1
|
Siew ZZ, Chan EWC, Wong CW. Anti‐browning active packaging: A review on delivery mechanism, mode of action, and compatibility with biodegradable polymers. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Zhou Siew
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition Faculty of Applied Sciences, UCSI University Cheras Kuala Lumpur Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences UCSI University Cheras Kuala Lumpur Malaysia
| |
Collapse
|
2
|
Tran TT, McCullum R, Vuong Q. Incorporation of fruit by-products on edible seaweed based films: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2042556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Thuy T.B. Tran
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
- Faculty of Food Technology, Nha Trang University, Khanh Hoa, Vietnam
| | - Rebecca McCullum
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| | - Quan Vuong
- College of Engineering, Science and Environment, School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, Australia
| |
Collapse
|
3
|
Tran TTB, Vu QL, Pristijono P, Kirkman T, Nguyen MH, Vuong QV. Optimizing conditions for the development of a composite film from seaweed hydrocolloids and pectin derived from a fruit waste, gac pulp. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thuy Thi Bich Tran
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
- Faculty of Food Technology Nha Trang University Nha Trang Vietnam
| | - Quyen Le Vu
- Faculty of Food Technology Nha Trang University Nha Trang Vietnam
| | - Penta Pristijono
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| | - Tim Kirkman
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| | - Minh Huu Nguyen
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
- School of Science and Health Western Sydney University Penrith New South Wales Australia
| | - Quan Van Vuong
- School of Environmental and Life Sciences The University of Newcastle Ourimbah New South Wales Australia
| |
Collapse
|
4
|
Voicu (Mihai) AI, Gȃrea SA, Vasile E, Ghebaur A, Iovu H. Hybrid Hosts Based on Sodium Alginate and Porous Clay Heterostructures for Drug Encapsulation. Polymers (Basel) 2021; 13:polym13162803. [PMID: 34451338 PMCID: PMC8400238 DOI: 10.3390/polym13162803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, some hybrid materials based on sodium alginate (NaAlg) and porous clay heterostructures (PCHs) were investigated as new hosts for 5-Fluorouracil (5-FU) encapsulation. The hybrid hosts were prepared by ionotropic gelation technique using different concentrations of PCHs (1, 3, and 10 wt%) in order to identify the optimal parameters for encapsulation and drug release. The obtained hybrid materials were characterized using FTIR Spectrometry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and UV-Vis spectrometry to investigate the interactions of the raw materials involved in the preparation of hybrid hosts, the influence of PCHs concentrations on drug encapsulation efficiency and drug release profile. All the results show that the synthesized hybrid materials were able to load a high amount of 5-FU, the encapsulation efficiency and the release profile being influenced by the concentrations of PCHs.
Collapse
Affiliation(s)
- Anda Ionelia Voicu (Mihai)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Sorina Alexandra Gȃrea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| | - Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania;
| | - Adi Ghebaur
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Horia Iovu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.I.V.); (A.G.); (H.I.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
5
|
Hu H, Yao X, Qin Y, Yong H, Liu J. Development of multifunctional food packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor L.) into quaternary ammonium chitosan/fish gelatin blend films. Int J Biol Macromol 2020; 159:675-684. [DOI: 10.1016/j.ijbiomac.2020.05.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
|
6
|
Encapsulated Limonene: A Pleasant Lemon-Like Aroma with Promising Application in the Agri-Food Industry. A Review. Molecules 2020; 25:molecules25112598. [PMID: 32503168 PMCID: PMC7321087 DOI: 10.3390/molecules25112598] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Limonene, mainly found as a major component in Citrus spp., has been proven to possess a valuable potential as sustainable replacement to synthetic pesticides and food preservatives. This review intends to give a clear overview of the principal emerging applications of limonene in the agri-food industry as antimicrobial, herbicidal and antioxidant agent. To successfully use limonene in a greener agri-food industry, its preservation had become a top concern for manufacturers. In order to elucidate the most efficient and sustainable manner to encapsulate limonene, the different techniques and materials tested up to the present are also reviewed. In general, encapsulation conserves and protects limonene from outside aggressions, but also allows its controlled release as well as enhances its low water solubility, which can be critical for the discussed applications. Other parameters such as scalability, low cost and availability of equipment will need to be taken into account. Further efforts would likely be oriented to the elucidation of encapsulating sustainable systems obtained by cost-efficient elaboration processes, which can deliver effective concentrations of limonene without affecting crops and food products.
Collapse
|
7
|
Tahir HE, Xiaobo Z, Mahunu GK, Arslan M, Abdalhai M, Zhihua L. Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydr Polym 2019; 224:115141. [DOI: 10.1016/j.carbpol.2019.115141] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 11/28/2022]
|
8
|
Molecular Dynamics Simulation on the Diffusion of Flavor, O 2 and H 2O Molecules in LDPE Film. MATERIALS 2019; 12:ma12213515. [PMID: 31717741 PMCID: PMC6862678 DOI: 10.3390/ma12213515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022]
Abstract
The diffusion of five flavor organic molecules, including D-limonene, myrcene, ethyl hexanoate, 2-nonanone, and linalool in low density polyethylene (LDPE) film were investigated by combined experimental and molecular dynamics (MD) simulation studies. The diffusion coefficients derived from the prediction model, experimental determination, and MD simulation were compared, and the related microscopic diffusion mechanism was investigated. The effects of the presence of the flavor organic molecules on the diffusion of O2 and H2O in polyethylene (PE) were also studied by MD simulation. Results show that: The diffusion of five flavor molecules in LDPE is well followed to Fick’s second law by the immersion experiment; MD simulation indicates the dual mode diffusion mechanism of the flavor molecules is in LDPE; the diffusion coefficients from MD simulation are close to those from the experimental determination, but are slightly larger than those values; the presence of the flavor organic molecules hinders the diffusion of O2 and H2O, which can be well explained from the fraction of free volume (FFV) and interaction energy calculation results derived from MD simulation.
Collapse
|
9
|
Hauzoukim, Martin Xavier K, Kannuchamy N, Balange A, Gudipati V. Development of enrobed fish products: Improvement of functionality of coated materials by added aquatic polymers. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.12999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hauzoukim
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | - K.A. Martin Xavier
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | - Nagalakshmi Kannuchamy
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | - Amjad Balange
- Department of Post‐Harvest TechnologyICAR‐Central Institute of Fisheries Education Versova Mumbai Maharashtra India
| | | |
Collapse
|
10
|
Senturk Parreidt T, Müller K, Schmid M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018; 7:E170. [PMID: 30336642 PMCID: PMC6211027 DOI: 10.3390/foods7100170] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/14/2018] [Indexed: 01/08/2023] Open
Abstract
Alginate is a naturally occurring polysaccharide used in the bio industry. It is mainly derived from brown algae species. Alginate-based edible coatings and films attract interest for improving/maintaining quality and extending the shelf-life of fruit, vegetable, meat, poultry, seafood, and cheese by reducing dehydration (as sacrificial moisture agent), controlling respiration, enhancing product appearance, improving mechanical properties, etc. This paper reviews the most recent essential information about alginate-based edible coatings. The categorization of alginate-based coatings/film in food packaging concept is formed gradually with the explanation of the most important titles. Emphasis will be placed on active ingredients incorporated into alginate-based formulations, edible coating/film application methods, research and development studies of coated food products and mass transfer and barrier characteristics of the alginate-based coatings/films. Future trends are also reviewed to identify research gaps and recommend new research areas. The summarized information presented in this article will enable researchers to thoroughly understand the fundamentals of the coating process and to develop alginate-based edible films and coatings more readily.
Collapse
Affiliation(s)
- Tugce Senturk Parreidt
- Chair of Food Packaging Technology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Steig 22, 85354 Freising, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
| | - Kajetan Müller
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany.
- Faculty of Mechanical Engineering, University of Applied Science Kempten, Bahnhofstraße 61, 87435 Kempten, Germany.
| | - Markus Schmid
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany.
| |
Collapse
|
11
|
Gao F, Liu X, Chen W, Guo W, Chen L, Li D. Hydroxyl radical pretreatment for low-viscosity sodium alginate production from brown seaweed. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Properties and characterization of carboxymethyl cellulose/halloysite nanotube bio-nanocomposite films: Effect of sodium dodecyl sulfate. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2392-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Ramziia S, Ma H, Yao Y, Wei K, Huang Y. Enhanced antioxidant activity of fish gelatin-chitosan edible films incorporated with procyanidin. J Appl Polym Sci 2017. [DOI: 10.1002/app.45781] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sadykova Ramziia
- Beijing Laboratory of Biomedical Materials, College of Material Science and Engineering; Beijing University of Chemical Technology, 15 Beisanhuan East Road; Beijing 100029 China
| | - Hui Ma
- Beijing Laboratory of Biomedical Materials, College of Material Science and Engineering; Beijing University of Chemical Technology, 15 Beisanhuan East Road; Beijing 100029 China
| | - Yunzhen Yao
- Beijing Laboratory of Biomedical Materials, College of Material Science and Engineering; Beijing University of Chemical Technology, 15 Beisanhuan East Road; Beijing 100029 China
| | - Kunrui Wei
- Beijing Laboratory of Biomedical Materials, College of Material Science and Engineering; Beijing University of Chemical Technology, 15 Beisanhuan East Road; Beijing 100029 China
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, College of Material Science and Engineering; Beijing University of Chemical Technology, 15 Beisanhuan East Road; Beijing 100029 China
| |
Collapse
|
14
|
Chakraborty S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1347668] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Soma Chakraborty
- Department of Chemistry, Ateneo de Manila University, Loyola Heights, Quezon City, Manila, Philippines
| |
Collapse
|
15
|
Abstract
In an effort to produce scale-up of edible films, collagen-based films including different amounts of sodium alginate (CS) were prepared by casting method. Films were characterized based on their rheological, thermal, and mechanical properties, water vapor permeability (WVP), and oxygen permeability (OP). The microstructures were also evaluated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform-infrared spectroscopy (FTIR). Furthermore, the addition of sodium alginate effectively improved the viscosity and thermal stability, significantly increased TS, and decreased E and WVP (P<0.05), but with no obvious effect on OP (P>0.05). SEM and AFM showed homogeneous matrix, with no signs of phase separation in the blends. Overall, films (CS2) produced using collagen (g) : sodium alginate (g) = 10 : 2 showed suitable rheological property (apparent viscosity was 4.87 m Pa s−1) and better TS (26.49 Mpa), E (64.98%), WVP (1.79 × 10−10 g·cm−1·s−1·Pa−1), and OP (3.77 × 10−5 cm3·m−2·d−1·Pa−1).
Collapse
|
16
|
Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M. Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 2016; 137:360-374. [DOI: 10.1016/j.carbpol.2015.10.074] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
|
17
|
Ebrahimzadeh S, Ghanbarzadeh B, Hamishehkar H. Physical properties of carboxymethyl cellulose based nano-biocomposites with Graphene nano-platelets. Int J Biol Macromol 2015; 84:16-23. [PMID: 26645145 DOI: 10.1016/j.ijbiomac.2015.11.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/14/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022]
Abstract
Carboxymethyl cellulose (CMC) based bio-nanocomposite filled with graphene nano-platelets (GNPs) was prepared using casting technique. The morphology, thermal, light barrier, water vapor permeability (WVP), contact angle, moisture absorption and mechanical properties of the resulted bio-nanocomposites were investigated. The results indicated with addition of 0.5% w/w GNPs to polymer matrix, ultimate tensile strength (UTS) decreased from 7.74 MPa (in the pure film) to 5.69 MPa however, strain to break (SB) increased from 12.49% to 19.87%. The GNPs caused to reducing of light transmission and increasing of the water repelling nature of nano-biocomposites. However, it had not effect on melting point of CMC based nano-biocomposites.
Collapse
Affiliation(s)
- Saba Ebrahimzadeh
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Babak Ghanbarzadeh
- Department of Food Science & Technology, Faculty of Agriculture, University of Tabriz, PO Box 51666-16471, Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
18
|
|
19
|
Khan MKI, Maan AA, Schutyser M, Schroën K, Boom R. Electrospraying of water in oil emulsions for thin film coating. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Liu K, Lin X, Chen L, Huang L, Cao S, Wang H. Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6562-6567. [PMID: 23750871 DOI: 10.1021/jf4010065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The nonantibacterial and low strength properties of sodium alginate films negatively impact their application for food packaging. In order to improve these properties, a novel chitosan-benzalkonium chloride (C-BC) complex was prepared by ionic gelation using tripolyphosphate (TPP) as a coagulant, and a biocomposite obtained through the adsorption of C-BC complex on microfibrillated cellulose, MFC/C-BC, was then incorporated into a sodium alginate film. The TEM image showed that the C-BC nanoparticles were spherical in shape with a diameter of about 30 nm, and the adsorption equilibrium time of these nanoparticles on the surface of MFC was estimated to be 6 min under the driving forces of hydrogen bonds and electrostatic interactions. According to the disc diffusion method, the MFC/C-BC biocomposite-incorporated sodium alginate film exhibited remarkable antibacterial activity against Staphylococcus aureus and certain antibacterial activity against Escherichia coli . The strength tests indicated that the tensile strength of the composite sodium alginate film increased about 225% when the loading of MFC/C-BC biocomposite was 10 wt %. These results suggested that the MFC/C-BC biocomposite-incorporated sodium alginate film with excellent antibacterial and strength properties would be a promising material for food packaging, and the MFC/C-BC may also be a potential multifunctional biocomposite for other biodegradable materials.
Collapse
Affiliation(s)
- Kai Liu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | | |
Collapse
|
21
|
Mu C, Guo J, Li X, Lin W, Li D. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.09.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|