1
|
Zhang Y, Zhang X, Zhao Q, Gurusamy S, Lu Y, Chen X, Yang Q, Zeng K, Li Y, Liu X, Zhang H. Immobilization of aldo-keto reductase on dopamine/polyethyleneimine functionalized magnetic cellulose nanocrystals to enhance the detoxification of patulin in fresh pear juice. Int J Biol Macromol 2024; 278:134689. [PMID: 39142475 DOI: 10.1016/j.ijbiomac.2024.134689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/04/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Patulin (PAT) is a highly toxic mycotoxin, which can contaminate fruits and their products and cause harm to human health. Cellulose nanocrystals (CNCs) were functionalized by magnetite nanoparticles, dopamine (DA) and polyethyleneimine (PEI) to form a multifunctional nanocarrier (DA/PEI@Fe3O4/CNCs) for immobilizing aldo-keto reductase (MgAKR) to degrade PAT. The MgAKR-DA/PEI@Fe3O4/CNCs were reusable and environmentally friendly due to its surface area, high magnetization value, and oxygen/amine function. The immobilization method significantly improved reusability, resistance to proteolysis, temperature stability and storage stability of MgAKR-DA/PEI@Fe3O4/CNCs. With NADPH as a coenzyme, the detoxification rate of MgAKR-DA/PEI@Fe3O4/CNCs on PAT reached 100 % in phosphate buffer and 98 % in fresh pear juice. The quality of fresh pear juice was unaffected by MgAKR-DA/PEI@Fe3O4/CNCs and could be quickly separated by magnet after detoxification, which was convenient for recycling. It has broad application prospects in the control of PAT contamination in beverage products containing fruit and vegetable ingredients.
Collapse
Affiliation(s)
- Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qianhua Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Sivaprakash Gurusamy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xifei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaoyong Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Song C, Xu W, Guang C, Xue T, Mu W. Identification and application of a novel patulin degrading enzyme from Cyberlindnera fabianii. Food Res Int 2024; 192:114846. [PMID: 39147475 DOI: 10.1016/j.foodres.2024.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Patulin (PAT) is a mycotoxin commonly found in fruits and vegetables, prompting the need for effective removal and detoxification methods, which have garnered significant research attention in recent years. Among these methods, the utilization of microbial-derived enzymes stands out due to their mild operating conditions, specificity in targeted functional groups, and the production of non-toxic by-products, making it a preferred degradation approach. In this study, a novel PAT-degrading enzyme derived from Cyberlindnera fabianii (Cyfa-SDR) was identified, demonstrating its highest catalytic activity at pH 7.0 and 80 °C against PAT. This temperature tolerance level represents the highest reported for PAT-degrading enzymes to date. The enzyme was further characterized as a short-chain dehydrogenase through analysis of its amino acid composition, conserved GXXXGXG motif, and dependency on NADPH. Moreover, the study evaluated the efficiency of PAT degradation by Cyfa-SDR at varying substrate and enzyme concentrations, surpassing the performance of other PAT-degrading enzymes, thus highlighting its substantial potential for the biological control of PAT. In conclusion, the enzymatic treatment using the PAT-degrading enzyme Cyfa-SDR presents a viable and promising solution for enhancing the quality and safety of fruit juice.
Collapse
Affiliation(s)
- Chenyu Song
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ting Xue
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Chen L, Qin X, Wang G, Teng M, Zheng Y, Yang F, Du H, Wang L, Xu Y. Oxygen influences spatial heterogeneity and microbial succession dynamics during Baijiu stacking process. BIORESOURCE TECHNOLOGY 2024; 403:130854. [PMID: 38761866 DOI: 10.1016/j.biortech.2024.130854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
The spontaneous solid-state stacking process (SSSP) of Baijiu is an environmentally friendly and cost-effective process for enriching and assembling environmental microorganisms to guarantee the subsequent fermentation efficiency. In this study, how SSSP create spatial heterogeneity of stacking piles were found through spatiotemporal sampling. The degree of difficulty in oxygen exchange categorizes the stacking pile into depleted (≤4%), transitional (4 %-17 %), and enriched (≥17 %) oxygen-defined layers. This results in variation in succession rates (Vdepleted > Vtransitional > Venriched), which accelerates spatial heterogeneity during SSSP. As a dominant species (65 %-99 %) in depleted and transitional layers, Acetilactobacillus jinshanensis can rapidly reduce oxygen disturbance by upregulating poxL and catE, that sustains spatial heterogeneity. The findings demonstrated the value of oxygen control in shaping spatial heterogeneity during SSSP processes, which can create specific functional microbiome. Adding spatial heterogeneity management will help achieve more precise control of such solid-state fermentation systems.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China; Moutai Institute, Renhuai 564500, Guizhou, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Xing Qin
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Guozheng Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Mengjing Teng
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Yuxi Zheng
- Moutai Institute, Renhuai 564500, Guizhou, China; Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Fan Yang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Li Wang
- Guizhou Key Laboratory of Microbial Resources Exploration in Fermentation industry, Kweichow Moutai Group, Renhuai 564500, Guizhou, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
5
|
Yang C, Zhang Z, Peng B. New insights into searching patulin degrading enzymes in Saccharomyces cerevisiae through proteomic and molecular docking analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132806. [PMID: 37922585 DOI: 10.1016/j.jhazmat.2023.132806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Global warming has increased the contamination of mycotoxins. Patulin (PAT) is a harmful contaminant that poses a serious threat to food safety and human health. Saccharomyces cerevisiae biodegrades PAT by its enzymes during fermentation, which is a safe and efficient method of detoxification. However, the key degradation enzymes remain unclear. In this study, the proteomic differences of Saccharomyces cerevisiae under PAT stress were investigated. The results showed that the proteins involved in redox reactions and defense mechanisms were significantly up-regulated to resist PAT stress. Subsequently, molecular docking was used to virtual screen for degrading enzymes. Among 18 proteins, YKL069W showed the highest binding affinity to PAT and was then expressed in Escherichia coli, where the purified YKL069W completely degraded 10 μg/mL PAT at 48 h. YKL069W was demonstrated to be able to degrade PAT into E-ascladiol. Molecular dynamics simulations confirmed that YKL069W was stable in catalyzing PAT degradation with a binding free energy of - 7.5 kcal/mol. Furthermore, it was hypothesized that CYS125 and CYS101 were the key amino acid residues for degradation. This study offers new insights for the rapid screening and development of PAT degrading enzymes and provides a theoretical basis for the detoxification of mycotoxins.
Collapse
Affiliation(s)
- Chao Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bangzhu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural GenomicsInstitute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
6
|
Jiao F, Cui X, Shi S, Jiang G, Dong M, Meng L. Capacity and kinetics of zearalenone adsorption by Geotrichum candidum LG-8 and its dried fragments in solution. Front Nutr 2024; 10:1338454. [PMID: 38274209 PMCID: PMC10808330 DOI: 10.3389/fnut.2023.1338454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
The application of LG-8 and its dry fragments as zearalenone (ZEN) adsorbents was investigated. The study showed that Geotrichum candidum LG-8 and its fragments dried at 55°C or through lyophilization are able to adsorb around 80% of ZEN. However, besides in water and 55°C-drying conditions, SEM indicated that higher 90% of ZEN binding tended to occur when cell walls of fragments were intact with less adhesion among themselves. Notably, ZEN/LG-8 fragments complexes were quite stable, as only 1.262% and 1.969% of ZEN were released after successive pH treatments for 4 h and 5 min. The kinetic data signified that adsorption of ZEN onto LG-8 fragments followed well the pseudo-first-order kinetic model. Isotherm calculations showed Langmuir model was favourable and monolayer adsorption of ZEN occurred at functional binding sites on fragments surface. Therefore, we conclude that it can be an alternative biosorbent to treat water contained with ZEN, since LG-8 is low-cost biomass and its fragments have a considerable high biosorption capacity avoiding impacting final product quality and immunodeficient patients.
Collapse
Affiliation(s)
- Fengping Jiao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianping Cui
- Division of Hepatobiliary and Pancreatic Surgery, Affiliated Provincial Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shujin Shi
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
7
|
Tang H, Han W, Fei S, Li Y, Huang J, Dong M, Wang L, Wang W, Zhang Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins (Basel) 2023; 15:toxins15030201. [PMID: 36977092 PMCID: PMC10055482 DOI: 10.3390/toxins15030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this work, we proposed an acid hydrolysis-based analytical method for the detection of Alternaria toxins (ATs) in solanaceous vegetables and their products with solid-phase extraction (SPE) and ultrahigh-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS). This study was the first to reveal that some compounds in the eggplant matrix bind to altenusin (ALS). Validation under optimal sample preparation conditions showed that the method met the EU criteria, exhibiting good linearity (R2 > 0.99), matrix effects (−66.6–−20.5%), satisfying recovery (72.0–107.4%), acceptable precision (1.5–15.5%), and satisfactory sensitivity (0.05–2 µg/kg for limit of detection, 2–5 µg/kg for limit of quantification). Out of 393 marketed samples, only 47 samples were detected, ranging from 0.54–806 μg/kg. Though the occurrence ratio (2.72%) in solanaceous vegetables could be negligible, the pollution status in solanaceous vegetable products was much more serious, and the incidences were 41.1%. In the 47 contaminated samples, the incidences were 4.26% for alternariol monomethyl ether (AME), 6.38% for alternariol (AOH) and altenuene (ALT), 42.6% for tentoxin (TEN), and 55.3% for tenuazonic acid (TeA).
Collapse
Affiliation(s)
- Hongxia Tang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Han
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shaoxiang Fei
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yubo Li
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jiaqing Huang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute for Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: ; Tel.: +86-21-62203612; Fax: +86-21-62203612
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Wang
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Yang C, Peng B. Biodegradation characteristics of patulin by Saccharomyces cerevisiae during fermentation. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Lu T, Fu C, Xiong Y, Zeng Z, Fan Y, Dai X, Huang X, Ge J, Li X. Biodegradation of Aflatoxin B 1 in Peanut Oil by an Amphipathic Laccase-Inorganic Hybrid Nanoflower. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3876-3884. [PMID: 36791339 DOI: 10.1021/acs.jafc.2c08148] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) contamination is an important issue for the safety of edible oils. Enzymatic degradation is a promising approach for removing mycotoxins in a specific, efficient, and green manner. However, enzymatic degradation of mycotoxins in edible oil is challenging as a result of the low activity and stability of the enzyme. Herein, a novel strategy was proposed to degrade AFB1 in peanut oil using an amphipathic laccase-inorganic hybrid nanoflower (Lac NF-P) as a biocatalyst. Owing to the improved microenvironment of the enzymatic reaction and the enhanced stability of the enzyme structure, the proposed amphipathic Lac NF-P showed 134- and 3.2-fold increases in the degradation efficiency of AFB1 in comparison to laccase and Lac NF, respectively. AFB1 was removed to less than 0.96 μg/kg within 3 h when using Lac NF-P as a catalyst in the peanut oil, with the AFB1 concentration ranging from 50 to 150 μg/kg. Moreover, the quality of the peanut oil had no obvious change, and no leakage of catalyst was observed after the treatment of Lac NF-P. In other words, our study may open an avenue for the development of a novel biocatalyst for the detoxification of mycotoxins in edible oils.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Caicai Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yunkai Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao Dai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun Ge
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
10
|
Wang S, Cai R, Liu X, Qi L, Wang L, Yue T, Yuan Y, Wang Z. The detoxification of ochratoxin A in wine and grape juice by different enzymes and evaluation of their effects on the quality. EFOOD 2023. [DOI: 10.1002/efd2.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Saiqun Wang
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Rui Cai
- College of Food Science and Engineering Northwest University Xi'an Shaanxi China
| | - Xiaoshuang Liu
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Lige Qi
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Leran Wang
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| | - Tianli Yue
- College of Food Science and Engineering Northwest University Xi'an Shaanxi China
| | - Yahong Yuan
- College of Food Science and Engineering Northwest University Xi'an Shaanxi China
| | - Zhouli Wang
- College of Food Science and Engineering Northwest A&F University YangLing Shaanxi China
- Laboratory of Quality & Safety Risk Assessment for Agro‐products (YangLing) Ministry of Agriculture Yangling Shanxi China
| |
Collapse
|
11
|
Liu X, Wang L, Wang S, Cai R, Yue T, Yuan Y, Gao Z, Wang Z. Detoxification of patulin in apple juice by enzymes and evaluation of its degradation products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Gupta R, Rahi Alhachami F, Khalid I, Majdi HS, Nisar N, Mohamed Hasan Y, Sivaraman R, Romero Parra RM, Al Mashhadani ZI, Fakri Mustafa Y. Recent Progress in Aptamer-Functionalized Metal-Organic Frameworks-Based Optical and Electrochemical Sensors for Detection of Mycotoxins. Crit Rev Anal Chem 2022; 54:1707-1728. [PMID: 36197710 DOI: 10.1080/10408347.2022.2128634] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Mycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability. The amalgamation of MOFs with high-affinity aptamers has resulted in the progress of advanced aptasensing methods for clinical and food/water safety diagnosis. Aptamers have many advantages over classical approaches as exceptional molecular recognition constituents for versatile bioassays tools. The excellent sensitivity and selectivity of the MOF-aptamer biocomposite nominate them as efficient lab-on-chip tools for portable, label-free, cost-effective and real-time screening of mycotoxins. Current breakthroughs in the concept, progress and biosensing applications of aptamer functionalized MOFs-derived electrochemical and optical sensors for mycotoxins have been discussed in this study. We first highlighted an overview part, which provides some insights into the functionalization mechanisms of MOFs with aptamers, offering a foundation to create MOFs-based aptasensors. Then, we discuss various strategies to design high-performance MOFs-based aptamer scaffolds, which serve as either signal nanoprobe carriers or signal nanoprobes and their applications. We perceived that applications of optical aptamers are in their infancy in comparison with electrochemical MOFs-derived aptasensors. Finally, current challenges and prospective trends of MOFs-aptamer sensors are discussed.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Imran Khalid
- Department of Agriculture Extension Education, The Islamia University of Bahawalpur, Pakistan
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Hilla, Iraq
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - R Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras Chennai, Arumbakkam, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
13
|
Ji J, Yu J, Ye Y, Sheng L, Fang J, Yang Y, Sun X. Biodegradation methods and product analysis of zearalenone and its future development trend: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|