1
|
Di Maro M, Gargiulo L, Gomez d'Ayala G, Duraccio D. Exploring Antimicrobial Compounds from Agri-Food Wastes for Sustainable Applications. Int J Mol Sci 2024; 25:13171. [PMID: 39684881 DOI: 10.3390/ijms252313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Transforming agri-food wastes into valuable products is crucial due to their significant environmental impact, when discarded, including energy consumption, water use, and carbon emissions. This review aims to explore the current research on the recovery of bioactive molecules with antimicrobial properties from agri-food waste and by-products, and discusses future opportunities for promoting a circular economy in its production and processing. Mainly, antibacterial molecules extracted from agri-food wastes are phenolic compounds, essential oils, and saponins. Their extraction and antimicrobial activity against a wide spectrum of bacteria is analyzed in depth. Also, their possible mechanisms of activity are described and classified based on their effect on bacteria, such as the (i) alteration of the cell membrane, (ii) inhibition of energy metabolism and DNA synthesis, and iii) disruption of quorum sensing and biofilm formation. These bioactive molecules have a wide range of possible applications ranging from cosmetics to food packaging. However, despite their potential, the amount of wastes transformed into valuable compounds is very low, due to the high costs relating to their extraction, technical challenges in managing supply chain complexity, limited infrastructure, policy and regulatory barriers, and public perception. For these reasons, further research is needed to develop cost-effective, scalable technologies for biomass valorization.
Collapse
Affiliation(s)
- Mattia Di Maro
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Luca Gargiulo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEM), National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
2
|
Zhao J, Wang J, Zhang C, Xu S, Ren H, Zou L, Ma J, Liu W. Characterization of a Salmonella abortus equi phage 4FS1 and its depolymerase. Front Vet Sci 2024; 11:1496684. [PMID: 39654841 PMCID: PMC11626802 DOI: 10.3389/fvets.2024.1496684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The significant economic losses caused by S. abortus equi in donkey husbandry have increased interest in exploring the potential of phages and their enzymes as control strategies. In this study, a S. abortus equi phage, designated 4FS1, was isolated from sewage at a donkey farm. Transmission electron microscopy (TEM) revealed a typical icosahedral head and a long, non-contractile tail. It exhibited a short latent period of 20 min and a burst size of 160 plaque-forming units (PFU) per cell. It demonstrated a broad host range, infecting 36 out of 60 salmonella strains, with an optimal multiplicity of infection (MOI) of 0.01 for S. abortus equi S1. The phage titer remained stable at 109 PFU/mL between 37°C and 50°C and exceeded 108 PFU/mL at pH from 5.0 to 10.0. After 1 h of UV exposure, the titer remained at 107 PFU/mL and showed no significant variation across NaCl concentrations from 2.5 to 15%. The genome of phage 4FS1 consists of a 42,485 bp linear double-stranded DNA molecule with a G + C content of 49.07%. Of the 56 predicted open reading frames (ORFs), 32 were functional annotated, with no virulence or drug resistance genes identified. ORF36 was predicted to encode a depolymerase responsible for endorhamnosidase activity. Recombinant expression of the Dpo36 protein in prokaryotes significantly reduced biofilm formation and removal. Combined with healthy donkey serum, Dpo36 inhibited bacterial growth in vitro and enhanced the survival rates of mice infected with S. abortus equi. These findings highlight the promising potential of phages and their depolymerases as novel therapeutic agents against S. abortus equi.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Lin Z, Liang Z, He S, Chin FWL, Huang D, Hong Y, Wang X, Li D. Salmonella dry surface biofilm: morphology, single-cell landscape, and sanitization. Appl Environ Microbiol 2024; 90:e0162324. [PMID: 39494899 DOI: 10.1128/aem.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, Salmonella Typhimurium dry surface biofilm (DSB) formation was investigated in comparison with wet surface biofilm (WSB) development. Confocal laser scanning microscopic analysis revealed a prominent green cell signal during WSB formation, whereas a red signal predominated during DSB formation. Electron microscopy was also used to compare the features of DSB and WSB. Overall, WSB was unevenly scattered over the surface, whereas DSB was evenly dispersed. In contrast to WSB cells, which have a distinct plasma membrane and outer membrane layer, DSB cells are contained in large capsules and compressed. Next, microbiome single-cell transcriptomics was used to investigate the functional heterogeneity of the Salmonella DSB microbiome, with nine clusters successfully identified. Although over 60% of the dried cells were metabolically inactive, the rest of the Salmonella cells still demonstrated specific antioxidative and virulence capabilities, suggesting a possible concern for low-moisture food (LMF) safety. Finally, because sanitization in LMF industries must be conducted without water, a list of 39 flavonoids was tested for their combined effect with 70% isopropyl alcohol (IPA) against DSB, and morin induced the greatest reduction in the green:red ratio from 3.67 to 0.43. Significantly higher reductions of Salmonella viability in DSB were achieved by 10-, 100-, 1,000-, and 10,000-µg/mL morin (1.69 ± 0.25, 3.21 ± 0.23, 4.32 ± 0.24, and 5.18 ± 0.16 log CFU/sample reductions) than 70% IPA alone (1.55 ± 0.20 log CFU/sample reduction) (P < 0.05), indicating the potential to be formulated as a dry sanitizer for the LMF industry.IMPORTANCEDSB growth of foodborne pathogens in LMF processing environments is associated with food safety, financial loss, and compromised consumer trust. This work is the first comprehensive examination of the characteristics of Salmonella DSB while exploring its underlying survival mechanisms. Furthermore, morin dissolved in 70% IPA was proposed as an efficient dry sanitizer against DSB to provide insights into biofilm control during LMF processing.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Zhiqian Liang
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Shuang He
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Fion Wei Lin Chin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
4
|
Carneiro DG, Vidigal PMP, Morgan T, Vanetti MCD. Genome sequencing and analysis of Salmonella enterica subsp. enterica serotype Enteritidis PT4 578: insights into pathogenicity and virulence. Access Microbiol 2024; 6:000828.v3. [PMID: 39686970 PMCID: PMC11649194 DOI: 10.1099/acmi.0.000828.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella enterica serotype Enteritidis is a generalist serotype that adapts to different hosts and transmission niches. It has significant epidemiological relevance and is among the most prevalent serotypes distributed in several countries. Salmonella Enteritidis causes self-limited gastroenteritis in humans, which can progress to systemic infection in immunocompromised individuals. The Salmonella pathogenicity mechanism is multifactorial and complex, including the presence of virulence factors that are encoded by virulence genes. Poultry products are considered significant reservoirs of many Salmonella serotypes, and Salmonella Enteritidis infections are often related to the consumption of chicken meat and eggs. This study reports the whole-genome sequence of Salmonella Enteritidis PT4 strain 578. A total of 165 genes (3.66%) of the 4506 coding sequences (CDS) predicted in its genome are virulence factors associated with cell invasion, intestinal colonization, and intracellular survival. The genome harbours twelve Salmonella pathogenicity islands (SPIs), with the SPI-1 and SPI-2 genes encoding type III secretion systems (T3SS) showing high conservation. Six prophage-related sequences were found, with regions of intact prophages corresponding to Salmon_118970_sal3 and Gifsy-2. The genome also contains two CRISPR systems. Comparative genome analysis with Salmonella Enteritidis ATCC 13076, Salmonella Typhimurium ATCC 13311, and Salmonella Typhimurium ATCC 14028 demonstrates that most unshared genes are related to metabolism, membrane, and hypothetical proteins. Finally, the phenotypic characterization evidenced differences among Salmonella Enteritidis PT4 578 and the other three serotypes regarding the expression of the red, dry, and rough (rdar) morphotype and biofilm formation. Overall, the genomic characterization and phenotypic properties expand knowledge of the mechanisms of pathogenicity in Salmonella Enteritidis PT4 578.
Collapse
Affiliation(s)
- Deisy G. Carneiro
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Pedro Marcus P. Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa 36570-900, Minas Gerais, Brazil
| | - Túlio Morgan
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Maria Cristina D. Vanetti
- Departamento de Microbiologia, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
5
|
Huang Q, Zhang Y, Zhang M, Li X, Wang Q, Ji X, Chen R, Luo X, Ji S, Lu R. Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLoS One 2024; 19:e0309304. [PMID: 39173020 PMCID: PMC11341049 DOI: 10.1371/journal.pone.0309304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The aim of this study was to investigate the prevalence of Vibrionaceae family in retail seafood products available in the Qidong market during the summer of 2023 and to characterize Vibrio parahaemolyticus isolates, given that this bacterium is the leading cause of seafood-associated food poisoning. We successfully isolated a total of 240 Vibrionaceae strains from a pool of 718 seafood samples. The breakdown of the isolates included 146 Photobacterium damselae, 59 V. parahaemolyticus, 18 V. campbellii, and 11 V. alginolyticus. Among these, P. damselae and V. parahaemolyticus were the predominant species, with respective prevalence rates of 20.3% and 8.2%. Interestingly, all 59 isolates of V. parahaemolyticus were identified as non-pathogenic. They demonstrated proficiency in swimming and swarming motility and were capable of forming biofilms across a range of temperatures. In terms of antibiotic resistance, the V. parahaemolyticus isolates showed high resistance to ampicillin, intermediate resistance to cefuroxime and cefazolin, and were sensitive to the other antibiotics evaluated. The findings of this study may offer valuable insights and theoretical support for enhancing seafood safety measures in Qidong City.
Collapse
Affiliation(s)
- Qinglian Huang
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinjun Wang
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xianyi Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Rongrong Chen
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Renfei Lu
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Ashrafudoulla M, Yun H, Ashikur Rahman M, Jung SJ, Jie-Won Ha A, Anamul Hasan Chowdhury M, Shaila S, Akter S, Park SH, Ha SD. Prophylactic efficacy of baicalin and carvacrol against Salmonella Typhimurium biofilm on food and food contact surfaces. Food Res Int 2024; 187:114458. [PMID: 38763690 DOI: 10.1016/j.foodres.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
This study examines the antimicrobial and antibiofilm effectiveness of baicalin and carvacrol against Salmonella enterica ser. Typhimurium on food contact surfaces and chicken meat. The minimum inhibitory concentrations (MIC) for baicalin and carvacrol were found to be 100 μg/mL and 200 μg/mL, respectively, which aligns with findings from previous studies. The compounds exhibited a concentration-dependent decrease in microbial populations and biofilm formation. When used together, they displayed a remarkable synergistic effect, greatly augmenting their antibacterial activity. The assessment of food quality demonstrated that these treatments have no negative impact on the sensory characteristics of chicken meat. The impact of the structure on biofilms was observed through the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Confocal Laser Scanning Microscopy (CLSM), revealing disrupted biofilm architectures and decreased cell viability. Crucially, RT-PCR analysis revealed a marked downregulation of quorum sensing (luxS), virulence (hilA), and stress response (rpoS) genes, highlighting the multifaceted antimicrobial mechanism of action. This gene-specific suppression suggests a targeted disruption of bacterial communication and virulence pathways, offering insight into the comprehensive antibiofilm strategy. This provides further insight into the molecular mechanisms that contribute to their antibiofilm effects.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea; National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Hyojae Yun
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Ashikur Rahman
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Soo-Jin Jung
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Angela Jie-Won Ha
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea; Grand Hyatt Jeju, 12 Noyeon-ro, Jeju-si, Jeju-do, South Korea
| | - Md Anamul Hasan Chowdhury
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Shanjida Shaila
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Shirin Akter
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Anseong, Gyeonggi-do 456-756, Republic of Korea.
| |
Collapse
|
7
|
Musini A, Singh HN, Vulise J, Pammi SSS, Archana Giri. Quercetin's antibiofilm effectiveness against drug resistant Staphylococcus aureus and its validation by in silico modeling. Res Microbiol 2024; 175:104091. [PMID: 37331493 DOI: 10.1016/j.resmic.2023.104091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Staphylococcus aureus is typically treated with antibiotics, however, due to its widespread and unselective usage, resistant strains of S. aureus have increased to a great extent. Treatment failure and recurring staphylococcal infections are also brought on by biofilm development, which boosts an organism's ability to withstand antibiotics and is thought to be a virulence factor in patients. The present study investigates the antibiofilm activity of naturally available polyphenol Quercetin against drug-resistant S. aureus. Micro dilution plating and tube adhesion methods were performed to evaluate the antibiofilm activity of quercetin against S. aureus. Quercetin treatment resulted in remarkably reduction of biofilm in S. aureus cells. Further we performed a study to investigate binding efficacies of quercetin with genes icaB and icaC from ica locus involved in biofilm formation. 3D structure of icaB, icaC and quercetin were retrieved from Protein data bank and PubChem chemical compound database, respectively. All computational simulation were carried out using AutoDock Vina and AutoDockTools (ADT) v 1.5.4. In silico study demonstrated a strong complex formation, large binding constants (Kb) and low free binding energy (ΔG) between quercetin and icaB (Kb = 1.63 × 10-5, ΔG = -7.2 k cal/mol) and icaC (Kb = 1.98 × 10-6, ΔG = -8.7 kcal/mol). This in silico analysis indicates that quercetin is capable of targeting icaB and icaC proteins which are essential for biofilm formation in S. aureus. Our study highlighted the antibiofilm activity of quercetin against drug resistant pathogen S.aureus.
Collapse
Affiliation(s)
- Anjaneyulu Musini
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, 500085, India.
| | | | - Jhansi Vulise
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, 500085, India
| | - S S Sravanthi Pammi
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, 500085, India
| | - Archana Giri
- Centre for Biotechnology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, 500085, India
| |
Collapse
|
8
|
Liang X, Tu C, Li Y, Sun J, Zhao R, Ran J, Jiao L, Huang J, Li J. Inhibitory mechanism of quercetin on Alicyclobacillus acidoterrestris. Front Microbiol 2023; 14:1286187. [PMID: 38033555 PMCID: PMC10684910 DOI: 10.3389/fmicb.2023.1286187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
In this the antibacterial of quercetin against Alicyclobacillus acidoterrestris was evaluated by measuring the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Subsequently, the effect of quercetin on A. acidoterrestris cell membrane was evaluated through scanning electron microscopy (SEM), surface hydrophobicity determination, diacetate fluorescein staining and propidium iodide (PI) staining. Additionally, the effects of quercetin on intracellular macromolecules and cell metabolism were explored by measuring the culture medium protein, bacterial protein and intracellular sodium and potassium adenosine triphosphate (ATP) enzyme activity. The results revealed that quercetin exhibited the MIC and MBC values of 100 ug/mL and 400 ug/mL, respectively, against A. acidoterrestris. The SEM results revealed that quercetin could induce irreversible damage to the cell membrane effectively. Moreover, quercetin could enhance the surface hydrophobicity of A. acidoterrestris. The results of flow cytometry and fluorescence microscopy analyses revealed that quercetin could promote cell damage by altering the cell membrane permeability of A. acidoterrestris, inducing the release of nucleic acid substances from the cells. Furthermore, the determination of protein content in the culture medium, bacterial protein content, and the Na(+)/K(+)-ATPase activity demonstrated that quercetin could reduce the intracellular protein content and impedes protein expression and ATPase synthesis effectively, leading to apoptosis.
Collapse
Affiliation(s)
- Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Cunjian Tu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yongchao Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Junliang Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junchao Huang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junrui Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
9
|
Leesombun A, Sungpradit S, Sariya L, Taowan J, Boonmasawai S. Transcriptional Profiling of the Effect of Coleus amboinicus L. Essential Oil against Salmonella Typhimurium Biofilm Formation. Antibiotics (Basel) 2023; 12:1598. [PMID: 37998800 PMCID: PMC10668763 DOI: 10.3390/antibiotics12111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella enterica serovar Typhimurium cause infections primarily through foodborne transmission and remains a significant public health concern. The biofilm formation of this bacteria also contributes to their multidrug-resistant nature. Essential oils from medicinal plants are considered potential alternatives to conventional antibiotics. Therefore, this study assessed the antimicrobial and antibiofilm activities of Coleus amboinicus essential oil (EO-CA) against S. Typhimurium ATCC 14028. Seventeen chemical compounds of EO-CA were identified, and carvacrol (38.26%) was found to be the main constituent. The minimum inhibitory concentration (MIC) of EO-CA for S. Typhimurium planktonic growth was 1024 µg/mL while the minimum bactericidal concentration was 1024 µg/mL. EO-CA at sub-MIC (≥1/16× MIC) exhibited antibiofilm activity against the prebiofilm formation of S. Typhimurium at 24 h. Furthermore, EO-CA (≥1/4× MIC) inhibited postbiofilm formation at 24 and 48 h (p < 0.05). Transcriptional profiling revealed that the EO-CA-treated group at 1/2× MIC had 375 differentially expressed genes (DEGs), 106 of which were upregulated and 269 were downregulated. Five significantly downregulated virulent DEGs responsible for motility (flhD, fljB, and fimD), curli fimbriae (csgD), and invasion (hilA) were screened via quantitative reverse transcription PCR (qRT-PCR). This study suggests the potential of EO-CA as an effective antimicrobial agent for combating planktonic and biofilm formation of Salmonella.
Collapse
Affiliation(s)
- Arpron Leesombun
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| | - Sivapong Sungpradit
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (L.S.); (J.T.)
| | - Jarupha Taowan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (L.S.); (J.T.)
| | - Sookruetai Boonmasawai
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| |
Collapse
|
10
|
Ashrafudoulla M, Mevo SIU, Song M, Chowdhury MAH, Shaila S, Kim DH, Nahar S, Toushik SH, Park SH, Ha SD. Antibiofilm mechanism of peppermint essential oil to avert biofilm developed by foodborne and food spoilage pathogens on food contact surfaces. J Food Sci 2023; 88:3935-3955. [PMID: 37477280 DOI: 10.1111/1750-3841.16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Minsu Song
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | | | - Shanjida Shaila
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Duk Hyun Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| | - Sazzad Hossen Toushik
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong-si, Republic of Korea
| |
Collapse
|
11
|
Chen W, Xu Z, Li C, Wang C, Wang M, Liang J, Wei P. Investigation of biofilm formation and the associated genes in multidrug-resistant Salmonella pullorum in China (2018-2022). Front Vet Sci 2023; 10:1248584. [PMID: 37720478 PMCID: PMC10500350 DOI: 10.3389/fvets.2023.1248584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
The study explored the biofilm (BF) formation capacity, BF-related gene profiles, and the trends in antimicrobial resistance (AMR) of Salmonella pullorum (SP) strains over several years. A total of 627 SP strains were isolated from 4,540 samples collected from chicken farms in Guangxi, China during 2018-2022. The BF-forming capacity of these isolates was assessed using crystal violet staining, and the presence of eight BF-related genes (csgA, csgB, csgD, ompR, bapA, pfs, luxS, and rpoS) in BF formation-positive strains was determined through Polymerase Chain Reaction (PCR) analysis. Antimicrobial susceptibility test was conducted to investigate the AMR of the isolates. Minimum Inhibitory Concentration (MIC) and Minimal Biofilm Eradication Concentration (MBEC) of nine SP-BF strains were determined using the broth microdilution method to assess the impact of BF formation on AMR. Additionally, the Optimal Biofilm Formation Conditions (OBFC) were investigated. The results indicated that 36.8% (231/627) of the strains exhibited a positive BF-formation capacity. Among these, 24.7% (57/231) were strong BF producers, 23.4% (54/231) were moderate BF producers, and 51.9% (120/231) were weak BF producers. Analysis of the eight BF-related genes in SP-BF strains revealed that over 90% of them were positive for all the genes. Antimicrobial susceptibility test conducted on the isolates showed that 100% (231/231) of them exhibited resistance to at least one antibiotic, with 98.3% (227/231) demonstrating multidrug resistance (MDR). Both MIC and MBEC measurements indicated varying degrees of increased AMR after BF formation of the bacteria. The optimal conditions for BF formation were observed at 37°C after 48 h of incubation, with an initial bacterial concentration of 1.2 × 106 CFU/mL. Notably, NaCl had a significant inhibitory effect on BF formation, while glucose and Trypticase Soy Broth (TSB) positively influenced BF formation. The results of the study emphasized the need for effective preventive and control strategies to address the challenges posed by the BF formation and MDR of SP in the field.
Collapse
Affiliation(s)
- Wenyan Chen
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Ziheng Xu
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Changcheng Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Can Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Min Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Jingzhen Liang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Rahman MA, Ashrafudoulla M, Akter S, Park SH, Ha SD. Probiotics and biofilm interaction in aquaculture for sustainable food security: A review and bibliometric analysis. Crit Rev Food Sci Nutr 2023; 64:12319-12335. [PMID: 37599629 DOI: 10.1080/10408398.2023.2249114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Aquaculture is one of the most significant food sources from the prehistoric period. As aquaculture intensifies globally, the prevalence and outbreaks of various pathogenic microorganisms cause fish disease and heavy mortality, leading to a drastic reduction in yield and substantial economic loss. With the modernization of the aquaculture system, a new challenge regarding biofilms or bacterial microenvironments arises worldwide, which facilitates pathogenic microorganisms to survive under unfavorable environmental conditions and withstand various treatments, especially antibiotics and other chemical disinfectants. However, we focus on the mechanistic association between those microbes which mainly form biofilm and probiotics in one of the major food production systems, aquaculture. In recent years, probiotics and their derivatives have attracted much attention in the fisheries sector to combat the survival strategy of pathogenic bacteria. Apart from this, Bibliometric analysis provides a comprehensive overview of the published literature, highlighting key research themes, emerging topics, and areas that require further investigation. This information is valuable for researchers, policymakers, and stakeholders in determining research priorities and allocating resources effectively.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Shirin Akter
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology Department, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
13
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
14
|
Roy PK, Kim SH, Jeon EB, Park EH, Park SY. Inhibition of Listeria monocytogenes Cocktail Culture Biofilms on Crab and Shrimp Coupons and the Expression of Biofilm-Related Genes. Antibiotics (Basel) 2023; 12:1008. [PMID: 37370327 DOI: 10.3390/antibiotics12061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes, a bacterium that is transmitted by tainted food, causes the infection listeriosis. In this study, quercetin was tested for its antibacterial properties and effectiveness as a food additive in preventing the growth of L. monocytogenes cocktail (ATCC19117, ATCC19113, and ATCC15313) biofilms on crabs and shrimps. Quercetin showed the least bactericidal activity and no discernible microbial growth at a minimum inhibitory concentration (MIC) of 250 µg/mL. The biofilm inhibition was performed at sub-MICs (1/2, 1/4, and 1/8 MIC). There was no quercetin added to the control group. Additionally, the present work examines the expression of various genes related to biofilm formation and quorum sensing (flaA, fbp, agrA, hlyA, and prfA). The levels of target genes were all significantly down-regulated. Quercetin (0-125 µg/mL) on the surfaces of the crab and shrimp was studied; its inhibitory effects were measured as log reductions at 0.39-2.31 log CFU/cm2 and 0.42-2.36 log CFU/cm2, respectively (p < 0.05). Quercetin reduced the formation of biofilms by disrupting cell-to-cell connections and causing cell lysis, which led to the deformation of the cells, evidenced by FE-SEM (field-emission scanning electron microscopy). These findings emphasize the significance of using natural food agents to target bacteria throughout the entire food production process.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Hee Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
15
|
Roy PK, Ha AJW, Nahar S, Hossain MI, Ashrafudoulla M, Toushik SH, Mizan MFR, Kang I, Ha SD. Inhibitory effects of vorinostat (SAHA) against food-borne pathogen Salmonella enterica serotype Kentucky mixed culture biofilm with virulence and quorum-sensing relative expression. BIOFOULING 2023; 39:617-628. [PMID: 37580896 DOI: 10.1080/08927014.2023.2242263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Angela Ji-Won Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Sazzad Hossen Toushik
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, College of Agriculture, Food and Environmental Science, CA Polytechnic State University, San Luis Obispo, California, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
16
|
Guo Y, Chen X, Gong P, Deng Z, Qi Z, Wang R, Long H, Wang J, Yao W, Yang W, Chen F. Recent advances in quality preservation of postharvest golden needle mushroom (Flammulina velutiper). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37014278 DOI: 10.1002/jsfa.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The golden needle mushroom (Flammulina velutiper) is one of the most productive mushrooms in the world. However, F. velutiper experiences continuous quality degradation in terms of changes in color and textural characteristics, loss of moisture, nutrition and flavor, and increased microbial populations due to its high respiratory activity during the postharvest phase. Postharvest preservation techniques, including physical, chemical and biological methods, play a vital role in maintaining postharvest quality and extending the shelf life of mushrooms. Therefore, in this study, the decay process of F. velutiper and the factors affecting its quality were comprehensively reviewed. Additionally, the preservation methods (e.g., low-temperature storage, packaging, plasma treatment, antimicrobial cleaning and 1-methylcyclopropene treatment) for F. velutiper used for the last 5 years were compared to provide an outlook on future research directions. Overall, this review aims to provide a reference for developing novel, green and safe preservation techniques for F. velutiper. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhenfang Deng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Zhuoya Qi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ruotong Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
17
|
Song MG, Roy PK, Jeon EB, Kim SH, Heu MS, Lee JS, Choi JS, Kim JS, Park SY. Effect of Dielectric Barrier Discharge Plasma against Listeria monocytogenes Mixed-Culture Biofilms on Food-Contact Surfaces. Antibiotics (Basel) 2023; 12:antibiotics12030609. [PMID: 36978476 PMCID: PMC10045436 DOI: 10.3390/antibiotics12030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen. Various methods can be used to control biofilms formed by foodborne pathogens. Recently, the food industry has become interested in plasma, which can be used as a non-thermal technology with minimum changes to product quality. In this study, the effects of dielectric barrier discharge (DBD) plasma on L. monocytogenes mixed-culture biofilms formed on stainless steel (SS), latex hand glove (HG), and silicone rubber (SR) were investigated. DBD plasma effectuated reductions of 0.11-1.14, 0.28-1.27 and 0.37-1.55 log CFU/cm2, respectively. Field emission scanning electron microscopy (FE-SEM) demonstrated that DBD plasma cuts off intercellular contact and induces cell decomposition to prevent the development of biological membranes. It was confirmed that the formed biofilms collapsed and separated into individual bacteria. Our findings suggest that DBD plasma can be used as an alternative non-heating sterilization technology in the food industry to reduce biofilm formation on bacterial targets.
Collapse
Affiliation(s)
- Min Gyu Song
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Pantu Kumar Roy
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - So Hee Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Min Soo Heu
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jung-Suck Lee
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Jae-Suk Choi
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Jin-Soo Kim
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| |
Collapse
|
18
|
Krüger GI, Pardo-Esté C, Zepeda P, Olivares-Pacheco J, Galleguillos N, Suarez M, Castro-Severyn J, Alvarez-Thon L, Tello M, Valdes JH, Saavedra CP. Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. Front Microbiol 2023; 14:1072793. [PMID: 37007466 PMCID: PMC10061128 DOI: 10.3389/fmicb.2023.1072793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds.
Collapse
Affiliation(s)
- Gabriel I. Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antibacteriana en Bacterias Patógenas Ambientales GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nicolas Galleguillos
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcia Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Luis Alvarez-Thon
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge H. Valdes
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- *Correspondence: Claudia P. Saavedra,
| |
Collapse
|
19
|
Toushik SH, Kim K, Park SH, Park JH, Ashrafudoulla M, Ulrich MSI, Mizan MFR, Hossain MI, Shim WB, Kang I, Ha SD. Prophylactic efficacy of Lactobacillus curvatus B67-derived postbiotic and quercetin, separately and combined, against Listeria monocytogenes and Salmonella enterica ser. Typhimurium on processed meat sausage. Meat Sci 2023; 197:109065. [PMID: 36481517 DOI: 10.1016/j.meatsci.2022.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This study investigated the antimicrobial and antibiofilm efficacy of separate and combined treatments of Lactobacillus curvatus B67-produced postbiotic and the polyphenolic flavanol quercetin against Listeria monocytogenes and Salmonella enterica ser. Typhimurium. The antimicrobial potentiality of the postbiotic was chiefly associated with organic acids (e.g., lactic and acetic acids). At sub-minimum inhibitory concentration (1/2 MIC), the postbiotic and quercetin effectively reduced the pathogenic biofilm cells on processed pork sausage and meat-processing surfaces (e.g., stainless-steel and rubber). Moreover, the postbiotic exhibited strong residual antimicrobial efficacy over diverse pH and temperature ranges. In addition, the combination of postbiotic with quercetin increased the leakage of pathogenic intracellular metabolites (e.g., nucleic acids and protein) and inhibited pathogenic biofilm formation on both biotic and abiotic surfaces. Therefore, this study confirmed that lactic acid bacteria-derived postbiotic and plant-derived quercetin could be used as potential alternative bioprotective agents in the meat processing industry.
Collapse
Affiliation(s)
- Sazzad Hossen Toushik
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea; Department of Microbiology, Stamford University Bangladesh, Dhaka 1217, Bangladesh
| | - Kyeongjun Kim
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Sang-Hyeok Park
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Jun-Ha Park
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Ashrafudoulla
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Mevo Senakpon Isaie Ulrich
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Furkanur Rahman Mizan
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Won-Bo Shim
- Division of Food Science and Technology, Gyeongsang National University, Gyeongnam 52828, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Anseong, Gyeonggi-do 456-756, Republic of Korea.
| |
Collapse
|
20
|
Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens 2023; 12:pathogens12020270. [PMID: 36839543 PMCID: PMC9967150 DOI: 10.3390/pathogens12020270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms enable pathogenic bacteria to survive in unfavorable environments. As biofilm-forming pathogens can cause rapid food spoilage and recurrent infections in humans, especially their presence in the food industry is problematic. Using chemical disinfectants in the food industry to prevent biofilm formation raises serious health concerns. Further, the ability of biofilm-forming bacterial pathogens to tolerate disinfection procedures questions the traditional treatment methods. Thus, there is a dire need for alternative treatment options targeting bacterial pathogens, especially biofilms. As clean-label products without carcinogenic and hazardous potential, natural compounds with growth and biofilm-inhibiting and biofilm-eradicating potentials have gained popularity as natural preservatives in the food industry. However, the use of these natural preservatives in the food industry is restricted by their poor availability, stability during food processing and storage. Also there is a lack of standardization, and unattractive organoleptic qualities. Nanotechnology is one way to get around these limitations and as well as the use of underutilized bioactives. The use of nanotechnology has several advantages including traversing the biofilm matrix, targeted drug delivery, controlled release, and enhanced bioavailability, bioactivity, and stability. The nanoparticles used in fabricating or encapsulating natural products are considered as an appealing antibiofilm strategy since the nanoparticles enhance the activity of the natural products against biofilms of foodborne bacterial pathogens. Hence, this literature review is intended to provide a comprehensive analysis of the current methods in nanotechnology used for natural products delivery (biofabrication, encapsulation, and nanoemulsion) and also discuss the different promising strategies employed in the recent and past to enhance the inhibition and eradication of foodborne bacterial biofilms.
Collapse
|
21
|
Farha AK, Sui Z, Corke H. Raspberry Ketone-Mediated Inhibition of Biofilm Formation in Salmonella enterica Typhimurium-An Assessment of the Mechanisms of Action. Antibiotics (Basel) 2023; 12:antibiotics12020239. [PMID: 36830150 PMCID: PMC9952675 DOI: 10.3390/antibiotics12020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica is an important foodborne pathogen that causes gastroenteritis and systemic infection in humans and livestock. Salmonella biofilms consist of two major components-amyloid curli and cellulose-which contribute to the prolonged persistence of Salmonella inside the host. Effective agents for inhibiting the formation of biofilms are urgently needed. We investigated the antibiofilm effect of Raspberry Ketone (RK) and its mechanism of action against Salmonella Typhimurium 14028 using the Congo red agar method, Calcofluor staining, crystal violet method, pellicle assay, and the TMT-labeled quantitative proteomic approach. RK suppressed the formation of different types of Salmonella biofilms, including pellicle formation, even at low concentrations (200 µg/mL). Furthermore, at higher concentrations (2 mg/mL), RK exhibited bacteriostatic effects. RK repressed cellulose deposition in Salmonella biofilm through an unknown mechanism. Swimming and swarming motility analyses demonstrated reduced motility in RK-treated S. typhimurium. Proteomics analysis revealed that pathways involved in amyloid curli production, bacterial invasion, flagellar motility, arginine biosynthesis, and carbohydrate metabolism, were targeted by RK to facilitate biofilm inhibition. Consistent with the proteomics data, the expressions of csgB and csgD genes were strongly down-regulated in RK-treated S. typhimurium. These findings clearly demonstrated the Salmonella biofilm inhibition capability of RK, justifying its further study for its efficacy assessment in clinical and industrial settings.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Biotechnology and Food Engineering, Guangdong Technion—Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Z.S.); (H.C.)
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion—Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Z.S.); (H.C.)
| |
Collapse
|
22
|
Effects of cuminaldehyde combined with mild heat against Salmonella enterica serovar Typhimurium in powdered infant formula. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Xie J, Zhang H, Li Y, Li H, Pan Y, Zhao Y, Xie Q. Transcriptome analysis of the biofilm formation mechanism of Vibrio parahaemolyticus under the sub-inhibitory concentrations of copper and carbenicillin. Front Microbiol 2023; 14:1128166. [PMID: 36937277 PMCID: PMC10018186 DOI: 10.3389/fmicb.2023.1128166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Biofilm formation of Vibrio parahaemolyticus enhanced its tolerance to the environment, but caused many serious problems to food safety and human health. In this paper, the effects of copper and carbenicillin (CARB) stress on the formation of the biofilms of V. parahaemolyticus organisms were studied, and RNA sequencing technology was used to compare the differences in transcriptome profiles of the biofilm-related genes of V. parahaemolyticus organisms under different sub-inhibitory stresses. The results proved that V. parahaemolyticus had a large growth difference under the two stresses, copper and CARB at 1/2 minimal inhibitory concentration (MIC), and it could form a stable biofilm under both stress conditions. The amount of biofilm formed under CARB stress was significantly higher than that of copper stress (p < 0.05). Based on the analysis of transcriptome sequencing results 323, 1,550, and 1,296 significantly differential expressed genes were identified in the three treatment groups namely 1/2 MIC CARB, Cu2+, and Cu2++CARB. Through COG annotation, KEGG metabolic pathway analysis and gene expression analysis related to biofilm formation, the functional pathways of transcriptome changes affecting V. parahaemolyticus were different in the three treatment groups, and the CARB treatment group was significantly different from the other two groups. These differences indicated that the ABC transport system, two-component system and quorum sensing were all involved in the biofilm formation of the V. parahaemolytic by regulating flagellar motility, extracellular polysaccharides and extracellular polymer synthesis. Exploring the effects of different stress conditions on the transcriptome of V. parahaemolyticus could provide a basis for future research on the complex network system that regulates the formation of bacterial biofilms.
Collapse
Affiliation(s)
- Jiaying Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongmin Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinhui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hao Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- *Correspondence: Yong Zhao,
| | - Qingchao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Qingchao Xie,
| |
Collapse
|
24
|
Toushik SH, Roy A, Alam M, Rahman UH, Nath NK, Nahar S, Matubber B, Uddin MJ, Roy PK. Pernicious Attitude of Microbial Biofilms in Agri-Farm Industries: Acquisitions and Challenges of Existing Antibiofilm Approaches. Microorganisms 2022; 10:microorganisms10122348. [PMID: 36557600 PMCID: PMC9781080 DOI: 10.3390/microorganisms10122348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Biofilm is a complex matrix made up of extracellular polysaccharides, DNA, and proteins that protect bacteria against physical, chemical, and biological stresses and allow them to survive in harsh environments. Safe and healthy foods are mandatory for saving lives. However, foods can be contaminated by pathogenic microorganisms at any stage from farm to fork. The contaminated foods allow pathogenic microorganisms to form biofilms and convert the foods into stigmatized poison for consumers. Biofilm formation by pathogenic microorganisms in agri-farm industries is still poorly understood and intricate to control. In biofilms, pathogenic bacteria are dwelling in a complex manner and share their genetic and physicochemical properties making them resistant to common antimicrobial agents. Therefore, finding the appropriate antibiofilm approaches is necessary to inhibit and eradicate the mature biofilms from foods and food processing surfaces. Advanced studies have already established several emerging antibiofilm approaches including plant- and microbe-derived biological agents, and they proved their efficacy against a broad-spectrum of foodborne pathogens. This review investigates the pathogenic biofilm-associated problems in agri-farm industries, potential remedies, and finding the solution to overcome the current challenges of antibiofilm approaches.
Collapse
Affiliation(s)
- Sazzad Hossen Toushik
- Institute for Smart Farm, Department of Food Hygiene and Safety, Gyeongsang National University, Jinju 52828, Republic of Korea
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Anamika Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Mohaimanul Alam
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Umma Habiba Rahman
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nikash Kanti Nath
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhasani Science and Technology University, Tangail 1902, Bangladesh
| | - Shamsun Nahar
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Bidyut Matubber
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Pantu Kumar Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Correspondence: ; Tel.: +82-10-4649-9816; Fax: +82-0504-449-9816
| |
Collapse
|
25
|
Salem MA, Salama MM, Ezzat SM, Hashem YA. Comparative metabolite profiling of four polyphenol rich Morus leaves extracts in relation to their antibiofilm activity against Enterococcus faecalis. Sci Rep 2022; 12:20168. [PMID: 36424446 PMCID: PMC9691725 DOI: 10.1038/s41598-022-24382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Enterococci are a common cause of urinary tract infections. The severity of enterococcal infections is associated with their ability to form biofilms. Morus leaves are known as a natural antibacterial, however, their antibiofilm activity against Enterococcus remains unveiled. This study aimed to evaluate the ability of four polyphenol-rich Morus leaves extracts (Morus nigra, M. rubra, M. macroura, and M. alba) to inhibit biofilm formed by enterococcal clinical isolates in relation to their metabolic profiling. Results revealed that 48% of the isolates formed strong biofilm, 28% formed moderate biofilm, 20% formed weak biofilm, and only 4% did not form a biofilm. The strong biofilm-forming isolates were E. faecalis, and hence were chosen for this study. The antibiofilm activity of the four polyphenol-rich Morus leaves extracts revealed that the M. nigra extract exhibited the highest percentage of biofilm inhibition followed by M. rubra then M. macroura and the least inhibition was detected in M. alba, and these results were in accordance with the phenolic and flavonoid contents of each extract. UPLC-ESI-MS/MS identified 61 polyphenolic compounds in the four extracts. Further, multivariate analysis confirmed clear segregation of M. nigra from the other species suggesting disparity in its metabolome, with accumulation of flavonoids, anthocyanidins, phenolic acids and coumarin derivatives. Quercetin and kaempferol glycosides were found to be positively and significantly correlated to the antibiofilm activity. In conclusion, M. nigra ethanolic extracts showed the highest phenolic content and antibiofilm activity and they could be developed as a complementary treatment for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Mohamed A. Salem
- grid.411775.10000 0004 0621 4712Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511 Menoufia Egypt
| | - Maha M. Salama
- grid.7776.10000 0004 0639 9286Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562 Egypt ,grid.440862.c0000 0004 0377 5514Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, El Sherouk City, Cairo, 11837 Egypt
| | - Shahira M. Ezzat
- grid.7776.10000 0004 0639 9286Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562 Egypt ,grid.442760.30000 0004 0377 4079Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451 Egypt
| | - Yomna A. Hashem
- grid.440862.c0000 0004 0377 5514Department of Microbiology, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, El Sherouk City, Cairo, 11837 Egypt
| |
Collapse
|
26
|
Efficient “on-off” photo-electrochemical sensing platform based on titanium dioxide nanotube arrays decorated with silver doped tin oxide for ultra-sensitive quercetin detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Antibiofilm Efficacy of Quercetin against Vibrio parahaemolyticus Biofilm on Food-Contact Surfaces in the Food Industry. Microorganisms 2022; 10:microorganisms10101902. [PMID: 36296179 PMCID: PMC9610505 DOI: 10.3390/microorganisms10101902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus, one of the most common foodborne pathogenic bacteria that forms biofilms, is a persistent source of concern for the food industry. The food production chain employs a variety of methods to control biofilms, although none are completely successful. This study aims to evaluate the effectiveness of quercetin as a food additive in reducing V. parahaemolyticus biofilm formation on stainless-steel coupons (SS) and hand gloves (HG) as well as testing its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. Control group was not added with quercetin. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagellar motility (flaA, flgL), biofilm formation (vp0952, vp0962), virulence (VopQ, vp0450), and quorum-sensing (aphA, luxS) were all dramatically suppressed. Quercetin (0−110 μg/mL) was investigated on SS and HG surfaces, the inhibitory effect were 0.10−2.17 and 0.26−2.31 log CFU/cm2, respectively (p < 0.05). Field emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Additionally, there was a significant difference between the treated and control groups in terms of motility (swimming and swarming). According to our research, quercetin produced from plants should be employed as an antibiofilm agent in the food sector to prevent the growth of V. parahaemolyticus biofilms. These results indicate that throughout the entire food production chain, bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood industry.
Collapse
|
28
|
Antimicrobial Efficacy of Quercetin against Vibrio parahaemolyticus Biofilm on Food Surfaces and Downregulation of Virulence Genes. Polymers (Basel) 2022; 14:polym14183847. [PMID: 36145988 PMCID: PMC9505375 DOI: 10.3390/polym14183847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
For the seafood industry, Vibrio parahaemolyticus, one of the most prevalent food-borne pathogenic bacteria that forms biofilms, is a constant cause of concern. There are numerous techniques used throughout the food supply chain to manage biofilms, but none are entirely effective. Through assessing its antioxidant and antibacterial properties, quercetin will be evaluated for its ability to prevent the growth of V. parahaemolyticus biofilm on shrimp and crab shell surfaces. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth of bacteria. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin without (control) and with sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of related genes linked to flagella motility (flaA and flgL), biofilm formation (vp0952 and vp0962), and quorum-sensing (luxS and aphA) were all dramatically reduced (p < 0.05). Quercetin (0−110 μg/mL) was investigated on shrimp and crab shell surfaces, the inhibitory effects were 0.68−3.70 and 0.74−3.09 log CFU/cm2, respectively (p < 0.05). The findings were verified using field emission scanning electron microscopy (FE-SEM), which revealed quercetin prevented the development of biofilms by severing cell-to-cell contacts and induced cell lysis, which resulted in the loss of normal cell shape. Furthermore, there was a substantial difference in motility between the treatment and control groups (swimming and swarming). According to our findings, plant-derived quercetin should be used as an antimicrobial agent in the food industry to inhibit the establishment of V. parahaemolyticus biofilms. These findings suggest that bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood sector along the entire food production chain.
Collapse
|
29
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
30
|
Roy PK, Song MG, Park SY. The Inhibitory Effect of Quercetin on Biofilm Formation of Listeria monocytogenes Mixed Culture and Repression of Virulence. Antioxidants (Basel) 2022; 11:antiox11091733. [PMID: 36139807 PMCID: PMC9495692 DOI: 10.3390/antiox11091733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 02/08/2023] Open
Abstract
Listeria monocytogenes is the species of foodborne pathogenic bacteria that causes the infection listeriosis. The food production chain employs various methods to control biofilms, although none are completely successful. This study evaluates the effectiveness of quercetin as a food additive in reducing L. monocytogenes mixed cultures (ATCC19113, ATCC19117, and ATCC15313) biofilm formation on stainless steel (SS), silicon rubber (SR), and hand glove (HG) coupons, as well as tests its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 250 µg/mL, the tested quercetin exhibited the lowest bactericidal action with no visible bacterial growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against L. monocytogenes was examined. A control group was not added with quercetin. The current study also investigates the effect of quercetin on the expression of different genes engaged in motility (flaA, fbp), QS (agrA), and virulence (hlyA, prfA). Through increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagella motility, virulence, and quorum-sensing were all dramatically reduced. Quercetin (0−125 μg/mL) was investigated on the SS, SR, and HG surfaces; the inhibitory effects were 0.39−2.07, 0.09−1.96 and 0.03−1.69 log CFU/cm2, respectively (p < 0.05). Field-emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Our findings suggest that plant-derived quercetin should be used as an antimicrobial agent in the food industry to control the development of L. monocytogenes biofilms. These outcomes suggest that bacterial targets are of interest for biofilm reduction, with alternative natural food agents in the food sector along the entire food production chain.
Collapse
Affiliation(s)
| | | | - Shin Young Park
- Correspondence: ; Tel.: +82-55-772-9143; Fax: +82-55-772-9149
| |
Collapse
|
31
|
He S, Zhan Z, Shi C, Wang S, Shi X. Ethanol at Subinhibitory Concentrations Enhances Biofilm Formation in Salmonella Enteritidis. Foods 2022; 11:foods11152237. [PMID: 35954005 PMCID: PMC9367854 DOI: 10.3390/foods11152237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/29/2022] Open
Abstract
The survival of Salmonella Enteritidis in the food chain is relevant to its biofilm formation capacity, which is influenced by suboptimal environmental conditions. Here, biofilm formation pattern of this bacterium was assessed in the presence of ethanol at sub-minimal inhibitory concentrations (sub-MICs) by microtiter plate assays, cell characteristic analyses, and gene expression tests. It was observed that ethanol at subinhibitory concentrations (1/4 MIC, 2.5%; 1/2 MIC, 5.0%) was able to stimulate biofilm formation in S. Enteritidis. The OD595 value (optical density at 595 nm) used to quantify biofilm production was increased from 0.14 in control groups to 0.36 and 0.63 under 2.5% and 5.0% ethanol stresses, respectively. Ethanol was also shown to reduce bacterial swimming motility and enhance cell auto-aggregation ability. However, other cell characteristics such as swarming activity, initial attachment and cell surface hydrophobicity were not remarkedly impacted by ethanol. Reverse transcription quantitative real-time PCR (RT-qPCR) analysis further revealed that the luxS gene belonging to a quorum-sensing system was upregulated by 2.49- and 10.08-fold in the presence of 2.5% and 5.0% ethanol, respectively. The relative expression level of other biofilm-related genes (adrA, csgB, csgD, and sdiA) and sRNAs (ArcZ, CsrB, OxyS, and SroC) did not obviously change. Taken together, these findings suggest that decrease in swimming motility and increase in cell auto-aggregation and quorum sensing may result in the enhancement of biofilm formation by S. Enteritidis under sublethal ethanol stress.
Collapse
Affiliation(s)
- Shoukui He
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Zeqiang Zhan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; (S.H.); (Z.Z.); (C.S.)
- Correspondence:
| |
Collapse
|
32
|
Roy PK, Song MG, Park SY. Impact of Quercetin against Salmonella Typhimurium Biofilm Formation on Food-Contact Surfaces and Molecular Mechanism Pattern. Foods 2022; 11:977. [PMID: 35407064 PMCID: PMC8997561 DOI: 10.3390/foods11070977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022] Open
Abstract
Quercetin is an active nutraceutical element that is found in a variety of foods, vegetables, fruits, and other products. Due to its antioxidant properties, quercetin is a flexible functional food that has broad protective effects against a wide range of infectious and degenerative disorders. As a result, research is required on food-contact surfaces (rubber (R) and hand gloves (HG)) that can lead to cross-contamination. In this investigation, the inhibitory effects of quercetin, an antioxidant and antibacterial molecule, were investigated at sub-MIC (125; 1/2, 62.5; 1/4, and 31.25; 1/8 MIC, μg/mL) against Salmonella Typhimurium on surfaces. When quercetin (0−125 μg/mL) was observed on R and HG surfaces, the inhibitory effects were 0.09−2.49 and 0.20−2.43 log CFU/cm2, respectively (p < 0.05). The results were confirmed by field emission scanning electron microscopy (FE-SEM), because quercetin inhibited the biofilms by disturbing cell-to-cell connections and inducing cell lysis, resulting in the loss of normal cell morphology, and the motility (swimming and swarming) was significantly different at 1/4 and 1/2 MIC compared to the control. Quercetin significantly (p < 0.05) suppressed the expression levels of virulence and stress response (rpoS, avrA, and hilA) and quorum-sensing (luxS) genes. Our findings imply that plant-derived quercetin could be used as an antibiofilm agent in the food industry to prevent S. Typhimurium biofilm formation.
Collapse
Affiliation(s)
| | | | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (P.K.R.); (M.G.S.)
| |
Collapse
|