Salmonella phage cocktail for controlling Salmonella in chicken meat. Food Sci Biotechnol 2024; 33:475-483. [PMID: 38222913 PMCID: PMC10786753 DOI: 10.1007/s10068-023-01374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 01/16/2024] Open
Abstract
This study aims to assess the stability and activity of using a lyophilization, formulation design and to evaluate their efficiency for controlling Salmonella in chicken meat. The phage-loaded 0.3 M sucrose gelatin mixture at 4 and 25 °C displayed significantly less phage titer loss (p < 0.05) than the other excipients and liquid phage cocktail in 12 months. The results showed that there were significant reductions of Salmonella at the end of the storage in chicken meat for newly prepared phage powder (1.86 log CFU/cm2 and 2.18 log CFU/cm2), lyophilized phage powders stored at 4 °C (1.08 log CFU/cm2 and 1.26 log CFU/cm2) and stored at 25 °C (0.66 log CFU/cm2 and 1.00 log CFU/cm2) for 10 months at MOI 100 and 1000, respectively. The results demonstrated that lyophilized phages in a simple food grade formulation can be successfully stored and might be used in biocontrol of Salmonella in meat.
Collapse
Affiliation(s)
- Banu Sezer
- Department of Food Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Liu S, Quek SY, Huang K. Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Crit Rev Food Sci Nutr 2023; 64:12574-12598. [PMID: 37698066 DOI: 10.1080/10408398.2023.2254837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Bacteriophages (phages), highly prevalent in aquatic and terrestrial environments, have emerged as novel antimicrobial agents in food and agricultural systems. Owing to their efficient and unique infection mechanism, phages offer an alternative to antibiotic therapy as they specifically target their host bacteria without causing antibiotic resistance. However, the real-world applications of phages as antimicrobials are still limited due to their low survivability under harsh conditions and reduced antimicrobial efficacy. There is an unmet need to understand the challenges of using phages in food and agricultural systems and potential strategies to enhance their stability and delivery. This review overviews the challenges of using phages, including acidic conditions, improper temperatures, UV-light irradiation, desiccation, and inefficient delivery. It also summarizes novel strategies such as encapsulation, embedding, and immobilization, which enable improved viability and enhanced delivery. The protein capsid and nucleic acid components of phages are delicate and sensitive to physicochemical stresses. Incorporating phages into biocompatible materials can provide a physical barrier for improving phage stability and enhancing phage delivery, resulting in a high antimicrobial efficacy. In conclusion, the development of phage delivery systems can significantly overcome the challenges associated with phage treatments and reduce the risk of foodborne diseases in the industry.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
8
|
Costa MJ, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses 2023; 15:1271. [PMID: 37376571 DOI: 10.3390/v15061271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, one-third of all food produced worldwide is wasted or lost, and bacterial contamination is one of the main reasons. Moreover, foodborne diseases are a severe problem, causing more than 420,000 deaths and nearly 600 million illnesses yearly, demanding more attention to food safety. Thus, new solutions need to be explored to tackle these problems. A possible solution for bacterial contamination is using bacteriophages (phages), which are harmless to humans; these natural viruses can be used to prevent or reduce food contamination by foodborne pathogens. In this regard, several studies showed the effectiveness of phages against bacteria. However, when used in their free form, phages can lose infectivity, decreasing the application in foods. To overcome this problem, new delivery systems are being studied to incorporate phages and ensure prolonged activity and controlled release in food systems. This review focuses on the existent and new phage delivery systems applied in the food industry to promote food safety. Initially, an overview of phages, their main advantages, and challenges is presented, followed by the different delivery systems, focused in methodologies, and biomaterials that can be used. In the end, examples of phage applications in foods are disclosed and future perspectives are approached.
Collapse
Affiliation(s)
- Maria J Costa
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Sanna M Sillankorva
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
9
|
Bai M, Wang Y, Zhang C, Wang Y, Wei J, Liao X, Wang J, Anfossi L, Wang Y. Nanobody-based immunomagnetic separation platform for rapid isolation and detection of Salmonella enteritidis in food samples. Food Chem 2023; 424:136416. [PMID: 37247600 DOI: 10.1016/j.foodchem.2023.136416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Rapid separation and identification of Salmonella enteritidis (S. enteritidis) in food is of great importance to prevent outbreaks of foodborne diseases. Herein, by using O and H antigens as targets, an epitope-based bio-panning strategy was applied to isolate specific nanobodies towards S. enteritidis. This method constitutes an efficient way to obtain specific antibody fragments and test pairwise nanobodies. On this basis, a double nanobody-based sandwich enzyme-linked immunosorbent assay (ELISA) coupled with immunomagnetic separation (IMS) was developed to rapid enrich and detect S. enteritidis in food. The detection limit of the IMS-ELISA was 3.2 × 103 CFU/mL. In addition, 1 CFU of S. enteritidis in food samples can be detected after 4-h cultivation, which was shortened by 2 h after IMS. The IMS-ELISA strategy could avoid matrix interference and shorten the enrichment culture time, which has great potential for application in monitoring bacterial contamination in food.
Collapse
Affiliation(s)
- Mengfan Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yueqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ye Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingrui Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10137 Turin, TO, Italy
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
García-Anaya MC, Sepúlveda DR, Zamudio-Flores PB, Acosta-Muñiz CH. Bacteriophages as additives in edible films and coatings. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|