1
|
Xu Y, Wang S, Xin L, Zhang L, Yang L, Wang P, Liu H. Exploring the influence of different enzymes on soy hull polysaccharide emulsion stabilization: A study on interfacial behavior and structural changes. Food Chem 2025; 463:141147. [PMID: 39260175 DOI: 10.1016/j.foodchem.2024.141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The interfacial behavior of soy hull polysaccharide (SHP) at the oil-water interface and the stabilization mechanism of high internal phase emulsion (HIPE) with three enzymes (α-amylase, trypsin and papain) were investigated. The diameter of the α-amylase-treated emulsion was the minimum at 40 min, indicating that the carbohydrate portions of SHP form a thick layer on the surface of the droplet to prevent aggregation. Moreover, Raman spectroscopy revealed significantly higher levels of disordered content of SHP emulsion treated with α-amylase at 60 min, potentially affecting the directional movement of SHP molecules in the emulsion. Conversely, the content of β-sheet and β-turn was lower than trypsin and papain, possibly due to ion-dipole interaction between the polar group residues within SHP and ions, or protonation with H+.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China..
| | - Liwen Xin
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou, 121013, China
| |
Collapse
|
2
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. A comparative study of the impacts of preparation techniques on the rheological and textural characteristics of emulsion gels (emulgels). Adv Colloid Interface Sci 2023; 322:103051. [PMID: 37981462 DOI: 10.1016/j.cis.2023.103051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
A subtype of soft solid-like substances are emulsion gels (emulgels; EGs). These composite material's structures either consist of a network of aggregated emulsion droplets or a polymeric gel matrix that contains emulsion droplets. The product's rheological signature can be used to determine how effective it is for a specific application. The interactions between these structured system's separate components and production process, however, have a substantial impact on their rheological imprint. Therefore, rational comprehension of interdependent elements, their structural configurations, and the resulting characteristics of a system are essential for accelerating our progress techniques as well as for fine-tuning the technological and functional characteristics of the finished product. This article presents a comprehensive overview of the mechanisms and procedures of producing EGs (i.e., cold-set and heat-set) in order to determine the ensuing rheological features for various commercial applications, such as food systems. It also describes the influence of these methods on the rheological and textural characteristics of the EGs. Diverse preparation methods are the cause of the rheological-property correlations between different EGs. In many ways, EGs can be produced using various matrix polymers, processing techniques, and purposes. This may lead to various EG matrix structures and interactions between them, which in turn may affect the composition of EGs and ultimately their textural and rheological characteristics.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Wu SS, Han W, Cheng YF, Yun SJ, Chang MC, Cheng FE, Cao JL, Feng CP. Transglutaminase-Catalyzed Glycosylation Improved Physicochemical and Functional Properties of Lentinus edodes Protein Fraction. Foods 2023; 12:foods12091849. [PMID: 37174388 PMCID: PMC10178280 DOI: 10.3390/foods12091849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lentinula edodes has high nutritional value and abundant protein. In order to develop and utilize edible mushroom protein, this study was designed to investigate the effects of TGase-catalyzed glycosylation and cross-linking on the physicochemical and functional properties of Lentinus edodes protein fraction. The results showed that within a certain time, glycosylation and TGase-catalyzed glycosylation decreased the total sulfydryl, free sulfydryl, disulfide bond, surface hydrophobicity, β-fold and α-helix, but increased the fluorescence intensity, random coil, β-turn, particle size and thermal stability. The apparent viscosity and the shear stress of the protein with an increase in shear rate were increased, indicating that TGase-catalyzed glycosylation promoted the generation of cross-linked polymers. In addition, the TGase-catalyzed glycosylated proteins showed a compact texture structure similar to the glycosylated proteins at the beginning, indicating that they formed a stable three-dimensional network structure. The flaky structure of proteins became more and more obvious with time. Moreover, the solubility, emulsification, stability and oil-holding capacity of enzymatic glycosylated Lentinus edodes protein fraction were significantly improved because of the proper TGase effects of glycosylation grafting and cross-linking. These results showed that glycosylation and TGase-catalyzed glycosylation could improve the processing characteristics of the Lentinula edodes protein fraction to varying degrees.
Collapse
Affiliation(s)
- Shan-Shan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wei Han
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yan-Fen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shao-Jun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fei-Er Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong 030801, China
| | - Jin-Ling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| | - Cui-Ping Feng
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| |
Collapse
|
4
|
Hu X, Hu WX, Lu HY, Liu S, Rao SQ, Yang ZQ, Jiao XA. Glycosylated cross-linked ovalbumin by transglutaminase in the presence of oligochitosan: Effect of enzyme action time and enhanced functional properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Kinetic aspects of casein micelle cross-linking by transglutaminase at different volume fractions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Wu T, Liu C, Hu X. Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: A review. Food Chem 2022; 372:131332. [PMID: 34818742 DOI: 10.1016/j.foodchem.2021.131332] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 01/08/2023]
Abstract
Poor solubility of proteins negatively affects their functional properties and greatly limits their application. Enzymatic cross-linking with polysaccharides can improve solubility and functional properties of proteins. The enzymes used include transglutaminase, laccase and peroxidase. Therefore, this work introduces the cross-linking mechanisms of these enzymes and the characterization techniques, the improved properties and the potential applications of the enzymatically-synthesized protein-polysaccharide conjugate. Transglutaminase catalyzes the formation of a new peptide bond and thus works on amino-containing polysaccharides to conjugate with proteins. However, laccase and peroxidase catalyze oxidation of various compounds with phenol and aniline structures. Therefore, these two enzymes can catalyze the conjugate reaction between proteins and feruloylated polysaccharides which are widely distributed in cereal bran. Compared with the unmodified protein, the enzymatically-synthesized protein-polysaccharide conjugate usually has higher solubility and better functional properties. Thus, it is inferred that enzymatic conjugation with polysaccharide molecules can extend the application of proteins.
Collapse
Affiliation(s)
- Tongfeng Wu
- The State Key Laboratory of Food Science and Technology, Nanchang University, China
| | - Chengmei Liu
- The State Key Laboratory of Food Science and Technology, Nanchang University, China
| | - Xiuting Hu
- The State Key Laboratory of Food Science and Technology, Nanchang University, China.
| |
Collapse
|
7
|
Sun Y, Tai Z, Yan T, Dai Y, Hemar Y, Li N. Unveiling the structure of the primary caseinate particle using small-angle X-ray scattering and simulation methodologies. Food Res Int 2021; 149:110653. [PMID: 34600655 DOI: 10.1016/j.foodres.2021.110653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
The low-resolution structure of casein (CN) clusters in sodium caseinate (NaCas) solution and its conformational dynamics were obtained by size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and native PAGE revealed that the casein clusters consisted predominantly of α- and β-CN complexes, and a trace amount of κ-CN. The AUC analysis indicated that the casein clusters were composed of 34.6% of casein monomers, 19.2%, 20.4%, and 25.8% of complexes with molar weight (Mw) of ~50.3, ~70.6, and ~133 kDa, respectively. The volume fractions of components in casein clusters were quantified as 64.3% of αs1-β-αs2-CN, 22.3% of αs1-CN, 8.5% of αs2-CN, and 4.4% of αs1-αs2-CN, respectively. The ensemble optimization method (EOM) gave a fitting result where αs1-β-αs2-CN species coexisted in ~35.3% under compact conformation and ~64.7% in elongated conformation in solution. The three-dimensional structures of αs1-β-αs2-CN from EOM showed a good overlay on the casein clusters ab initio model obtained from DAMMIN and DAMMIX program. MD simulations revealed that αs1-β-αs2-CN underwent a conformational change from the elongated state into the compact state within the initial 200 ns of simulations. The addition of nonionic surfactants affected little the backbone-to-backbone interactions in the formation of the casein clusters. We propose that αs1-CN, β-CN, αs2-CN, and κ-CN associated in consecutive steps into casein clusters, and a trace of κ-CN may be located at the surface of the assemblies limiting the growth of casein aggregates.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China.
| | - Zhonghong Tai
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Tingting Yan
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Yiqi Dai
- College of Vocational and Technical Education, Yunnan Normal University, Yieryi Avenue, No. 298, 650092 Kunming, Yunnan, People's Republic of China
| | - Yacine Hemar
- Catalyst Tec Limited., 16 Beatrice Tinsley Cresecnt, Rosedale 0632, Auckland, New Zealand; International Joint Research Laboratory for Functional Dairy Protein Ingredients, U.S.-China, People's Republic of China
| | - Na Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, No.333, Haike Road, Shanghai, Shanghai 201210, People's Republic of China.
| |
Collapse
|
8
|
Murray BS, Ettelaie R, Sarkar A, Mackie AR, Dickinson E. The perfect hydrocolloid stabilizer: Imagination versus reality. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Sadeghi F, Kadkhodaee R, Emadzadeh B, Nishinari K. Effect of sucrose on phase and flow behavior of protein-polysaccharide mixtures. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Size Modulation of Enzymatically Cross-Linked Sodium Caseinate Nanoparticles via Ionic Strength Variation Affects the Properties of Acid-Induced Gels. DAIRY 2021. [DOI: 10.3390/dairy2010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enzymatic cross-linking by microbial transglutaminase is a prominent approach to modify the structure and techno-functional properties of food proteins such as casein. However, some of the factors that influence structure-function-interrelations are still unknown. In this study, the size of cross-linked sodium caseinate nanoparticles was modulated by varying the ionic milieu during incubation with the enzyme. As was revealed by size exclusion chromatography, cross-linking at higher ionic strength resulted in larger casein particles. These formed acid-induced gels with higher stiffness and lower susceptibility to forced syneresis compared to those where the same number of ions was added after the cross-linking process. The results show that variations of the ionic milieu during enzymatic cross-linking of casein can be helpful to obtain specific modifications of its molecular structure and certain techno-functional properties. Such knowledge is crucial for the design of protein ingredients with targeted structure and techno-functionality.
Collapse
|
11
|
Szumała P, Pacyna-Kuchta A, Wasik A. Proteolysis of whey protein isolates in nanoemulsion systems: Impact of nanoemulsification and additional synthetic emulsifiers. Food Chem 2021; 351:129356. [PMID: 33647693 DOI: 10.1016/j.foodchem.2021.129356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/30/2023]
Abstract
Nanoemulsions are currently of interest in the functional food sector because their small droplet size (100-500 nm) provides a number of potential advantages over conventional emulsions. This study concerned the behavior of nanoemulsions stabilized with whey proteins and two synthetic emulsifiers (Tween 80 and Croduret), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, the effect of synthetic emulsifiers (food additives) on the interfacial composition and digestion rate of milk proteins at the interface of nanoemulsions was determined. The results indicate that the protein was partially co-absorbed with only one synthetic emulsifier (Croduret) at the interface, which made protein more resistant to digestion in the nanoemulsion system. This suggests that the degree of protein digestion can be controlled by appropriate selection of synthetic emulsifiers and presenting the protein in nanoemulsion system.
Collapse
Affiliation(s)
- Patrycja Szumała
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Aneta Pacyna-Kuchta
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Andrzej Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
12
|
Fotschki J, Wróblewska B, Fotschki B, Kalicki B, Rigby N, Mackie A. Microbial transglutaminase alters the immunogenic potential and cross-reactivity of horse and cow milk proteins. J Dairy Sci 2020; 103:2153-2166. [PMID: 31928755 DOI: 10.3168/jds.2019-17264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
Horse milk is a valuable raw material and a very attractive alternative for scientific research to address the issue of cow milk (CM) allergy due to its protein profile. A decrease in immunoreactive properties can be achieved by thermal, enzymatic, and hydrolytic processing. Therefore, the aim of this study was to explore the possibility of reducing the immunoreactivity of horse milk proteins by microbial transglutaminase (TG) polymerization. To determine how TG linking alters immunoreactivity under simulated digestion of the examined milk, analyses were performed before, during, and after digestion. The dose-dependent (1, 10, and 100 U) effects of microbial TG on horse and cow milk were analyzed. A consecutive 3-stage digestion was simulated with salivary, gastric, and intestinal fluids. The effects of digestion were analyzed by SDS-PAGE, particle size analysis, and size-exclusion chromatography. Immunoreactivity was assessed using competitive ELISA (β-lactoglobulin and α-casein) and immunodot (sera from 7 patients aged 3 to 13 years who are allergic to CM proteins). Horse milk contained almost half of the amount of total proteins in CM. The dose 1 U/g of total milk protein changed the immunoreactivity of both cow and horse milk. With increasing TG doses, α-casein immunoreactivity increased, and β-lactoglobulin decreased. After total digestion, horse milk was characterized by 2.4-fold lower average IgE and 4.8-fold lower IgG reactivity than CM. We found that TG alters the IgE and IgG reactivity of CM after in vitro digestion. Horse milk was less reactive to IgE and IgG than was CM, with animal and patient sera. The effect of TG on immunoreactivity depends on enzyme quantity and milk protein type. The diet based on modified horse milk proteins could be an alternative for some patients with CM protein allergy; however, confirmation through clinical trials is needed.
Collapse
Affiliation(s)
- J Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - B Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - B Fotschki
- Department of Biological Function of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - B Kalicki
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - N Rigby
- Institute of Food Research, Norwich NR4 7UA, United Kingdom; School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom
| | - A Mackie
- Institute of Food Research, Norwich NR4 7UA, United Kingdom; School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
13
|
Raak N, Brehm L, Abbate RA, Henle T, Lederer A, Rohm H, Jaros D. Self-association of casein studied using enzymatic cross-linking at different temperatures. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Böttger F, Dupont D, Marcinkowska D, Bajka B, Mackie A, Macierzanka A. Which casein in sodium caseinate is most resistant to in vitro digestion? Effect of emulsification and enzymatic structuring. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Raak N, Schöne C, Rohm H, Jaros D. Acid-induced gelation of enzymatically cross-linked caseinate in different ionic milieus. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Laccase-catalyzed bioconjugation of tyrosine-tagged functional proteins. J Biosci Bioeng 2018; 126:559-566. [DOI: 10.1016/j.jbiosc.2018.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/01/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
|
17
|
Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions. Animal 2018; 12:2539-2550. [PMID: 29547375 DOI: 10.1017/s1751731118000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions (<50% protection), which showed oiling-off after enzymatic crosslinking. This study demonstrated that alternative emulsifier proteins can be used in combination with PPO extract to protect emulsified PUFA-rich oils against ruminal biohydrogenation. By applying the new protocol, 6.5 times less PPO extract was required.
Collapse
|
18
|
Size Separation Techniques for the Characterisation of Cross-Linked Casein: A Review of Methods and Their Applications. SEPARATIONS 2018. [DOI: 10.3390/separations5010014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Abstract
Consumers' expectations from a dairy product have changed dramatically during the last two decades. People are now more eager to purchase more nutritious dairy foods with improved sensory characteristics. Dairy industry has made many efforts to meet such expectations and numerious production strategies and alternatives have been developed over the years including non-thermal processing, membrane applications, enzymatic modifications of milk components, and so on. Among these novel approaches, transglutaminase (TG)-mediated modifications of milk proteins have become fairly popular and such modifications in dairy proteins offer many advantages to the dairy industry. Since late 1980s, a great number of researches have been done on TG applications in milk and dairy products. Especially, milk proteins-based edible films and gels from milk treated with TG have found many application fields at industrial level. This chapter reviews the characteristics of microbial-origin TG as well as its mode of action and recent developments in TG applications in dairy technology.
Collapse
|
20
|
Sadeghi F, Kadkhodaee R, Emadzadeh B, Phillips GO. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system. Carbohydr Polym 2018; 179:71-78. [DOI: 10.1016/j.carbpol.2017.09.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
|
21
|
Bohn T, Carriere F, Day L, Deglaire A, Egger L, Freitas D, Golding M, Le Feunteun S, Macierzanka A, Menard O, Miralles B, Moscovici A, Portmann R, Recio I, Rémond D, Santé-Lhoutelier V, Wooster TJ, Lesmes U, Mackie AR, Dupont D. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit Rev Food Sci Nutr 2017; 58:2239-2261. [DOI: 10.1080/10408398.2017.1315362] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- T. Bohn
- Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - L. Day
- Agresearch, Palmerston North, New Zealand
| | | | - L. Egger
- Agroscope, Institute for Food Sciences, Bern, Switzerland
| | | | - M. Golding
- Massey University, Palmerston North, New Zealand
| | | | | | | | | | - A. Moscovici
- Technion—Israel Institute of Technology, Haifa, Israel
| | - R. Portmann
- Agroscope, Institute for Food Sciences, Bern, Switzerland
| | | | | | | | - T. J. Wooster
- Nestlé Research Centre, Nestec S.A., Lausanne, Switzerland
| | - U. Lesmes
- Technion—Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
22
|
Zhang Y, Zhong Q. Freeze-dried capsules prepared from emulsions with encapsulated lactase as a potential delivery system to control lactose hydrolysis in milk. Food Chem 2017; 241:397-402. [PMID: 28958545 DOI: 10.1016/j.foodchem.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/14/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022]
Abstract
The objective of this work was to study solid/oil/water (S/O/W) emulsions as delivery systems with retained lactase in milk and controlled release during in vitro digestion. Spray-dried lactase powder was suspended in anhydrous milk fat/Span® 80 emulsified by sodium caseinate and lecithin (5:1). The S/O/W emulsion had an encapsulation efficiency of 75%, a hydrodynamic diameter of 292nm, and a zeta potential of -17.37mV. Cross-linking the dialyzed emulsion with transglutaminase eliminated the detection of free lactase after freeze-drying emulsions and the addition of sodium caseinate further preserved lactase activity. The hydrolysis of lactose in full-fat or skim milk after 3-week storage reduced from>75% for free lactase to<15% for encapsulated lactase. The encapsulated lactase was released gradually during the simulated digestions to hydrolyze lactose in milk more efficiently than free lactase. The present findings suggest S/O/W emulsions are potential delivery systems to incorporate lactase in milk products.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
23
|
Cross-linking with microbial transglutaminase: Isopeptide bonds and polymer size as drivers for acid casein gel stiffness. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Zeeb B, McClements DJ, Weiss J. Enzyme-Based Strategies for Structuring Foods for Improved Functionality. Annu Rev Food Sci Technol 2017; 8:21-34. [PMID: 28068492 DOI: 10.1146/annurev-food-030216-025753] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme technologies can be used to create food dispersions with novel functional attributes using structural design principles. Enzymes that utilize food-grade proteins and/or polysaccharides as substrates have gained recent interest among food scientists. The utilization of enzymes for structuring foods is an ecologically and economically viable alternative to the utilization of chemical cross-linking and depolymerization agents. This review highlights recent progress in the use of enzymes to modify food structures, particularly the interfacial and/or bulk properties of food dispersions with special emphasis on commercially available enzymes. Cross-linking enzymes such as transglutaminase and laccase promote the formation of intra- and intermolecular bonds between biopolymers to improve stability and functionality, whereas various degrading enzymes such as proteases alter the native conformation of proteins, leading to self-assembly of hierarchically ordered colloids. Results of this bio-inspired approach show that rational use of structure-affecting enzymes may enable food manufacturers to produce food dispersions with improved physical, functional, textural, and optical properties.
Collapse
Affiliation(s)
- Benjamin Zeeb
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| | | | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
25
|
Gadeyne F, De Neve N, Vlaeminck B, Fievez V. State of the art in rumen lipid protection technologies and emerging interfacial protein cross‐linking methods. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Frederik Gadeyne
- Faculty of Bioscience EngineeringLaboratory for Animal Nutrition and Animal Product QualityGhent UniversityGhentBelgium
| | - Nympha De Neve
- Faculty of Bioscience EngineeringLaboratory for Animal Nutrition and Animal Product QualityGhent UniversityGhentBelgium
| | - Bruno Vlaeminck
- Faculty of Bioscience EngineeringLaboratory for Animal Nutrition and Animal Product QualityGhent UniversityGhentBelgium
| | - Veerle Fievez
- Faculty of Bioscience EngineeringLaboratory for Animal Nutrition and Animal Product QualityGhent UniversityGhentBelgium
| |
Collapse
|
26
|
Abd Ghani A, Matsumura K, Yamauchi A, Shiga H, Adachi S, Izumi H, Yoshii H. Effects of oil-droplet diameter on the stability of squalene oil in spray-dried powder. DRYING TECHNOLOGY 2016; 34:1726-1734. [DOI: 10.1080/07373937.2016.1190936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals. Br J Nutr 2015; 114:418-29. [DOI: 10.1017/s0007114515001737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The physico-chemical and interfacial properties of fat emulsions influence lipid digestion and may affect postprandial responses. The aim of the present study was to determine the effects of the modification of the interfacial layer of a fat emulsion by cross-linking on postprandial metabolic and appetite responses. A total of fifteen healthy individuals (26·5 (sem6·9) years and BMI 21·9 (sem2·0) kg/m2) participated in a cross-over design experiment in which they consumed two isoenergetic (1924 kJ (460 kcal)) and isovolumic (250 g) emulsions stabilised with either sodium caseinate (Cas) or transglutaminase-cross-linked sodium caseinate (Cas-TG) in a randomised order. Blood samples were collected from the individuals at baseline and for 6 h postprandially for the determination of serum TAG and plasma NEFA, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose and insulin responses. Appetite was assessed using visual analogue scales. Postprandial TAG and NEFA responses and gastric emptying (GE) rates were comparable between the emulsions. CCK increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0·05), while GLP-1 responses did not differ between the two test emulsions. Glucose and insulin profiles were lower after consuming Cas-TG than after consuming Cas (P< 0·05). The overall insulin, glucose and CCK responses, expressed as areas above/under the curve, did not differ significantly between the Cas and Cas-TG meal conditions. Satiety ratings were reduced and hunger, desire to eat and thirst ratings increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0·05). The present results suggest that even a subtle structural modification of the interfacial layer of a fat emulsion can alter the early postprandial profiles of glucose, insulin, CCK, appetite and satiety through decreased protein digestion without affecting significantly on GE or overall lipid digestion.
Collapse
|
28
|
Shao JH, Deng YM, Zhou GH, Xu XL, Liu DY. A Raman spectroscopic study of meat protein/lipid interactions at protein/oil or protein/fat interfaces. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-Hua Shao
- Research Institute of Food Science, College of Chemistry; Chemical Engineering and Food Safety; Bohai University; Jinzhou Liaoning 121013 China
| | - Ya-Min Deng
- Research Institute of Food Science, College of Chemistry; Chemical Engineering and Food Safety; Bohai University; Jinzhou Liaoning 121013 China
| | - Guang-Hong Zhou
- Key Lab of Meat Processing and Quality Control, Ministry of Education; College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| | - Xing-Lian Xu
- Key Lab of Meat Processing and Quality Control, Ministry of Education; College of Food Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu 210095 China
| | - Deng-Yong Liu
- Research Institute of Food Science, College of Chemistry; Chemical Engineering and Food Safety; Bohai University; Jinzhou Liaoning 121013 China
| |
Collapse
|
29
|
Gibis M, Thellmann K, Thongkaew C, Weiss J. Interaction of polyphenols and multilayered liposomal-encapsulated grape seed extract with native and heat-treated proteins. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Transglutaminase-induced crosslinking of sodium caseinate stabilized oil droplets in oil-in-water emulsions. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.09.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Partanen R, Forssell P, Mackie A, Blomberg E. Interfacial cross-linking of β-casein changes the structure of the adsorbed layer. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2013.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Agbenorhevi JK, Kontogiorgos V, Kasapis S. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight. Food Chem 2013; 138:630-7. [DOI: 10.1016/j.foodchem.2012.10.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/02/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022]
|
33
|
Macierzanka A, Böttger F, Rigby NM, Lille M, Poutanen K, Mills ENC, Mackie AR. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17349-17362. [PMID: 23171215 DOI: 10.1021/la302194q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fundamental knowledge of physicochemical interactions in the gastrointestinal environment is required in order to support rational designing of protein-stabilized colloidal food and pharmaceutical delivery systems with controlled behavior. In this paper, we report on the colloidal behavior of emulsions stabilized with the milk protein sodium caseinate (Na-Cas), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, we looked at how the kinetics of proteolysis was affected by adsorption to an oil-water interface in emulsion and whether the proteolysis and the emulsion stability could be manipulated by enzymatic structuring of the interface. After cross-linking with the enzyme transglutaminase, the protein was digested with use of an in vitro model of gastro-duodenal proteolysis in the presence or absence of physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS). Significant differences were found between the rates of digestion of Na-Cas cross-linked in emulsion (adsorbed protein) and in solution. In emulsion, the digestion of a population of polypeptides of M(r) ca. 50-100 kDa was significantly retarded through the gastric digestion. The persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the system from phase separating. Rapid pepsinolysis of adsorbed, non-cross-linked Na-Cas and its displacement by PC led to emulsion destabilization. These results suggest that structuring of emulsions by enzymatic cross-linking of the interfacial protein may affect the phase behavior of emulsion in the stomach and the gastric digestion rate in vivo. Measurements of ζ-potential revealed that BS displaced the remaining protein from the oil droplets during the simulated duodenal phase of digestion. Diffusion of the postdigestion emulsion droplets through ex vivo porcine intestinal mucus was only significant in the presence of BS due to the high negative charge these biosurfactants imparted to the droplets. This implies that the electrostatic repulsion produced can prevent the droplets from being trapped by the mucus matrix and facilitate their transport across the small intestine mucosal barrier.
Collapse
Affiliation(s)
- Adam Macierzanka
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
34
|
The effect of gel structure on the kinetics of simulated gastrointestinal digestion of bovine β-lactoglobulin. Food Chem 2012; 134:2156-63. [DOI: 10.1016/j.foodchem.2012.04.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/16/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022]
|