1
|
Wang F, Zhang Y, Li H, Gong W, Han J, Jiang S, Li D, Yao Z. Application of carbon quantum dots as fluorescent probes in the detection of antibiotics and heavy metals. Food Chem 2025; 463:141122. [PMID: 39243609 DOI: 10.1016/j.foodchem.2024.141122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Carbon quantum dots (CQDs) are ideal fluorescent probes for rapid detection. This paper reviews the synthesis methods of CQDs, their application in the rapid detection of antibiotics and heavy metals in the environment and food, and the underlying detection mechanisms. The hydrothermal method is the most commonly used for synthesis, and CQDs doped with heteroatoms (such as N, P and S) exhibit superior fluorescence performance. In the presence of antibiotics and heavy metals, the fluorescence of CQDs can be quenched or enhanced. Single-signal and dual-signal probes can be developed using the fluorescence, phosphorescence and absorbance of CQDs, enabling rapid detection of various antibiotics (e.g., tetracycline, quinolone and beta-lactam antibiotics) and heavy metals (e.g., Cd2+, Cr6+, Fe3+, Hg2+, and Pb2+). With the combination of smartphones and fluorescent probe test strips developed based on CQDs, on-the-spot rapid detection can be realized. This review offers new insights into the rapid detection of CQDs.
Collapse
Affiliation(s)
- Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuchen Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Hui Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, BAAFS (Beijing Academy of Agriculture and Forestry Sciences), Beijing 100097, China
| | - Jiajun Han
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Guo J, Zhang M, Law CL, Luo Z. 3D printing technology for prepared dishes: printing characteristics, applications, challenges and prospects. Crit Rev Food Sci Nutr 2024; 64:11437-11453. [PMID: 37480290 DOI: 10.1080/10408398.2023.2238826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Prepared dishes are popular convenience foods that meet the needs of consumers who pursue delicious tastes while saving time and effort. As a new technology, food 3D printing (also known as food additive manufacturing technology) has great advantage in the production of personalized food. Applying food 3D printing technology in the production of prepared dishes provides the solution to microbial contamination, poor nutritional quality and product standardization. This review summarizes the problems faced by the prepared dishes industry in traditional food processing, and introduces the characteristics of prepared dishes and 3D printing technology. Food additives are suitable for 3D prepared dishes and novel 3D printing technologies are also included in this review. In addition, the challenges and possible solutions of the application of food 3D printing technology in the field of prepared dishes are summarized and explored. Food additives with advantages in heat stability, low temperature protection and bacteriostasis help to accelerate the application of 3D printing in prepared dishes industry. The combination of 3D printing technology with heat-assisted sources (microwave, laser) and non-heat-assisted sources (electrolysis, ultrasound) provides the possibility for the development of customized prepared dishes in the future, and also promotes more 3D food printing technologies for commercial use. It is noteworthy that these technologies are still at research stage, and there are challenges for the formulation design, the stability of printed ink storage, as well as implementation of customized nutrition for the elderly and children.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih, Malaysia
| | - Zhenjiang Luo
- R&D center, Haitong Ninghai Foods Co., Ltd, Ninghai, China
| |
Collapse
|
3
|
Jiang SS, Li Q, Wang T, Huang YT, Guo YL, Meng XR. Utilizing ultrasound combined with quinoa protein to improve the texture and rheological properties of Chinese style reduced-salt pork meatballs (lion's head). ULTRASONICS SONOCHEMISTRY 2024; 109:106997. [PMID: 39032370 PMCID: PMC11325070 DOI: 10.1016/j.ultsonch.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
This study aimed to investigate the effect of ultrasound treatment times (30 min and 60 min) and levels of quinoa protein (QPE) addition (1 % and 2 %) on the quality of Chinese style reduced-salt pork meatballs, commonly known as lion's head. The water-holding capacity (WHC), gel and rheology characteristics, and protein conformation were assessed. The results indicated that extending the ultrasound treatment time and elevating the quinoa protein content caused conspicuous improvements (P<0.05) in the cooking yield, WHC, textural characteristics, color difference, and salt-soluble protein (SSP) solubility of the meatballs. Furthermore, the structural alterations induced by the ultrasound treatment combined with quinoa protein addition included enhancement in β-sheet, β-turn, and random coil structure contents, along with a red-shift in the intrinsic fluorescence peak. Additionally, the storage (G') and loss modulus (G'') of the raw meatballs significantly enhanced (P<0.05), indicating a denser gel structure in parallel with the microstructure. In conclusion, the findings demonstrated that ultrasound combined with quinoa protein enhanced the WHC and texture properties of Chinese style reduced-salt pork meatballs by improving SSP solubility.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yun-Long Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiang-Ren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
4
|
Zhang Y, Ma Z, Chen J, Yang Z, Ren Y, Tian J, Zhang Y, Guo M, Guo J, Song Y, Feng Y, Liu G. Electromagnetic wave-based technology for ready-to-eat foods preservation: a review of applications, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 39275803 DOI: 10.1080/10408398.2024.2399294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
In recent years, the ready-to-eat foods market has grown significantly due to its high nutritional value and convenience. However, these foods are also at risk of microbial contamination, which poses food safety hazards. Additionally, traditional high-temperature sterilization methods can cause food safety and nutritional health problems such as protein denaturation and lipid oxidation. Therefore, exploring and developing effective sterilization technologies is imperative to ensure food safety and nutritional properties, and protect consumers from potential foodborne diseases. This paper focuses on electromagnetic wave-based pasteurization technologies, including thermal processing technologies such as microwave, radio frequency, and infrared, as well as non-thermal processing technologies like ultraviolet, irradiation, pulsed light, and photodynamic inactivation. Furthermore, it also reviews the antibacterial mechanisms, advantages, disadvantages, and recent applications of these technologies in ready-to-eat foods, and summarizes their limitations and prospects. By comparing the limitations of traditional high-temperature sterilization methods, this paper highlights the significant advantages of these pasteurization techniques in effectively inhibiting microbial growth, slowing lipid oxidation, and preserving food nutrition and flavor. This review may contribute to the industrial application and process optimization of these pasteurization technologies, providing an optimal choice for preserving various types of ready-to-eat foods.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhiming Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiaxin Chen
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zhongshuai Yang
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yue Ren
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jing Tian
- School of Electronics and Electrical Engineering, Ningxia University, Yinchuan, China
| | - Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
5
|
Bi J. Aquatic Food Products: Processing Technology and Quality Control. Foods 2024; 13:2806. [PMID: 39272570 PMCID: PMC11394869 DOI: 10.3390/foods13172806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Aquatic products have the characteristics of high protein, low fat, and good nutritional balance, and they have become an important source of support to solve world hunger and nutritional deficiencies [...].
Collapse
Affiliation(s)
- Jingran Bi
- State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Pakaweerachat P, Chysirichote T. Effects of Broth pH and Chilling Storage on the Changes in Volatile Profiles of Boiled Chicken Flesh. Food Sci Anim Resour 2024; 44:1096-1107. [PMID: 39246546 PMCID: PMC11377206 DOI: 10.5851/kosfa.2024.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the changes in volatile compounds in chicken flesh after boiling at various pHs (6.0-9.0) and after chilling storage (4.0±1.0°C) for 7 d. The volatile compounds were assessed qualitatively and quantitatively by using a headspace gas chromatography-mass spectrometry analysis. Twenty-one volatile compounds were discovered and categorized as amine, aldehyde, alcohol, ketone, acid, and furan. One type of amine, (2-aziridinylethyl) amine, was the most prevalent volatile component, followed by aldehyde, ketone, aldehyde, acid, ester, and furan. The results showed that the quantity and quality of the volatile compounds were influenced by a pH of the boiling medium. Additionally, the types and volatile profiles of the chicken were altered during chilling. In particular, in the chicken that was boiled at a pH of 8.0, the hexanal (an aldehyde) content increased the most after 7 d of chilling. Moreover, various alcohols formed after the 7 d of chilling of the chicken that was boiled at pHs of 8.0 and 9.0. Because of the oxidation and degradation of fat and proteins, the most altering volatile compounds were the reducing amines and the increasing aldehydes.
Collapse
Affiliation(s)
- Pattarabhorn Pakaweerachat
- Department of Food and Nutrition, Faculty of Home Economics Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Teerin Chysirichote
- Department of Food Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
7
|
Dai W, He S, Huang L, Lin S, Zhang M, Chi C, Chen H. Strategies to reduce fishy odor in aquatic products: Focusing on formation mechanism and mitigation means. Food Chem 2024; 444:138625. [PMID: 38325089 DOI: 10.1016/j.foodchem.2024.138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Aquatic products, integral to human diets, often bear a distinct fishy odor that diminishes their appeal. Currently, the formation mechanisms of these odoriferous compounds are not fully understood, complicating their effective control. This review aims to provide a comprehensive overview of key fishy compounds, with a focus on their formation mechanisms and innovative methods for controlling fishy odors. Fishy odors in aquatic products arise not only from the surrounding environment but also from endogenous transformations due to lipid autoxidation, enzymatic reactions, degradation of trimethylamine oxide, and Strecker degradation. Methods such as sensory masking, adsorbent and biomaterial adsorption, nanoliposome encapsulation, heat treatment, vacuum treatment, chemical reactions, and biological metabolic transformations have been developed to control fishy odors. Investigating the formation mechanisms of fishy odors will provide solid foundational knowledge that can inspire creative approaches to controlling these unpleasant odors.
Collapse
Affiliation(s)
- Wanting Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; College of Food, Nanchang University, Nanchang 330001, PR China; State Key Laboratory of Food Science and Resources, Nanchang 330001, PR China
| | - Shiying He
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Linshan Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Miao Zhang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Chengdeng Chi
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Huibin Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
8
|
Liu L, Zhao Y, Zeng M, Xu X. Research progress of fishy odor in aquatic products: From substance identification, formation mechanism, to elimination pathway. Food Res Int 2024; 178:113914. [PMID: 38309863 DOI: 10.1016/j.foodres.2023.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Fishy odor in aquatic products has a significant impact on the purchasing decisions of consumers. The production of aquatic products is a complex process involving culture, processing, transportation, and storage, which contribute to decreases in flavor and quality. This review systematically summarizes the fishy odor composition, identification methods, generation mechanism, and elimination methods of fishy odor compounds from their origin and formation to their elimination. Fishy odor compounds include aldehydes (hexanal, heptanal, and nonanal), alcohols (1-octen-3-ol), sulfur-containing compounds (dimethyl sulfide), and amines (trimethylamine). The mechanism of action of various factors affecting fishy odor is revealed, including environmental factors, enzymatic reactions, lipid oxidation, protein degradation, and microbial metabolism. Furthermore, the control and removal of fishy odor are briefly summarized and discussed, including masking, elimination, and conversion. This study provides a theoretical basis from source to elimination for achieving targeted regulation of the flavor of aquatic products, promoting industrial innovation and upgrading.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
9
|
Ghorbani M, Moradi M, Tajik H, Molaei R, Alizadeh A. Carbon dots embedded bacterial cellulose membrane as active packaging: Toxicity, in vitro release and application in minced beef packaging. Food Chem 2024; 433:137311. [PMID: 37683493 DOI: 10.1016/j.foodchem.2023.137311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Antimicrobial bacterial cellulose (BC) membranes incorporated with carbon dots (CDs) were developed to improve the shelf life and ensure the safety of minced beef during 9 days of storage at 4 °C. An ex-situ method was used to develop BC-CDs with different CDs loading capacities (16.50, 22.50, and 38.50 mg/cm3). Only BC-CDs38.50 membrane exhibited toxicity in human embryonic kidney cells, and BC-CDs membranes had the slowest release rate of CDs in 95% ethanol. Significant differences were noted in the chemical and sensory attributes of samples packaged with BC-CDs16.50 and BC-CDs22.50, compared to the control. The microbial counts in samples with BC-CDs were significantly lower than those in samples with pristine BC membranes or the control. Notably, the BC-CDs22.50 membrane exhibited a substantial reduction (4.7 log10 CFU/g) in Escherichia coli counts by the end of storage. These findings highlight the potential of BC-CDs membranes as effective antimicrobial materials in meat packaging.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
10
|
Preparation and properties of citric acid-crosslinked chitosan salt microspheres through radio frequency assisted method. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Fu T, Wan Y, Jin F, Liu B, Wang J, Yin X, Fu X, Tian B, Feng Z. Efficient imaging based on P - and N-codoped carbon dots for tracking division and viability assessment of lactic acid bacteria. Colloids Surf B Biointerfaces 2023; 223:113155. [PMID: 36724563 DOI: 10.1016/j.colsurfb.2023.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Assessment of lactic acid bacteria (LAB) activity plays a key role in the fermented food industry. Fluorescence imaging method based on dye is facile to detect LAB viability. However, it is difficult to obtain stable fluorescence, non-toxic and low-cost dyes. In this study, we prepare P- and N-doped carbon dots (PN-CDs) via microwave-assisted hydrothermal synthesis. The properties of high quantum yield (60.36%) and excitation dependence allowed for multicolor imaging of LAB (Lactobacillus plantarum [L.p] and Streptococcus thermophilus [S.t]). The abundant functional groups and positive charges (+2.34 mV) on the surface of PN-CDs facilitated their quickly integrated into cell wall of live LAB with obvious fluorescence or into dead cells. As a result, PN-CDs can not only be used to rapidly and efficiently monitor bacterial viability (one minute), but can also be used to visualize LAB division using fluorescence imaging. Importantly, the PN-CDs have potential to rapidly detect LAB activity in LAB-fermented juices.
Collapse
Affiliation(s)
- Tianxin Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Wan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Furong Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Buwei Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jindi Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Yin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangbo Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bo Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zhibiao Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Effect of particle size on quality of crab meatballs using enzymatically deproteinized crab by-products. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Influence of the combination of cinnamon essential oil nanoemulsions and epsilon-polylysine on microbial community and quality of pork during refrigerated period and radio frequency cooking. Int J Food Microbiol 2022; 381:109911. [DOI: 10.1016/j.ijfoodmicro.2022.109911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022]
|
14
|
Zhang L, Zhang M, Mujumdar AS, Yu D, Wang H. Potential nano bacteriostatic agents to be used in meat-based foods processing and storage: A critical review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Yu Q, Zhang M, Ju R, Mujumdar AS, Wang H. Advances in prepared dish processing using efficient physical fields: A review. Crit Rev Food Sci Nutr 2022; 64:4031-4045. [PMID: 36300891 DOI: 10.1080/10408398.2022.2138260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prepared dishes are increasingly popular convenience food that can be eaten directly from hygienic packaging by heating. Physics field (PF) is food processing method built with physical processing technology, which has the characteristics of high efficiency and environmental safety. This review focuses on summarizing the application of PFs in prepared dishes, evaluating and comparing PFs through quality changes during processing and storage of prepared dishes. Currently, improving the quality and extending the shelf life of prepared dishes through thermal and non-thermal processing are the main modes of action of PFs. Most PFs show good potential in handing prepared dishes, but may also react poorly to some prepared dishes. In addition, the difficulty of precise control of processing conditions has led to research mostly at the laboratory stage, but as physical technology continues to break through, more PFs and multi-physical field will be promoted for commercial use in the future. This review contributes to a deeper understanding of the effect of PFs on prepared dishes, and provides theoretical reference and practical basis for future processing research in the development of various enhanced PFs.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Zêzere B, Buchgeister S, Faria S, Portugal I, R. B. Gomes J, Manuel Silva C. Diffusivities of linear unsaturated ketones and aldehydes in compressed liquid ethanol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|