1
|
Liu Y, Sun Y, Li D, Li P, Yang N, He L, Nishinari K. Influence of Temperatures on Physicochemical Properties and Structural Features of Tamarind Seed Polysaccharide. Molecules 2024; 29:2622. [PMID: 38893498 PMCID: PMC11174022 DOI: 10.3390/molecules29112622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the high content of impurities such as proteins in tamarind seed polysaccharide (TSP), they must be separated and purified before it can be used. TSP can disperse in cold water, but a solution can only be obtained by heating the mixture. Therefore, it is important to understand the dispersion and dissolution process of TSP at different temperatures to expand the application of TSP. In this study, pasting behavior and rheological properties as a function of temperature were characterized in comparison with potato starch (PS), and their relationship with TSP molecular features and microstructure was revealed. Pasting behavior showed that TSP had higher peak viscosity and stronger thermal stability than PS. Rheological properties exhibited that G' and G'' of TSP gradually increased with the increase in temperature, without exhibiting typical starch gelatinization behavior. The crystalline or amorphous structure of TSP and starch was disrupted under different temperature treatment conditions. The SEM results show that TSP particles directly transformed into fragments with the temperature increase, while PS granules first expanded and then broken down into fragments. Therefore, TSP and PS underwent different dispersion mechanisms during the dissolution process: As the temperature gradually increased, TSP possibly underwent a straightforward dispersion and was then dissolved in aqueous solution, while PS granules initially expanded, followed by disintegration and dispersion.
Collapse
Affiliation(s)
- Yantao Liu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Yujia Sun
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Diming Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China;
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou 310023, China;
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; (Y.L.); (Y.S.); (D.L.); (K.N.)
- Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
2
|
Huang X, Zhang Y, Xie N, Cheng J, Wang Y, Yuan S, Li Q, Shi R, He L, Chen M. Molecular Characterization and Bioactivities of a Novel Polysaccharide from Phyllostachys pracecox Bamboo Shoot Residues. Foods 2023; 12:foods12091758. [PMID: 37174297 PMCID: PMC10177804 DOI: 10.3390/foods12091758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Dietary carbohydrates are unexploited in the by-products of economically valuable Phyllostachys pracecox bamboo shoots. A residue-derived polysaccharide (PBSR1) was aqueously extracted from the processing waste of this bamboo shoot species. Its primary structure and advanced conformation were elucidated by a combined analysis of spectroscopy, chromatography, 2D nuclear magnetic resonance, laser light scattering and atomic microscopy. The results indicated PBSR1 was a triple-helix galactan consisting of →6)-β-D-Galp and →3)-β-D-Galp in linear with an 863 KD molecular weight (Mw). The relationship between the radius of gyration (Rg) and intrinsic viscosity ([η]) on Mw were established as Rg = 1.95 × 10-2Mw0.52±0.03 (nm) and [η] = 9.04 × 10-1Mw0.56±0.02 (mL/g) for PBSR1 in saline solution at 25 °C, which indicated it adopted a triple-helix chain shape with a height of 1.60 ± 0.12 nm supported by a red shift of λmax in Congo red analysis. The thermodynamic test (TG) displayed that it had excellent thermal stability for the food industry. Further, those unique structure features furnish PBSR1 on antioxidation with EC50 of 0.65 mg/mL on DPPH· and an ORAC value of 329.46 ± 12.1 μmol TE/g. It also possessed pronounced immunostimulation by up-regulating pro-inflammatory signals including NO, IL-6, TNF-α and IL-1β in murine cells. Our studies provided substantial data for the high-valued application of residues and a better understanding of the structure-function relationship of polysaccharide.
Collapse
Affiliation(s)
- Xubo Huang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yalan Zhang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Na Xie
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Junwen Cheng
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Yanbin Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Shaofei Yuan
- Bamboo Shoots Engineering Research Center of the State Forestry Bureau, Department of Bamboo, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Qin Li
- Bamboo Shoots Engineering Research Center of the State Forestry Bureau, Department of Bamboo, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Rui Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liang He
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Min Chen
- Zhejiang Longyou International Trade Bamboo Shoots Co., Ltd., Quzhou 324400, China
| |
Collapse
|
3
|
Amaregouda Y, Kamanna K, Gasti T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int J Biol Macromol 2022; 218:799-815. [PMID: 35905759 DOI: 10.1016/j.ijbiomac.2022.07.174] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The present work describes the natural anthocyanin from Jacaranda cuspidifolia (JC) flower immobilized within a biopolymer matrix composed of chitosan (CS) and polyvinyl alcohol (PVA) gave novel intelligent/active packaging films (CPC). We introduced microwave irradiation to prepare polymeric composite films noticed faster mixing of the polymers and extract take place than the conventional method. The prepared composite films are characterized by various analytical and spectroscopic techniques. The smooth SEM images demonstrated CS/PVA matrix miscibility and compatibility with anthocyanin for the film formation. The addition of anthocyanin to the CS/PVA films significantly reduced UV-Vis light transmission, while causing a slight decrease in the films transparency. An increased anthocyanin concentration on polymer films showed improved oxygen permeability (77.09 %), moisture retention capacity (11.64 %), and water vapor transmission rate (43.10 %) substantially. Additionally, the prepared CPC smart films exhibited strong antioxidant (97.92 %) as well as antibacterial activities against common foodborne pathogens such as S. aureus, and E. coli. Furthermore, the prepared smart films demonstrated pink color in acidic, while grey to yellowish in basic solvent. Further, the color response of the freshness label was consistent with the spoilage Total Volatile Basic-Nitrogen (TVB-N) content determined in the fish samples with varied time period. The CPC smart films also showed promising application in terms of monitoring freshness of the fish fillets at room temperature. The obtained results suggested that, the prepared CPC smart films have potential to be used as quality indicator in the marine food packaging system.
Collapse
Affiliation(s)
- Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India.
| | - Tilak Gasti
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
4
|
Sulfated Polysaccharides Derived from Hypnea valentiae and Their Potential of Antioxidant, Antimicrobial, and Anticoagulant Activities with In Silico Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3715806. [PMID: 35911161 PMCID: PMC9328948 DOI: 10.1155/2022/3715806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
Carrageenan, a sulfated polysaccharide, was produced by certain species of marine red seaweeds, which have been used as a significant source of food, feed, and antibiotic agent throughout history due to their alleged human health benefits. The present study aimed to derive the polysaccharides from Hypnea valentiae and describe the biological applications. Carrageenan was characterized by FT-IR, C-NMR, AFM, and their antimicrobial, antioxidant, and anticoagulant capabilities; furthermore, the larvicidal effect of methanol extract was generated from the seaweed against Aedes aegypti larvae at various concentrations. The molecular docking experiments were carried out computationally for finding the molecular insight of the macromolecules and small molecules' interaction using GLIDE docking by using Schrodinger software. Antibacterial zones of inhibition in different concentrations are compared with the 40 mg/mL higher activity against bacterial pathogens. Carrageenan is strong in all antioxidant activities, with the overall antioxidant (70.1 ± 0.61%) of radical at 250 μg/mL concentration being exhibited. The DPPH scavenging is effective in the inhibition of (65.74 ± 0.58%) radical at a concentration of 160 μg/mL and the hydroxyl scavenging (65.72 ± 0.60%) of activity at a concentration of 125 μg/mL being exhibited. Anticoagulant activities (APPT and PT) of carrageenan fraction were tested. H. valentiae and heparin sulphate shows higher activity of APTT (106.50 IU at 25 μg/mL) in comparison with the PT test (57.86 IU at 25 μg/mL) and the methanol extraction of higher larvicidal activity on A. aegypti (LC50 = 99.675 μg/mL). In this study, the carrageenan was exploited through in vitro and in silico molecular docking studies against antimicrobial, antioxidant, and anticoagulant properties. The results were establishing the potentiality of the carrageenan which is an alternative source to control the mosquitocidal property in the future. Moreover, molecular docking of carrageenan against multiple targets results in −7 to −6 Kcal/mol binding score. Findings of carrageen from in vitro to in silico studies are needed for further validation of clinical pieces of evidence.
Collapse
|
5
|
Hrmova M, Stratilová B, Stratilová E. Broad Specific Xyloglucan:Xyloglucosyl Transferases Are Formidable Players in the Re-Modelling of Plant Cell Wall Structures. Int J Mol Sci 2022; 23:ijms23031656. [PMID: 35163576 PMCID: PMC8836008 DOI: 10.3390/ijms23031656] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Plant xyloglucan:xyloglucosyl transferases, known as xyloglucan endo-transglycosylases (XETs) are the key players that underlie plant cell wall dynamics and mechanics. These fundamental roles are central for the assembly and modifications of cell walls during embryogenesis, vegetative and reproductive growth, and adaptations to living environments under biotic and abiotic (environmental) stresses. XET enzymes (EC 2.4.1.207) have the β-sandwich architecture and the β-jelly-roll topology, and are classified in the glycoside hydrolase family 16 based on their evolutionary history. XET enzymes catalyse transglycosylation reactions with xyloglucan (XG)-derived and other than XG-derived donors and acceptors, and this poly-specificity originates from the structural plasticity and evolutionary diversification that has evolved through expansion and duplication. In phyletic groups, XETs form the gene families that are differentially expressed in organs and tissues in time- and space-dependent manners, and in response to environmental conditions. Here, we examine higher plant XET enzymes and dissect how their exclusively carbohydrate-linked transglycosylation catalytic function inter-connects complex plant cell wall components. Further, we discuss progress in technologies that advance the knowledge of plant cell walls and how this knowledge defines the roles of XETs. We construe that the broad specificity of the plant XETs underscores their roles in continuous cell wall restructuring and re-modelling.
Collapse
Affiliation(s)
- Maria Hrmova
- Jiangsu Collaborative Innovation Centre for Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai’an 223300, China
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
- Correspondence: ; Tel.: +61-8-8313-0775
| | - Barbora Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia; (B.S.); (E.S.)
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, SK-84215 Bratislava, Slovakia
| | - Eva Stratilová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, SK-84538 Bratislava, Slovakia; (B.S.); (E.S.)
| |
Collapse
|
6
|
Sivakumar N, Karuppaiyan K. Extraction and characterization of water‐soluble polysaccharides from Tamarindus indicaand Pithecellobium dulceseeds. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nandhineeswari Sivakumar
- Department of Pharmaceutical Technology, Bharathidasan Institute of TechnologyUniversity College of Engineering, Anna University Tiruchirappalli Tamil Nadu India
| | - Kavitha Karuppaiyan
- Department of Pharmaceutical Technology, Bharathidasan Institute of TechnologyUniversity College of Engineering, Anna University Tiruchirappalli Tamil Nadu India
| |
Collapse
|
7
|
Liu X, Lin Q, Yan Y, Peng F, Sun R, Ren J. Hemicellulose from Plant Biomass in Medical and Pharmaceutical Application: A Critical Review. Curr Med Chem 2019; 26:2430-2455. [PMID: 28685685 DOI: 10.2174/0929867324666170705113657] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Due to the non-toxicity, abundance and biodegradability, recently more and more attention has been focused on the exploration of hemicellulose as the potential substrate for the production of liquid fuels and other value-added chemicals and materials in different fields. This review aims to summarize the current knowledge on the promising application of nature hemicellulose and its derivative products including its degradation products, its new derivatives and hemicellulosebased medical biodegradable materials in the medical and pharmaceutical field, especially for inmmune regulation, bacteria inhibition, drug release, anti-caries, scaffold materials and anti-tumor. METHODS We searched the related papers about the medical and pharmaceutical application of hemicellulose and its derivative products, and summarized their preparation methods, properties and use effects. RESULTS Two hundred and twenty-seven papers were included in this review. Forty-seven papers introduced the extraction and application in immune regulation of nature hemicellulose, such as xylan, mannan, xyloglucan (XG) and β-glucan. Seventy-seven papers mentioned the preparation and application of degradation products of hemicellulose for adjusting intestinal function, maintaining blood glucose levels, enhancing the immunity and alleviating human fatigue fields such as xylooligosaccharides, xylitol, xylose, arabinose, etc. The preparation of hemicellulose derivatives were described in thirty-two papers such as hemicellulose esters, hemicellulose ethers and their effects on anticoagulants, adsorption of creatinine, the addition of immune cells and the inhibition of harmful bacteria. Finally, the preparations of hemicellulose-based materials such as hydrogels and membrane for the field of drug release, cell immobilization, cancer therapy and wound dressings were presented using fifty-five papers. CONCLUSION The structure of hemicellulose-based products has the significant impact on properties and the use effect for the immunity, and treating various diseases of human. However, some efforts should be made to explore and improve the properties of hemicellulose-based products and design the new materials to broaden hemicellulose applications.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuhuan Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
|
9
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation. Carbohydr Polym 2016; 151:538-545. [DOI: 10.1016/j.carbpol.2016.05.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/30/2022]
|
11
|
Lucyszyn N, Ono L, Lubambo AF, Woehl MA, Sens CV, de Souza CF, Sierakowski MR. Physicochemical and in vitro biocompatibility of films combining reconstituted bacterial cellulose with arabinogalactan and xyloglucan. Carbohydr Polym 2016; 151:889-898. [PMID: 27474637 DOI: 10.1016/j.carbpol.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/26/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022]
Abstract
Reconstituted cellulose films were generated using residual bacterial cellulose membranes mechanically defibrillated (RBC fibrils) recycled following wound dressing production via a dry-cast process. Arabinogalactan (AG) extracted from Pereskia aculeata leaves and/or a xyloglucan (GHXG) from Guibourtia hymenifolia seeds were incorporating into the RBC at various compositions, and new films were created using the same process. Biocomposite properties were evaluated by scanning electron microscopy, contact angle (CA), and X-ray diffraction measurements. The attachment and proliferation of murine L929 fibroblasts on RBC and RBC/Hydrocolloids (HD) were also evaluated. RBC films with 20-30% GHXG replacement improved film stability and the inclusion of HD increased microfiber aggregation and reduced porous regions. Changes in the hydrophilic characteristics were also observed and owing to the adhesion effect the inclusion of HD on RBC led to a statistically significant effect of the mechanical properties of films. The RBC/AG films supported L929 adhesion similar to that observed for commercial bacterial cellulose, indicating their potential use for biomedical applications.
Collapse
Affiliation(s)
- Neoli Lucyszyn
- BIOPOL, Department of Chemistry, Universidade Federal do Paraná-UFPR, Centro Politécnico, P.O. Box 19081, PR, Brazil; Chemistry Undergraduate Program, School of Education and Humanities, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brazil.
| | - Lucy Ono
- Yasuyoshi Hayashi Microbiology Laboratory, Department of Basic Pathology, Universidade Federal do Paraná - UFPR, P.O. Box 19031, Curitiba, PR, Brazil
| | - Adriana Freire Lubambo
- LITS, Physics Department, Universidade Federal do Paraná-UFPR, P.O. Box 19044, Curitiba, PR, Brazil
| | - Marco A Woehl
- BIOPOL, Department of Chemistry, Universidade Federal do Paraná-UFPR, Centro Politécnico, P.O. Box 19081, PR, Brazil
| | - Camila V Sens
- BIOPOL, Department of Chemistry, Universidade Federal do Paraná-UFPR, Centro Politécnico, P.O. Box 19081, PR, Brazil
| | - Clayton F de Souza
- BIOPOL, Department of Chemistry, Universidade Federal do Paraná-UFPR, Centro Politécnico, P.O. Box 19081, PR, Brazil; Chemistry Undergraduate Program, School of Education and Humanities, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brazil
| | - Maria Rita Sierakowski
- BIOPOL, Department of Chemistry, Universidade Federal do Paraná-UFPR, Centro Politécnico, P.O. Box 19081, PR, Brazil
| |
Collapse
|
12
|
Li X, Lu Y, Zhang W, Yuan S, Zhou L, Wang L, Ding Q, Wang D, Yang W, Cai Z, Chen Y. Antioxidant capacity and cytotoxicity of sulfated polysaccharide TLH-3 from Tricholoma lobayense. Int J Biol Macromol 2016; 82:913-9. [DOI: 10.1016/j.ijbiomac.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022]
|
13
|
Tavakol M, Vasheghani-Farahani E, Mohammadifar MA, Soleimani M, Hashemi-Najafabadi S. Synthesis and characterization of an in situ forming hydrogel using tyramine conjugated high methoxyl gum tragacanth. J Biomater Appl 2015; 30:1016-25. [PMID: 26553882 DOI: 10.1177/0885328215608983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, an enzyme catalyzed in situ forming hydrogel based on tyramine conjugated high methoxyl content gum tragacanth (TA-HMGT) was prepared and characterized. TA-HMGT was synthesized via heterogeneous ammonolysis of methyl ester groups of HMGT. Then, the hydrogel was prepared via horseradish peroxidase catalyzed coupling reaction in the presence of hydrogen peroxide. Hydrogel properties, such as gelation time, swelling/degradation behavior and rheological properties could be adjusted by tuning the gelation parameters and extent of tyramine conjugation. This system was a soft elastic hydrogel with appropriate biocompatibility. The fast gelation of the hydrogel is desirable for clinical applications. Also, in vitro bovine serum albumin release from the synthesized hydrogel showed good release profile with limited burst release.
Collapse
Affiliation(s)
- Moslem Tavakol
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Mohammadifar
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran Department of Nanotechnology, Stem Cell Technology Research Center, Tehran, Iran
| | | |
Collapse
|
14
|
Structure and rheological properties of a xyloglucan extracted from Hymenaea courbaril var. courbaril seeds. Int J Biol Macromol 2015; 73:31-8. [DOI: 10.1016/j.ijbiomac.2014.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/23/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022]
|
15
|
|
16
|
AFM characterization of spin coated carboxylated polystyrene nanospheres/xyloglucan layers on mica and silicon. Carbohydr Polym 2013; 93:240-5. [DOI: 10.1016/j.carbpol.2012.07.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 07/12/2012] [Accepted: 07/31/2012] [Indexed: 01/27/2023]
|
17
|
Chen D, Guo P, Chen S, Cao Y, Ji W, Lei X, Liu L, Zhao P, Wang R, Qi C, Liu Y, He H. Properties of xyloglucan hydrogel as the biomedical sustained-release carriers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:955-962. [PMID: 22354327 DOI: 10.1007/s10856-012-4564-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
This study introduces an easy method of preparing xyloglucan hydrogel from xyloglucan, which is purified from tamarind seed gum. Xyloglucan hydrogel was prepared in 2 wt% solution by treating with β-galactosidase. Physical and chemical properties (molecular mass, size and viscosity) of xyloglucan hydrogel and xyloglucan solution were tested for a comparison. Experiments of drug release in vitro and in vivo were operated to investigate the potentialities of xyloglucan hydrogel as the biomedical sustained-release carriers for drug delivery system.
Collapse
Affiliation(s)
- Didi Chen
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|