1
|
Bazzaz S, Abbasi A, Ghotbabad AG, Pourjafar H, Hosseini H. Novel Encapsulation Approaches in the Functional Food Industry: With a Focus on Probiotic Cells and Bioactive Compounds. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10364-7. [PMID: 39367980 DOI: 10.1007/s12602-024-10364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/07/2024]
Abstract
Bioactive substances can enhance host health by modulating biological reactions, but their absorption and utilization by the body are crucial for positive effects. Encapsulation of probiotics is rapidly advancing in food science, with new approaches such as 3D printing, spray-drying, microfluidics, and cryomilling. Co-encapsulation with bioactives presents a cost-effective and successful approach to delivering probiotic components to specific colon areas, improving viability and bioactivity. However, the exact method by which bioactive chemicals enhance probiotic survivability remains uncertain. Co-crystallization as an emerging encapsulation method improves the physical characteristics of active components. It transforms the structure of sucrose into uneven agglomerated crystals, creating a porous network to protect active ingredients. Likewise, electrohydrodynamic techniques are used to generate fibers with diverse properties, protecting bioactive compounds from harsh circumstances at ambient temperature. Electrohydrodynamic procedures are highly adaptable, uncomplicated, and easily expandable, resulting in enhanced product quality and functionality across various food domains. Furthermore, food byproducts offer nutritional benefits and technical potential, aligning with circular economy principles to minimize environmental impact and promote economic growth. Hence, industrialized nations can capitalize on the growing demand for functional foods by incorporating these developments into their traditional cuisine and partnering with businesses to enhance manufacturing and production processes.
Collapse
Affiliation(s)
- Sara Bazzaz
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghafouri Ghotbabad
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rojas-Muñoz YV, de Jesús Perea-Flores M, Quintanilla-Carvajal MX. Probiotic Encapsulation: Bead Design Improves Bacterial Performance during In Vitro Digestion (Part 2: Operational Conditions of Vibrational Technology). Polymers (Basel) 2024; 16:2492. [PMID: 39274126 PMCID: PMC11397813 DOI: 10.3390/polym16172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
The development of functional foods is a viable alternative for the prevention of numerous diseases. However, the food industry faces significant challenges in producing functional foods based on probiotics due to their high sensitivity to various processing and gastrointestinal tract conditions. This study aimed to evaluate the effect of the operational conditions during the extrusion encapsulation process using vibrating technology on the viability of Lactobacillus fermentum K73, a lactic acid bacterium with hypocholesterolemia probiotic potential. An optimal experimental design approach was employed to produce sweet whey-sodium alginate (SW-SA) beads with high bacterial content and good morphological characteristics. In this study, the effects of frequency, voltage, and pumping rate were optimized for a 300 μm nozzle. The microspheres were characterized using RAMAN spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. The optimal conditions for bead production were found: 70 Hz, 250 V, and 20 mL/min with a final cell count of 8.43 Log10 (CFU/mL). The mean particle diameter was 620 ± 5.3 µm, and the experimental encapsulation yield was 94.3 ± 0.8%. The INFOGEST model was used to evaluate the survival of probiotic beads under gastrointestinal tract conditions. Upon exposure to in vitro conditions of oral, gastric, and intestinal phases, the encapsulated viability of L. fermentum was 7.6 Log10 (CFU/mL) using the optimal encapsulation parameters, which significantly improved the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells.
Collapse
Affiliation(s)
- Yesica Vanesa Rojas-Muñoz
- Universidad de La Sabana, Facultad de Ingeniería, Maestría en Diseño y Gestión de Procesos, Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
| | - María de Jesús Perea-Flores
- Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, Unidad Profesional "Adolfo López Mateos", Luis Enrique Erro s/n, Zacatenco, CDMX C.P. 07738, Mexico
| | - María Ximena Quintanilla-Carvajal
- Universidad de La Sabana, Facultad de Ingeniería, Maestría en Diseño y Gestión de Procesos, Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
- Universidad de La Sabana, Facultad de Ingeniería, Grupo de Investigación de Procesos Agroindustriales (GIPA), Campus Universitario del Puente del Común, Chía 250001, Cundinamarca, Colombia
| |
Collapse
|
3
|
Deng Y, Liu G, Zhang H, Zhou P, Tang X, Li P, Zhao Z, Zhang Y, Wang Z, Wei Z, Zhang M. Effects of wall materials on the physicochemical properties of spray-dried bitter gourd (Momordica charantia L.) powders. NPJ Sci Food 2024; 8:37. [PMID: 38902297 PMCID: PMC11190200 DOI: 10.1038/s41538-024-00278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Bitter gourd has numerous health-promoting effects on the human body. However, its use has been greatly limited due to its poor acceptance by consumers, resulting from its strong bitterness. This study investigated the effects of five wall materials, namely, soybean protein isolate, gum arabic, maltodextrin, resistant starch, and a soybean lecithin calcium caseinate mixture, on the physicochemical properties of spray-dried bitter gourd powders. The results showed that all five wall materials reduced the moisture content, water activity, browning degree, agglomeration, and bitterness of the spray-dried bitter gourd powder. Maltodextrin was found to be the most effective at reducing water activity, while soybean protein isolate was best at protecting the colour, and the soybean lecithin calcium caseinate mixture was best at reducing hygroscopicity and masking bitterness. Additionally, all five wall materials improved the preservation of flavonoids, saponins, and vitamin C, with soybean protein isolate being the most effective in improving the total flavonoid retention ratio and the soybean lecithin calcium caseinate mixture being the best in improving the retention ratios of total saponins and vitamin C. The spray-dried bitter gourd powder prepared with soybean protein isolate had the highest antioxidant activity and α-glucosidase inhibitory activity. These results are significant for understanding the relationship between wall materials and the physicochemical properties of spray-dried powder. Additionally, these materials provide bitter gourd product manufacturers with useful guidance for producing high-quality products. Furthermore, the results could provide useful insights for processing fruits with similar product characteristics, thus contributing to the enrichment of food processing knowledge.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Huimin Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Zhangying Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, 510640, China
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China.
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs / Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China.
| |
Collapse
|
4
|
Khan WA, Butt MS, Yasmin I, Wadood SA, Mahmood A, Gad HA. Protein-polysaccharide based double network microbeads improves stability of Bifidobacterium infantis ATCC 15697 in a gastro-Intestinal tract model (TIM-1). Int J Pharm 2024; 652:123804. [PMID: 38220120 DOI: 10.1016/j.ijpharm.2024.123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.
Collapse
Affiliation(s)
- Wahab Ali Khan
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan.
| | - Masood Sadiq Butt
- National Institute of Food Science & Technology, Faculty of Food, Nutrition & Home Sciences, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Iqra Yasmin
- Department of Human Nutrition and Dietetics, University of Chakwal, Chakwal, 48800 Pakistan.
| | - Syed Abdul Wadood
- Department of Food Science and Technology, University of Home Economics Lahore, 54660 Pakistan; Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China.
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan.
| | - Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| |
Collapse
|
5
|
Mousa AH, Korma SA, Ali AH, Abdeldaiem AM, Bakry IA, Liu XM, Zhang H, Abed SM, Bakry AM. Microencapsulation of Bifidobacterium bifidum F-35 via modulation of emulsifying technique and its mechanical effects on the rheological stability of set-yogurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2968-2977. [PMID: 37786598 PMCID: PMC10542085 DOI: 10.1007/s13197-023-05812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2023] [Accepted: 08/08/2023] [Indexed: 10/04/2023]
Abstract
Microencapsulation of B. bifidum F-35 was carried out through emulsification technique in order to increase the microbial load while maintaining the rheological functions of set-yogurt. To produce single-layer (SL) microcapsules of whey protein, the pH was adjusted to 6.4 within Transglutaminase-induced gelation. Sodium alginate was processed as the external layer using calcium-induced gelation (pH 5.5) to produce the double-layer (DL) microcapsule. Scanning electron microscopy revealed that SL and DL microcapsules had sizes of 10 and 280 μm, respectively. The highest microbial load was clearly visible in the DL sample. According to texture profile analysis, the DL sample had the highest levels of gumminess, chewiness, and adhesiveness. The free sample outperformed the encapsulated samples in terms of springiness and cohesiveness. Although the SL sample had the highest viscosity, it produced a deformed gel when firmness was measured. In terms of firmness, the DL sample performed quite well. The viability of encapsulated B. bifidum F-35 in DL was higher than SL microcapsules during storage. Microencapsulation of B. bifidum F-35 with whey protein and sodium alginate is a promising technique that could improve the rheological properties of set-yogurt as a popular vehicle for bioactive ingredients. Graphical abstract
Collapse
Affiliation(s)
- Ahmed H. Mousa
- Food Science and Technology Department, Faculty of Environmental Agricultural Science, Arish University, Egypt El-Arish
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Sameh A. Korma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Abdelmoneim H. Ali
- Food Science Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511 Egypt
| | - Ahmed M. Abdeldaiem
- Dairy Department, Faculty of Agriculture, Suez Canal University, Ismailia, 41522 Egypt
| | - Ibrahim A. Bakry
- Department of Food and Dairy Technology, Faculty of Technology and Development, Zagazig University, Zagazig, 44519 Egypt
| | - Xiao-ming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Sherif M. Abed
- Food Science and Technology Department, Faculty of Environmental Agricultural Science, Arish University, Egypt El-Arish
| | - Amr M. Bakry
- Dairy Science Department, Faculty of Agriculture, New Valley University, New Valley, El-Kharga, 72511 Egypt
| |
Collapse
|
6
|
do Carmo Alves AP, do Carmo Alves A, Ferreira Rodrigues RA, da Silva Cerozi B, Possebon Cyrino JE. Microencapsulation of Bacillus subtilis and oat β-glucan and their application as a synbiotic in fish feed. J Microencapsul 2023; 40:491-501. [PMID: 37254699 DOI: 10.1080/02652048.2023.2220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
To improve survival during storage and exposure to adverse conditions, Bacillus subtilis was microencapsulated with oat β-glucan by spray-drying technology. The characterisation of the microcapsules was designed to compare free and microencapsulated cells through exposure to simulated gastric fluids (SGF) throughout storage for 90 days at different temperatures. The characterisation included analysis of efficiency, morphology, moisture, water activity, hygroscopicity, particle size, and zeta potential. The microcapsules presented a particle size of 1.5 ± 0.34 μm and an encapsulation efficiency of 77.9 ± 3.06%. After SGF, the survival of microencapsulated cells was 8.4 ± 0.07 log CFU mL-1 while that of free cells was 7.6 ± 0.06 log CFU mL-1. After 90 days of storage, only microencapsulated cells remained above 6 log-unit of viability. In conclusion, spray-drying technique combined with the addition of oat β-glucan proved to be an efficient method to protect B. subtilis under storage and SGF with potential application in fish feed.
Collapse
Affiliation(s)
- Angélica Priscila do Carmo Alves
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - Amanda do Carmo Alves
- Departamento de Biotecnologia Vegetal, Universidade Federal de Lavras [UFLA], Lavras, Minas Gerais, Brazil
| | - Rodney Alexandre Ferreira Rodrigues
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas [CPQBA], Universidade Estadual de Campinas [UNICAMP], Campinas, São Paulo, Brazil
| | - Brunno da Silva Cerozi
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| |
Collapse
|
7
|
Hernández-Gallegos MA, Solorza-Feria J, Cornejo-Mazón M, Velázquez-Martínez JR, Rodríguez-Huezo ME, Gutiérrez-López GF, Hernández-Sánchez H. Protective Effect of Alginate Microcapsules with Different Rheological Behavior on Lactiplantibacillus plantarum 299v. Gels 2023; 9:682. [PMID: 37754363 PMCID: PMC10529054 DOI: 10.3390/gels9090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Alginate encapsulation is a well-known technique used to protect microorganisms from adverse conditions. However, it is also known that the viscosity of the alginate is dependent on its composition and degree of polymerization and that thermal treatments, such as pasteurization and sterilization, can affect the structure of the polymer and decrease its protection efficiency. The goal of this study was to evaluate the protective effect of encapsulation, using alginates of different viscosities treated at different temperatures, on Lactiplantibacillus plantarum 299v under in vitro gastrointestinal conditions and cold storage at 4 °C and -15 °C, respectively. Steady- and dynamic-shear rheological tests were used to characterize the polymers. Thermal treatments profoundly affected the rheological characteristics of alginates with high and low viscosity. However, the solutions and gels of the low-viscosity alginate were more affected at a temperature of 117 °C. The capsules elaborated with high-viscosity alginate solution and pasteurized at 63 °C for 30 min provided better protection to the cells of L. plantarum 299v under simulated gastrointestinal and cold storage conditions.
Collapse
Affiliation(s)
- Minerva Aurora Hernández-Gallegos
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Estatal Libre Villahermosa-Comalcalco Km 27 S/N, Ranchería, Jalpa de Méndez CP 86205, Mexico
| | - Javier Solorza-Feria
- Centro de Desarrollo de Productos Bióticos del IPN, Km 8.5 carr. Yautepec-Jojutla, Yautepec CP 62731, Mexico;
| | - Maribel Cornejo-Mazón
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Santo Tomás, Ciudad de México CP 11340, Mexico;
| | - José Rodolfo Velázquez-Martínez
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa Km. 25, Teapa CP 86291, Mexico;
| | - María Eva Rodríguez-Huezo
- División Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Ecatepec, Estado de México CP 55010, Mexico;
| | - Gustavo F. Gutiérrez-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu esq. M. Stampa, UP Adolfo López Mateos, Ciudad de México CP 07738, Mexico; (M.A.H.-G.); (G.F.G.-L.)
| |
Collapse
|
8
|
Szopa K, Szajnar K, Pawlos M, Znamirowska-Piotrowska A. Probiotic Fermented Goat's and Sheep's Milk: Effect of Type and Dose of Collagen on Survival of Four Strains of Probiotic Bacteria during Simulated In Vitro Digestion Conditions. Nutrients 2023; 15:3241. [PMID: 37513662 PMCID: PMC10384213 DOI: 10.3390/nu15143241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Microbial tolerance of digestive stresses depends not only on the bacterial strain but also on the structure and physicochemical properties of the supply chain and the foods that contain it. In the present study, we aimed to evaluate the effects of the type of milk (ovine, caprine) and the type and dose of collagen on the viability of four probiotic strains, Lacticaseibacillus paracasei L-26, Lacticaseibacillus casei 431, Lactobacillus acidophilus LA-5, and Lacticaseibacillus rhamnosus Lr-32, during in vitro gastrointestinal digestion. The highest survival rate under simulated in vitro digestion conditions compared to the number of cells before digestion was found in two strains, L. casei and L. paracasei, where survival rates were greater than 50% in each batch. The survival rate of the L. rhamnosus strain ranged from 41.05% to 64.23%. In caprine milk fermented by L. acidophilus, a higher survival rate was found in milk with 1.5% hydrolysate than the control, by about 6%. Survival of the L. rhamnosus strain was favorably affected by the 3% addition of bovine collagen in caprine milk, which increased survival by about 14% compared to the control sample. Adding 3% of hydrolysate to sheep's and goat's milk enhanced the survival of the L. rhamnosus strain by 3% and 19%, respectively. This study reports that fermented caprine and ovine milk may be suitable matrices for the probiotic supply of commercial dairy starter cultures and promote gut homeostasis.
Collapse
Affiliation(s)
- Kamil Szopa
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Katarzyna Szajnar
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 2D, 35601 Rzeszow, Poland
| |
Collapse
|
9
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
10
|
He J, Wang Z, Wei L, Ye Y, Din ZU, Zhou J, Cong X, Cheng S, Cai J. Electrospray-Assisted Fabrication of Dextran-Whey Protein Isolation Microcapsules for the Encapsulation of Selenium-Enriched Peptide. Foods 2023; 12:foods12051008. [PMID: 36900527 PMCID: PMC10000993 DOI: 10.3390/foods12051008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Selenium-enriched peptide (SP, selenopeptide) is an excellent organic selenium supplement that has attracted increasing attention due to its superior physiological effects. In this study, dextran-whey protein isolation-SP (DX-WPI-SP) microcapsules were fabricated via high-voltage electrospraying technology. The results of preparation process optimization showed that the optimized preparation process parameters were 6% DX (w/v), feeding rate Q = 1 mL/h, voltage U = 15 kV, and receiving distance H = 15 cm. When the content of WPI (w/v) was 4-8%, the average diameter of the as-prepared microcapsules was no more than 45 μm, and the loading rate for SP ranged from ~46% to ~37%. The DX-WPI-SP microcapsules displayed excellent antioxidant capacity. The thermal stability of the microencapsulated SP was improved, which was attributed to the protective effects of the wall materials for SP. The release performance was investigated to disclose the sustained-release capacity of the carrier under different pH values and an in-vitro-simulated digestion environment. The digested microcapsule solution showed negligible influence on the cellular cytotoxicity of Caco-2 cells. Overall, our work provides a facile strategy of electrospraying microcapsules for the functional encapsulation of SP and witnesses a broad prospect that the DX-WPI-SP microcapsules can exhibit great potential in the food processing field.
Collapse
Affiliation(s)
- Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenyu Wang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingfeng Wei
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Ye
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zia-ud Din
- Department of Food Science and Nutrition, Women University Swabi, Swabi 23430, Khyber Pakhtunkhawa, Pakistan
| | - Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence:
| |
Collapse
|
11
|
Li H, Peng F, Lin JX, Xiong T, Huang T. Preparation of probiotic microcapsules using gelatin-xylooligosaccharides conjugates by spray drying: Physicochemical properties, survival, digestion resistance and colonization. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Tirta GD, Martin L, Bani MD, Kho K, Pramanda IT, Pui LP, How YH, Lim CSY, Devanthi PVP. Spray Drying Encapsulation of Pediococcus acidilactici at Different Inlet Air Temperatures and Wall Material Ratios. Foods 2022; 12:165. [PMID: 36613381 PMCID: PMC9818494 DOI: 10.3390/foods12010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Pediococcus acidilactici has gained research and commercial interest due to its outstanding probiotic properties, yet its survival during storage and consumption requires improvement. This study aims to enhance P. acidilactici survival using spray drying encapsulation. Different inlet air temperatures (120 °C, 150 °C, and 170 °C) and whey protein isolate (WPI):gum arabic (GA) ratios (1:1, 3:1, 1:3) were tested. Cell viability was significantly (p < 0.05) affected by the inlet temperature but not the WPI:GA ratio. Increasing the inlet temperature to 170 °C significantly decreased P. acidilactici viability by 1.36 log cycles, from 8.61 log CFU/g to 7.25 log CFU/g. The inlet temperature of 150 °C resulted in a powder yield (63.12%) higher than at 120 °C (58.97%), as well as significantly (p < 0.05) lower moisture content (5.71%) and water activity (aw 0.21). Viable cell counts in all encapsulated P. acidilactici were maintained at 5.24−6.75 log CFU/g after gastrointestinal tract (GIT) simulation, with WPI:GA of 3:1 and inlet temperature 150 °C having the smallest log reduction (0.3 log cycles). All samples containing different WPI:GA ratios maintained sufficient viability (>7 log CFU/g) during the first three weeks of storage at 25 °C. These results could provide insights for further developing P. acidilactici as commercial probiotic products.
Collapse
Affiliation(s)
- Gabriella Devina Tirta
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Leon Martin
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Mario Donald Bani
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Katherine Kho
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Ihsan Tria Pramanda
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - Putu Virgina Partha Devanthi
- Department of Biotechnology, School of Life Sciences, Indonesia International Institute for Life Sciences, Pulomas Barat Kavling 88, Jakarta 13210, Indonesia
| |
Collapse
|
13
|
Bielska P, Cais-Sokolińska D, Dwiecki K. Effects of Heat Treatment Duration on the Electrical Properties, Texture and Color of Polymerized Whey Protein. Molecules 2022; 27:6395. [PMID: 36234932 PMCID: PMC9573190 DOI: 10.3390/molecules27196395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
In this research effects of heat treatment duration on the electrical properties (zeta potential and conductivity), texture and color of polymerized whey protein (PWP) were analyzed. Whey protein solutions were heated for 30 min to obtain single-heated polymerized whey protein (SPWP). After cooling to room temperature, the process was repeated to obtain double-heated polymerized whey protein (DPWP). The largest agglomeration was demonstrated after 10 min of single-heating (zeta potential recorded as -13.3 mV). Single-heating decreased conductivity by 68% and the next heating cycle by 54%. As the heating time increased, there was a significant increase in the firmness of the heated solutions. Zeta potential of the polymerized whey protein correlated with firmness, consistency, and index of viscosity, the latter of which was higher when the zeta potential (r = 0.544) and particle size (r = 0.567) increased. However, there was no correlation between zeta potential and color. This research has implications for future use of PWP in the dairy industry to improve the syneretic, textural, and sensory properties of dairy products.
Collapse
Affiliation(s)
- Paulina Bielska
- Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Dorota Cais-Sokolińska
- Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Krzysztof Dwiecki
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, ul. Mazowiecka 48, 60-623 Poznan, Poland
| |
Collapse
|
14
|
The lipid digestion behavior of oil-in-water Pickering emulsions stabilized by whey protein microgels of various rigidities. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Insights into whey protein-based carriers for targeted delivery and controlled release of bioactive components. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Sbehat M, Altamimi M, Sabbah M, Mauriello G. Layer-by-Layer Coating of Single-Cell Lacticaseibacillus rhamnosus to Increase Viability Under Simulated Gastrointestinal Conditions and Use in Film Formation. Front Microbiol 2022; 13:838416. [PMID: 35602083 PMCID: PMC9115559 DOI: 10.3389/fmicb.2022.838416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics and prebiotics are widely used as functional food ingredients. Viability of probiotics in the food matrix and further in the digestive system is still a challenge for the food industry. Different approaches were used to enhance the viability of probiotics including microencapsulation and layer-by-layer cell coating. The of aim of this study was to evaluate the viability of coated Lacticaseibacillus rhamnosus using a layer-by-layer (LbL) technique with black seed protein (BSP) extracted from Nigella sativa defatted seeds cakes (NsDSC), as a coating material, with alginate, inulin, or glucomannan, separately, and the final number of coating layers was 3. The viable cell counts of the plain and coated L. rhamnosus were determined under sequential simulated gastric fluid (SGF) for 120 min and simulated intestinal fluid (SIF) for 180 min. Additionally, the viability after exposure to 37, 45, and 55°C for 30 min was also determined. Generally, the survivability of coated L. rhamnosus showed significant (p ≤ 0.05) improvement (<4, 3, and 1.5 logs reduction for glucomannan, alginate and inulin, respectively) compared with plain cells (∼6.7 log reduction) under sequential exposure to SGF and SIF. Moreover, the cells coated with BSP and inulin showed the best protection for L. rhamnosus under high temperatures. Edible films prepared with pectin with LbL-coated cells showed significantly higher values in their tensile strength (TS) of 50% and elongation at the break (EB) of 32.5% than pectin without LbL-coated cells. The LbL technique showed a significant protection of probiotic cells and potential use in food application.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Mohammad Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus, Palestine
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
El-Sayed HS, Youssef K, Hashim AF. Stirred Yogurt as a Delivery Matrix for Freeze-Dried Microcapsules of Synbiotic EVOO Nanoemulsion and Nanocomposite. Front Microbiol 2022; 13:893053. [PMID: 35663887 PMCID: PMC9161547 DOI: 10.3389/fmicb.2022.893053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Nowadays, dairy products are considered a good matrix to deliver many functional substances either vital oils or probiotic cells. Two models of microcapsules were produced from co-encapsulation of extra virgin olive oil (EVOO) nanoemulsion or nanocomposite and synbiotic bacteria (maltodextrin with Lactobacillus acidophilus and Bifidobacterium bifidum) using the freeze-drying technique. These models of microcapsules were added to stirred yogurt, and then its storage effect on microbiology, chemically, and sensory properties were evaluated for 21 days. The average droplet size and zeta potential distribution of EVOO nanoemulsion and nanocomposite were investigated. Also, oxidative stability, microencapsulation efficiency, release profile, and antioxidant activity were studied. The results showed that the average particle size of EVOO nanoemulsion and nanocomposite ranged between 416 and 475 nm, while zeta potential was -39.6 and -33.6 mV, respectively. The induction period of EVOO extracted from nanoemulsion and nanocomposite microcapsules models was 11.30 and 8 h. The microencapsulation efficiency of probiotic and EVOO was determined at 88.84 and 65.61% for the nanoemulsion microcapsules model, while the nanocomposite microcapsules model showed 98.49 and 72%. The two models of microcapsules have boosted the viability of probiotic bacteria inside stirred yogurt than free cells. Also, the presence of microcapsules did not affect the viability of stirred yogurt starter cultures, and high values for the total solid and protein were detected. Therefore, the results recommended that stirred yogurt is a good delivery carrier for highly antioxidant and healthy microcapsules of synbiotic EVOO nanoemulsion and nanocomposite.
Collapse
Affiliation(s)
- Hoda S. El-Sayed
- Dairy Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Khamis Youssef
- Agricultural Research Center, Plant Pathology Research Institute, Giza, Egypt
- Agricultural and Food Research Council, Academy of Scientific Research and Technology, Cairo, Egypt
| | - Ayat F. Hashim
- Fats and Oils Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
18
|
Obradović N, Volić M, Nedović V, Rakin M, Bugarski B. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
20
|
Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106882] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Homayouni-Rad A, Mortazavian AM, Mashkani MG, Hajipour N, Pourjafar H. Effect of Alyssum homolocarpum mucilage and inulin microencapsulation on the survivability of Lactobacillus casei in simulated gastrointestinal and high-temperature conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Iqbal R, Liaqat A, Jahangir Chughtai MF, Tanweer S, Tehseen S, Ahsan S, Nadeem M, Mehmood T, Ur Rehman SJ, Saeed K, Sameed N, Aziz S, Tahir AB, Khaliq A. Microencapsulation: a pragmatic approach towards delivery of probiotics in gut. J Microencapsul 2021; 38:437-458. [PMID: 34192983 DOI: 10.1080/02652048.2021.1949062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Probiotics confer numerous health benefits and functional foods prepared with these microbes own largest markets. However, their viability during transit from gastrointestinal tract is a concerning issue. Microencapsulation of probiotics is a novel technique of major interest to increase their survivability in GIT and food matrices by providing a physical barrier to protect them under harsh conditions. This article contributes the knowledge regarding microencapsulation by discussing probiotic foods, different methods and approaches of microencapsulation, coating materials, their release mechanisms at the target site, and interaction with probiotics, efficiency of encapsulated probiotics, their viability assessment methods, applications in food industry, and their future perspective. In our opinion, encapsulation has significantly got importance in the field of innovative probiotic enriched functional foods development to preserve their viability and long-term survival rate until product expiration date and their passage through gastro-intestinal tract. Previous review work has targeted some aspects of microencapsulation, this article highlights different methods of probiotics encapsulation and coating materials in relation with food matrices as well as challenges faced during applications: Gut microbiota; Lactic acid bacteria; Micro-encapsulation; Stability enhancement; Cell's release, Health benefits.
Collapse
Affiliation(s)
- Rabia Iqbal
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Atif Liaqat
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saira Tanweer
- University College of Agriculture and Environmental Sciences, Islamia University, Bahawalpur, Pakistan
| | - Saima Tehseen
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Samreen Ahsan
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Syed Junaid Ur Rehman
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Kanza Saeed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Nimra Sameed
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shoaib Aziz
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Assam Bin Tahir
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
23
|
Entrapment of Hydrophilic and Hydrophobic Molecules in Beads Prepared from Isolated Denatured Whey Protein. Pharmaceutics 2021; 13:pharmaceutics13071001. [PMID: 34371693 PMCID: PMC8309121 DOI: 10.3390/pharmaceutics13071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
The oral route of administration is by far the most convenient route, especially in the treatment of chronic conditions. However, many therapeutics present formulation difficulties which make them unsuitable for oral delivery. Recently, we synthesized a denatured whey protein isolate (dWPI) bead entrapped with insulin. Our present goal was to assess the suitability of this delivery system to the delivery of other potential molecules, both hydrophilic and hydrophobic. Beads of 1.2–1.5 mm in diameter were entrapped with four payloads representing a range of solubilities. The water-soluble payloads were sodium fluorescein (SF) and FITC dextran 4000 Da (FD4), while the hydrophobic ones were Fast Green and curcumin. Encapsulation efficiency (EE) was 73%, 84%, 70%, and 83% for SF, FD4, Fast Green, and curcumin-loaded beads, respectively. The corresponding loading capacity for each bead was 0.07%, 1.1%, 0.75%, and 1.1%, respectively. Each payload produced different release profiles in simulated gastric fluid (SGF) and simulated intestinal fluids (SIF). SF released steadily in both SGF and SIF. FD4 and curcumin release was not substantial in any buffers, while Fast Green release was low in SGF and high in SIF. The differences in release behaviour were likely due to the varying properties of the payloads. The effect of proteolysis on beads suggested that enzymatic degradation of the whey bead may promote payload release. The beads swelled rapidly in SGF compared to SIF, which likely contributed to the release from the beads, which was largely governed by solvent diffusion and polymer relaxation. Our results offer a systematic examination of the behaviour of hydrophilic and hydrophobic payloads in a dWPI delivery system. These beads may be further designed to orally deliver poorly permeable macromolecules and poorly soluble small molecules of pharmaceutical interest.
Collapse
|
24
|
Pandey P, Mettu S, Mishra HN, Ashokkumar M, Martin GJ. Multilayer co-encapsulation of probiotics and γ-amino butyric acid (GABA) using ultrasound for functional food applications. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Khorshidi M, Heshmati A, Taheri M, Karami M, Mahjub R. Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci Nutr 2021; 9:3942-3953. [PMID: 34262750 PMCID: PMC8269586 DOI: 10.1002/fsn3.2398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
The goal of this study was to investigate the viability of microencapsulated and coated Lactobacillus acidophilus in yogurt during storage in a refrigerator for 28 days and in simulated gastrointestinal conditions. Furthermore, the effect of the microencapsulated and coated L. acidophilus on the physicochemical, textural, and sensory properties of yogurt was assessed. Lactobacillus acidophilus was microencapsulated in sodium alginate and coated with xanthan and/or whey protein. The coating led to the increase in the microcapsule diameter and the microencapsulation yield, while it led to the decreased moisture and water activity (aw) of the microcapsule. The survival of L. acidophilus microcapsule coated with whey protein and xanthan in yogurt during storage and exposure to simulated gastrointestinal conditions was significantly increased. Compared with free bacteria, the L. acidophilus microcapsule coated with whey protein and xanthan had the increased viability in yogurt until 2.16 log CFU/g during storage and 3.52 log CFU/g in simulated gastrointestinal conditions. After the 28th day of storage, a significant difference between the acidity and pH of yogurt containing coated and microencapsulated L. acidophilus and control yogurt was not observed. However, yogurt containing free L. acidophilus had lower pH and higher acidity and showed a significant difference (p < .05) with other samples. Although the coating of L. acidophilus microcapsule did not affect the sensory properties and gumminess of yogurt, it increased the firmness, adhesiveness, and viscosity of this product and caused a significant decrease in syneresis and cohesiveness. In general, the application of whey protein and xanthan coating on L. acidophilus microcapsule surface could increase the viability of this probiotic in yogurt during storage and in simulated gastrointestinal conditions and improve the texture attributes of yogurt.
Collapse
Affiliation(s)
- Mina Khorshidi
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Ali Heshmati
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mehdi Taheri
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mostafa Karami
- Faculty of Food Science and TechnologyBu‐Ali Sina University of HamedanHamedanIran
| | - Reza Mahjub
- Department of Pharmacology and ToxicologySchool of Pharmacy, Medicinal Plants and Natural Products Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
26
|
Popescu V, Molea A, Moldovan M, Lopes PM, Mazilu Moldovan A, Popescu GL. The Influence of Enzymatic Hydrolysis of Whey Proteins on the Properties of Gelatin-Whey Composite Hydrogels. MATERIALS 2021; 14:ma14133507. [PMID: 34201757 PMCID: PMC8269533 DOI: 10.3390/ma14133507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Amino-acids, peptides, and protein hydrolysates, together with their coordinating compounds, have various applications as fertilizers, nutritional supplements, additives, fillers, or active principles to produce hydrogels with therapeutic properties. Hydrogel-based patches can be adapted for drug, protein, or peptide delivery, and tissue healing and regeneration. These materials have the advantage of copying the contour of the wound surface, ensuring oxygenation, hydration, and at the same time protecting the surface from bacterial invasion. The aim of this paper is to describe the production of a new type of hydrogel based on whey protein isolates (WPI), whey protein hydrolysates (WPH), and gelatin. The hydrogels were obtained by utilizing a microwave-assisted method using gelatin, glycerol, WPI or WPH, copper sulfate, and water. WPH was obtained by enzymatic hydrolysis of whey protein isolates in the presence of bromelain. The hydrogel films obtained have been characterized by FT-IR and UV-VIS spectroscopy. The swelling degree and swelling kinetics have also been determined.
Collapse
Affiliation(s)
- Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
| | - Andreia Molea
- Automotive Engineering and Transports Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania;
| | - Marioara Moldovan
- Institute of Chemistry Raluca Ripan, Babes-Bolyai University, 30 Fantanele Str., 400294 Cluj-Napoca, Romania;
| | - Pompilia Mioara Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
| | - Amalia Mazilu Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
| | - George Liviu Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (V.P.); (P.M.L.); (A.M.M.)
- Automotive Engineering and Transports Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-743174196
| |
Collapse
|
27
|
Sribounoy U, Pirarat N, Solval KM, Sathivel S, Chotiko A. Development of pelleted feed containing probiotic Lactobacillus rhamnosus GG and Jerusalem artichoke for Nile Tilapia and its biocompatibility studies. 3 Biotech 2021; 11:279. [PMID: 34094798 DOI: 10.1007/s13205-021-02829-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Growth performance and immune systems of tilapias could be improved by Lactobacillus rhamnosus GG (LGG) and Jerusalem artichoke. This research aimed to determine the effects of Jerusalem artichoke on LGG viability after drying and pelleting and their subsequent exposure to simulated gastrointestinal conditions. Fresh LGG cells were added into wall material solutions, including alginate (AL), alginate + milk powder (AM), and alginate + milk powder + Jerusalem artichoke at different concentrations (AMJ). The solutions were then spray dried to obtain LGG powders. The powder with the highest cell number was then selected to mix with tilapia feed mash and pelleted using a nonthermal feed extruder to obtain pelleted feed containing LGG and Jerusalem artichoke. The LGG viability spray dried powders and pelleted feed were analyzed for their cell counts after drying and after exposure to simulated gastrointestinal conditions. The result showed that the number of viable cells in AMJ was significantly higher than AM and AL after drying. The number of viable cells under both simulated gastric and bile salt fluids was improved with the increasing of Jerusalem artichoke concentrations. The number of viable cells after pelleting process could be maintained. LGG in the pelleted feed could also survive under the simulated gastric and bile salt conditions. The study indicates that JA enhanced LGG viability after drying and exposure to simulated gastrointestinal conditions. The pelleted feed containing LGG and Jerusalem artichoke could be applied in tilapia farming, providing convenience to the farmers, and valuable effects to the fish.
Collapse
Affiliation(s)
- Unchaleeporn Sribounoy
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110 Thailand
| | - Nopadon Pirarat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Kevin Mis Solval
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223 USA
| | - Subramaniam Sathivel
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 USA
| | - Arranee Chotiko
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110 Thailand
| |
Collapse
|
28
|
Synthesis and In Vivo Evaluation of Insulin-Loaded Whey Beads as an Oral Peptide Delivery System. Pharmaceutics 2021; 13:pharmaceutics13050656. [PMID: 34064415 PMCID: PMC8147814 DOI: 10.3390/pharmaceutics13050656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 01/14/2023] Open
Abstract
For many diabetics, daily, lifelong insulin injections are required to effectively manage blood glucose levels and the complications associated with the disease. This can be a burden and reduces patient quality of life. Our goal was to develop a more convenient oral delivery system that may be suitable for insulin and other peptides. Insulin was entrapped in 1.5-mm beads made from denatured whey protein isolate (dWPI) using gelation. Beads were then air-dried with fumed silica, Aerosil®. The encapsulation efficiency was ~61% and the insulin loading was ~25 µg/mg. Dissolution in simulated gastric-, and simulated intestinal fluids (SGF, SIF) showed that ~50% of the insulin was released from beads in SGF, followed by an additional ~10% release in SIF. The omission of Aerosil® allowed greater insulin release, suggesting that it formed a barrier on the bead surface. Circular dichroism analysis of bead-released insulin revealed an unaltered secondary structure, and insulin bioactivity was retained in HepG2 cells transfected to assess activation of the endogenous insulin receptors. Insulin-entrapped beads were found to provide partial protection against pancreatin for at least 60 min. A prototype bead construct was then synthesised using an encapsulator system and tested in vivo using a rat intestinal instillation bioassay. It was found that 50 IU/kg of entrapped insulin reduced plasma glucose levels by 55% in 60 min, similar to that induced by subcutaneously (s.c.)-administered insulin (1 IU/kg). The instilled insulin-entrapped beads produced a relative bioavailability of 2.2%. In conclusion, when optimised, dWPI-based beads may have potential as an oral peptide delivery system.
Collapse
|
29
|
Daniloski D, Petkoska AT, Lee NA, Bekhit AED, Carne A, Vaskoska R, Vasiljevic T. Active edible packaging based on milk proteins: A route to carry and deliver nutraceuticals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Hossain MN, Ranadheera CS, Fang Z, Ajlouni S. Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. J Food Sci 2021; 86:1629-1641. [PMID: 33822381 DOI: 10.1111/1750-3841.15695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Chocolates can be formulated as a functional food via enrichment with probiotics. However, the added probiotics must overcome the challenges of processing and storage conditions and the harsh gastrointestinal environment. The study aimed to overcome these challenges using two different formulations of cocoa powder as alternative encapsulants along with Na-alginate (A1 ) and Na-alginate and fructooligosaccharides (A2 ). Seven different probiotic strains were encapsulated individually using the new formulations and viabilities of these encapsulated probiotics were assessed prior to and after they were added to chocolates. The highest achieved encapsulation efficiencies were 93.40% for formulation A1 (with Lactobacillus casei) and 95.36% for formulation A2 (with Lactobacillus acidophilus La5). The encapsulated probiotics with the new formulations maintained higher viability than the recommended therapeutic level (107 colony forming unit [CFU]/g) for up to 180 and 120 days of storage at 4 and 25 °C, respectively. The tested encapsulants improved probiotics survival when subjected to thermal stress and maintained about 9.0 Logs CFU/g at 60 °C. Additionally, the viable numbers of probiotics in fortified chocolates showed higher than 7 Logs CFU/g after 90 days of storage at 25 °C. Both formulations exhibited significantly (P < 0.05) high survivability of probiotics (8.0 Logs CFU/g) during the in vitro gastrointestinal digestion. This study demonstrated that cocoa powder along with Na-alginate and FOS has the potential to be used as a probiotic encapsulating material, and chocolates could be an excellent carrier for the development of healthy probiotic chocolate products. PRACTICAL APPLICATION: The introduction of cocoa powder as an effective encapsulating agent to deliver probiotics could help the chocolate industry to develop healthy and attractive functional snacks for health-conscious consumers.
Collapse
Affiliation(s)
- Md Nur Hossain
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Chaminda Senaka Ranadheera
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zhongxiang Fang
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Said Ajlouni
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
31
|
Kyereh E, Sathivel S. Viability of Lactobacillus plantarum NCIMB 8826 immobilized in a cereal-legume complementary food “weanimix” with simulated gastrointestinal conditions. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Effect of various encapsulating agents on the beads' morphology and the viability of cells during BB-12 encapsulation through extrusion. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106453] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Cendon FV, Salomão BB, Jorge RMM, Mathias AL. Mechanical and optical evaluation of alginate hydrospheres produced with different cross-linking salts for industrial application. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Silva-Avellaneda E, Bauer-Estrada K, Prieto-Correa RE, Quintanilla-Carvajal MX. The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Sci Rep 2021; 11:7161. [PMID: 33785792 PMCID: PMC8010073 DOI: 10.1038/s41598-021-86233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The use of oleogels is an innovative and economical option for the technological development of some food products, among them ice creams. The aim of this study was to establish the best processing conditions to obtain an emulsion which form oleogels with the lowest ζ-potential and average droplet size (ADS) for use as ice cream base. Using surface response methodology (SRM), the effects of three numerical factors (microfluidization pressure, oil and whey protein concentration, WP) and four categorical factors (oil type, temperature, surfactant, and type of WP) on formation of emulsions were assessed. The response variables were ζ, ADS, polydispersity index (PDI), viscosity (η), hardness, cohesiveness and springiness. Additionally, a numerical optimization was performed. Two ice creams containing milk cream and oleogel, respectively were compared under the optimization conditions. Results suggest oleogels obtained from the microfluidization of whey and high oleic palm oil are viable for the replacement of cream in the production of ice cream.
Collapse
Affiliation(s)
- E Silva-Avellaneda
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | - K Bauer-Estrada
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | - R E Prieto-Correa
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | | |
Collapse
|
36
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
37
|
Optimization of wall material for phage encapsulation via freeze-drying and antimicrobial efficacy of microencapsulated phage against Salmonella. Journal of Food Science and Technology 2020; 58:1937-1946. [PMID: 33897030 DOI: 10.1007/s13197-020-04705-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
Microencapsulated phage as dry powder provides a protection to the phage particles from the harsh conditions while improving efficacy for controlling Salmonella. In this study, wall materials for phage encapsulation were optimized by altering the ratios of whey protein isolate (WPI) and trehalose prior to freeze-drying. Combination of WPI/trehalose at ratio of 3:1 (w/w) represented the optimal formulation with the highest encapsulation efficiency (91.9%). Fourier transform infrared spectroscopy analysis showed H-bonding in the mixture system and glass transition temperature presented at 63.43 °C. Encapsulated form showed the phage survivability of > 90% after 5 h of exposure to pH 1.5, 3.5, 5.5, 7.5 and 9.5. Phages in the non-encapsulated form could not survive at pH 1.5. In addition, microencapsulated phage showed high effectiveness in decreasing the numbers of S. Enteritidis and S. Typhimurium by approximately 1 log CFU/ml at 10 °C and 30 °C for both serovars. Phage powder newly developed in this study provides a convenient form for Salmonella control application and this form exhibits high stability over a wide range of temperatures and pH. This encapsulated phage thus can be used in various food applications without being interfered by physiological acidic or alkaline pH of foods or environments where phages are applied.
Collapse
|
38
|
Melchior S, Marino M, Innocente N, Calligaris S, Nicoli MC. Effect of different biopolymer-based structured systems on the survival of probiotic strains during storage and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3902-3909. [PMID: 32323334 DOI: 10.1002/jsfa.10432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study aimed to evaluate the protective effect of different biopolymer systems on the viability of two probiotics (Lactobacillus rhamnosus and Streptococcus thermophilus) during storage and in vitro digestion. Methylcellulose (MC), sodium alginate (SA), and whey protein (WP)-based structures were designed and characterized in terms of pH, rheological properties, and visual appearance. RESULTS The results highlighted that the WP-system ensured probiotic protection during both storage and in vitro digestion. This result was attributed to a combined effect of the physical barrier offered by the protein gel network and whey proteins as a nutrient for microbes. On the other hand, surprisingly, the viscous methylcellulose-based system was able to guarantee good microbial viability during storage. However, this was not confirmed during in vitro digestion. The opposite results were obtained for sodium alginate beads. CONCLUSION The results suggest that the capacity of a polymeric structure to protect probiotic bacteria is a combination of structural organization and system formulation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sofia Melchior
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Marilena Marino
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Nadia Innocente
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Sonia Calligaris
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Maria Cristina Nicoli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| |
Collapse
|
39
|
Abstract
Probiotics are viable microorganisms widely used for their claimed beneficial effects on
the host health. A wide number of researchers proved that the intake of probiotic bacteria has numerous
health benefits which created a big market of probiotic foods worldwide. The biggest challenge
in the development of these products is to maintain the viability of bacterial cells during the storage
of the product as well as throughout the gastrointestinal tract transit after consumption, so that the
claimed health benefits can be delivered to the consumer. Different approaches have been proposed
for increasing the resistance of these sensitive microorganisms, including the selection of resistant
strains, incorporation of micronutrients, and most recently the use of microencapsulation techniques.
Microencapsulation has resulted in enhancing the viability of these microorganisms which allows its
wide use in the food industry. In this review, the most common techniques used for microencapsulation
of probiotics will be presented, as well as the most usual microcapsule shell materials.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syrian Arab Republic
| |
Collapse
|
40
|
Liao N, Pang B, Jin H, Xu X, Yan L, Li H, Shao D, Shi J. Potential of lactic acid bacteria derived polysaccharides for the delivery and controlled release of oral probiotics. J Control Release 2020; 323:110-124. [DOI: 10.1016/j.jconrel.2020.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
|
41
|
Development of enteric polymer-based microspheres by spray-drying for colonic delivery of Lactobacillus rhamnosus GG. Int J Pharm 2020; 584:119414. [DOI: 10.1016/j.ijpharm.2020.119414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023]
|
42
|
Yasmin I, Saeed M, Pasha I, Zia MA. Development of Whey Protein Concentrate-Pectin-Alginate Based Delivery System to Improve Survival of B. longum BL-05 in Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2020; 11:413-426. [PMID: 29572754 DOI: 10.1007/s12602-018-9407-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifidobacterium longum BL-05 encapsulated beads were developed by using whey protein concentrate (WPC) and pectin (PE) as encapsulating material through extrusion/ionic gelation technique with the objective to improve survival of probiotics in harsh gastrointestinal conditions. B. longum BL-05 was grown in MRS (de man rogosa and sharpe) broth, centrifuged and mixed with polymeric gel solution. Bead formulations E4 (2.5% WPC + 1.5% PE) and E5 (2% PE) showed the highest value for encapsulation efficiency, size, and textural properties (hardness, cohesiveness, springiness) due to increasing PE concentration. The survivability and viability of free and encapsulated B. longum BL-05 was assessed through their resistance to simulated gastric juice (SGJ), tolerance to bile salt, release profile in simulated intestinal fluid (SIF), and storage stability during 28 days at 4 °C. The microencapsulation provided protection to B. longum BL-05 and encapsulated cells were exhibited significant (p < 0.05) resistance to SGJ and SIF as compared to free cells. Bead formulations E3 (5.0% WPC + 1.0% PE) and E4 (2.5% WPC + 1.5% PE) exhibited more resistance to SGJ (at pH 2 for 2 h) and at 2% bile salt solution but comparatively slow release as compared to other bead formulations. Free cells lost their viability when stored at 4 °C after 28 days but microencapsulated cells demonstrated promising results during storage and viable cell count was > 107 CFU/g. This study revealed that extrusion using WPC and PE as encapsulating material could be considered as one of the novel technologies for protection and effective delivery of probiotics.
Collapse
Affiliation(s)
- Iqra Yasmin
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan. .,Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588-6205, USA.
| | - Muhammad Saeed
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Anjum Zia
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
43
|
Aragón-Rojas S, Hernández-Álvarez AJ, Mainville I, Arcand Y, Quintanilla-Carvajal MX. Effect of the carrier material, drying technology and dissolution media on the viability of Lactobacillus fermentum K73 during simulated gastrointestinal transit. Food Funct 2020; 11:2339-2348. [PMID: 32118211 DOI: 10.1039/c9fo01091b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The goal of this study was to determine the effect of the carrier material, drying technology and dissolution media during the passage of L. fermentum K73 through a dynamic in vitro digestion system (IViDiS). The carrier materials were (i) culture medium with growing micro-organisms and (ii) culture medium with maltodextrin : sweet whey [0.6 : 0.4]. The carrier materials were dried by spray-drying and freeze-drying to obtain four types of powders. The dissolution media consisted of water and 1% fat milk. The powders were tested using an in vitro dynamic digestion system (IViDiS). The results showed that powders derived from culture medium had the highest protective effect on the viability of L. fermentum K73 in both dissolution media and that survival increased when the powders were tested in milk. The modified Gompertz model was used to model L. fermentum K73 behaviour during the digestion process. The model showed that cells entrapped in culture medium had the longest lag phase and the slowest inactivation rate when evaluated in milk.
Collapse
Affiliation(s)
- Stephania Aragón-Rojas
- Faculty of Engineering, University of La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. COATINGS 2020. [DOI: 10.3390/coatings10030197] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The consumption of probiotics has been associated with a wide range of health benefits for consumers. Products containing probiotics need to have effective delivery of the microorganisms for their consumption to translate into benefits to the consumer. In the last few years, the microencapsulation of probiotic microorganisms has gained interest as a method to improve the delivery of probiotics in the host as well as extending the shelf life of probiotic-containing products. The microencapsulation of probiotics presents several aspects to be considered, such as the type of probiotic microorganisms, the methods of encapsulation, and the coating materials. The aim of this review is to present an updated overview of the most recent and common coating materials used for the microencapsulation of probiotics, as well as the involved techniques and the results of research studies, providing a useful knowledge basis to identify challenges, opportunities, and future trends around coating materials involved in the probiotic microencapsulation.
Collapse
|
46
|
Durán E, Churio O, Arias JL, Neira-Carrillo A, Valenzuela C. Preparation and characterization of novel edible matrices based on alginate and whey for oral delivery of iron. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
de Araújo Etchepare M, Nunes GL, Nicoloso BR, Barin JS, Moraes Flores EM, de Oliveira Mello R, Ragagnin de Menezes C. Improvement of the viability of encapsulated probiotics using whey proteins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108601] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019; 274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
The post genomic era has brought breakthroughs in our understanding of the complex and fascinating symbiosis we have with our co-evolving microbiota, and its dramatic impact on our physiology, physical and mental health, mood, interpersonal communication, and more. This fast "proliferating" knowledge, particularly related to the gut microbiota, is leading to the development of numerous technologies aimed to promote our health via prudent modulation of our gut microbiota. This review embarks on a journey through the gastrointestinal tract from a biomaterial science and engineering perspective, and focusses on the various state-of-the-art approaches proposed in research institutes and those already used in various industries and clinics, for delivery to the gut microbiota, with emphasis on the latest developments published within the last 5 years. Current and possible future trends are discussed. It seems that future development will progress toward more personalized solutions, combining high throughput diagnostic omic methods, and precision interventions.
Collapse
Affiliation(s)
- Adi Seifert
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
49
|
Effect of Encapsulated Probiotic Starter Culture on Rheological and Structural Properties of Natural Hydrogel Carriers Affected by Fermentation and Gastrointestinal Conditions. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09598-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019; 11:E1591. [PMID: 31337060 PMCID: PMC6683253 DOI: 10.3390/nu11071591] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
Preserving the efficacy of probiotic bacteria exhibits paramount challenges that need to be addressed during the development of functional food products. Several factors have been claimed to be responsible for reducing the viability of probiotics including matrix acidity, level of oxygen in products, presence of other lactic acid bacteria, and sensitivity to metabolites produced by other competing bacteria. Several approaches are undertaken to improve and sustain microbial cell viability, like strain selection, immobilization technologies, synbiotics development etc. Among them, cell immobilization in various carriers, including composite carrier matrix systems has recently attracted interest targeting to protect probiotics from different types of environmental stress (e.g., pH and heat treatments). Likewise, to successfully deliver the probiotics in the large intestine, cells must survive food processing and storage, and withstand the stress conditions encountered in the upper gastrointestinal tract. Hence, the appropriate selection of probiotics and their effective delivery remains a technological challenge with special focus on sustaining the viability of the probiotic culture in the formulated product. Development of synbiotic combinations exhibits another approach of functional food to stimulate the growth of probiotics. The aim of the current review is to summarize the strategies and the novel techniques adopted to enhance the viability of probiotics.
Collapse
Affiliation(s)
- Antonia Terpou
- Food Biotechnology Group, Department of Chemistry, University of Patras, GR-26500 Patras, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Loulouda A Bosnea
- Hellenic Agricultural Organization DEMETER, Institute of Technology of Agricultural Products, Dairy Department, Katsikas, 45221 Ioannina, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|