1
|
Obadi M, Xu B. A review of the effects of physical processing techniques on the characteristics of legume starches and their application in low-glycemic index foods. Int J Biol Macromol 2024; 279:135124. [PMID: 39208910 DOI: 10.1016/j.ijbiomac.2024.135124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Physical processing techniques significantly influence the characteristics of legume starch, consequently affecting the potential applications of legume-based products. This review comprehensively examines the impact of various physical processing techniques on legume starch properties, including structure, granule morphology, gelatinization, pasting properties, solubility, and in vitro digestibility. Furthermore, it evaluates the implications of these processing methods for utilizing legumes in developing low-glycemic index (GI) foods. Notably, certain physical processing methods, such as heat-moisture treatment, ultrahigh-pressure processing, dry heat treatment, and gamma irradiation, under specific conditions, enhance the resistant starch or slowly digestible starch fractions in legume starches. This enhancement is particularly advantageous for producing low-GI foods. Conversely, techniques like annealing, extrusion, ultrasound, and germination increase starch digestibility, which is less favorable for low-GI food applications. This review also provides an up-to-date overview of the use of diverse preprocessed legume products in low-GI food production. The novelty of this review lies in its detailed comparative analysis of physical processing methods and their specific effects on legume starch digestibility, which has not been extensively covered in existing literature. The comprehensive insights presented herein will benefit the legume industry by informing effective strategies for converting legume starch into valuable low-GI products.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Farooq MA, Yu J. Recent Advances in Physical Processing Techniques to Enhance the Resistant Starch Content in Foods: A Review. Foods 2024; 13:2770. [PMID: 39272535 PMCID: PMC11395633 DOI: 10.3390/foods13172770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
The physical modification of starch to produce resistant starch (RS) is a viable strategy for the glycemic index (GI) lowering of foods and functionality improvement in starchy food products. RS cannot be digested in the small intestine but can be fermented in the colon to produce short-chain fatty acids rather than being broken down by human digestive enzymes into glucose. This provides major health advantages, like better blood sugar regulation, weight control, and a lower chance of chronic illnesses. This article provides a concise review of the recent developments in physical starch modification techniques, including annealing, extrusion, high-pressure processing, radiation, and heat-moisture treatment. Specifically, the focus of this paper is on the alteration of the crystalline structure of starch caused by the heat-moisture treatment and annealing and its impact on the resistance of starch to enzymatic hydrolysis, as well as the granular structure and molecular arrangement of starch caused by extrusion and high-pressure processing, and the depolymerization and crosslinking that results from radiation. The impacts of these alterations on starch's textural qualities, stability, and shelf life are also examined. This review demonstrates how physically modified resistant starch can be used as a flexible food ingredient with both functional and health benefits. These methods are economically and ecologically sustainable since they successfully raise the RS content and improve its functional characteristics without the need for chemical reagents. The thorough analysis of these methods and how they affect the structural characteristics and health advantages of RS emphasizes the material's potential as an essential component in the creation of functional foods that satisfy contemporary dietary and health requirements.
Collapse
Affiliation(s)
- Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan 64200, Pakistan
| | - Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Yi M, Tang X, Liang S, He R, Huang T, Lin Q, Zhang R. Effect of microwave alone and microwave-assisted modification on the physicochemical properties of starch and its application in food. Food Chem 2024; 446:138841. [PMID: 38428082 DOI: 10.1016/j.foodchem.2024.138841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Native starch has poor stability and usually requires modification to expand its industrial application range. Commonly used methods are physical, chemical, enzymatic and compound modification. Microwave radiation, as a kind of physical method, is promising due to its uniform energy radiation, greenness, safety, non-toxicity. It can meet the demand of consumers for safe food. Microwave-assisted modification with other methods can directly or indirectly affect the structure of starch granules to obtain modified starch with high degree of substitution and low viscosity, and the modification efficiency is greatly improved. This paper reviews the effect of microwave radiation on the physicochemical properties of starch, such as granule morphology, crystallization characteristics, and gelatinization characteristics, as well as the application of microwave radiation in starch modification and starch food processing. It provides theoretical references and suggestions for the research of microwave heating modified starch and the deep processing of starchy foods.
Collapse
Affiliation(s)
- Mingxia Yi
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Xuchong Tang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.
| | - Shaoxiong Liang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ren He
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Tingting Huang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Qing Lin
- Ba Ye Cao Health Industry Research Institute (Xiamen) Co., Ltd, Xiamen 361021, China
| | | |
Collapse
|
4
|
Hu WX, Hu XR, Jiang F, Zhu Y, Yang M, Dan Q, Yu X, Du SK. High-efficiency preparation of starch nanocrystals with small size and high crystallinity by ethanol-acid penetration and dry-heating pretreatment. Food Chem 2024; 439:138134. [PMID: 38064837 DOI: 10.1016/j.foodchem.2023.138134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Ethanol-acid penetration and drying-heating treatment was developed to shorten the preparation time and improve the quality of starch nanocrystals (SNCs). After treatment by optimized parameters, including 40 % ethanol solution, 10.6 mM chloric acid, and heating time of 1.5 h or 2.0 h, the starches exhibited weakened internal structure and relatively complete crystalline structure. Compared with the regular preparation of only acid hydrolysis, the regular final yield (8.5 % after 5 days) was reached in 48 h and 12 h of the starch heated at 1.5 h and 2.0 h, respectively. The micromorphology, molecular weight, and crystalline structure evaluation demonstrated that the collected nanoparticles were indeed SNCs with smaller size and higher relative crystallinity than regular SNCs. Further analysis found that the SNCs had better crystalline lamellae, higher thermal stability, and lower proportion of phosphorus and sulfur atoms than regular SNCs. This provided a potential method for the high-efficiency preparation of SNCs.
Collapse
Affiliation(s)
- Wen-Xuan Hu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xin-Rui Hu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Fan Jiang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Yulian Zhu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Min Yang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Qin Dan
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Xiuzhu Yu
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, PR China
| | - Shuang-Kui Du
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling 712100, PR China.
| |
Collapse
|
5
|
Bouchareb EM, Derbal K, Bedri R, Slimani K, Menas S, Lazreg H, Maaref F, Ouabdelkader S, Saheb A, Bouaita R, Bouchareb R, Dizge N. Improving Biohydrogen Production by Dark Fermentation of Milk Processing Wastewater by Physicochemical and Enzymatic Pretreatments. Appl Biochem Biotechnol 2024; 196:2741-2756. [PMID: 37682509 DOI: 10.1007/s12010-023-04619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 09/09/2023]
Abstract
Biohydrogen is considered an alternative energy reserve. Dark fermentation is one of the important green hydrogen production techniques that utilizes organic waste as raw material. It is a promising bioconversion, easy, not expensive, and cost-effective process. Milk processing wastewater (MPWW) is an organic effluent generated in large volumes on a daily basis and disposed directly into the environment. In this research, the study of biochemical hydrogen potential (BHP) test of MPWW was evaluated and used as substrate (S). A waste sludge was used as an inoculum (I) and source of bacteria. Both substrate and inoculum were analyzed and the study was based mainly on the ratio of volatile solids (VS) of inoculum and substrate subsequently, which was noted as I/S. Different substrate pretreatments were performed: ultrasonic, thermal, chemical, and enzymatic hydrolysis. The I/S ratio impact was investigated and evaluated the hydrogen production improvement. Modified Gompertz and modified Logistic kinetic models were employed for the kinetic modeling of cumulative hydrogen production values. Results show that I/S ratio of 1/4 gVS/gVS resulted from the best hydrogen production of 59.96 mL during 30 days of MPWW fermentation without pretreatment. It was also shown that all the adopted pretreatments enhanced hydrogen production, whereas ultrasonic pretreatment for 5 min increased the production by only 14.84%. Heat pretreatment was more efficient, where the hydrogen production increased from 60 to 162 mL (170% of improvement) using heat shock at 90 °C for 30 min. The impact of chemical pretreatment was different from a reagent to another. Pretreatment using calcium hydroxide resulted in the biggest hydrogen production of 165.3 mL (175.5%) compared to the other chemical pretreatments. However, the best hydrogen production was given by the biological pretreatment using enzymatic hydrolysis (Lactase) resulting in 254 mL of hydrogen production, which is equivalent to 323.62% of production improvement. Modified Gompertz and Logistic kinetic models fitted well with experimental data. Thus, the enzymatic hydrolysis of MPWW proved to be a promising technique for biohydrogen production enhancement.
Collapse
Affiliation(s)
- Esma Mahfouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, 25000, Constantine, Algeria
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
- Laboratory of Process Engineering for Sustainable Development and Health Products (LGPDDPS), National Polytechnic School of Constantine, 25000, Constantine, Algeria
| | - Kerroum Derbal
- Laboratory of Process Engineering for Sustainable Development and Health Products (LGPDDPS), National Polytechnic School of Constantine, 25000, Constantine, Algeria
- Department of Process Engineering, National High School of Polytechnic, Malek Bennabi, Constantine 3, Algeria
| | - Rayane Bedri
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Khaled Slimani
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Souha Menas
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Halima Lazreg
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Feriel Maaref
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Samir Ouabdelkader
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Aya Saheb
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Rokaya Bouaita
- Department of Process Engineering, National High School of Polytechnic, Malek Bennabi, Constantine 3, Algeria
| | - Raouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, 25000, Constantine, Algeria
- Laboratory of Process Engineering for Sustainable Development and Health Products (LGPDDPS), National Polytechnic School of Constantine, 25000, Constantine, Algeria
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
6
|
Wang H, Liu J, Zhang Y, Li S, Liu X, Zhang Y, Zhao X, Shen H, Xie F, Xu K, Zhang H. Insights into the hierarchical structure and physicochemical properties of starch isolated from fermented dough. Int J Biol Macromol 2024; 267:131315. [PMID: 38569985 DOI: 10.1016/j.ijbiomac.2024.131315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Understanding the hierarchical structure and physicochemical properties of starch isolated from fermented dough with different times (0-120 min) is valuable for improving the quality of fermented dough-based products. The results indicate that fermentation disrupted the starch granule surface and decreased the average particle size from 19.72 μm to 18.45 μm. Short-term fermentation (< 60 min) disrupted the crystalline, lamellar, short-range ordered molecular and helical structures of starch, while long-term fermentation (60-120 min) elevated the ordered degree of these structures. For example, relative crystallinity and double helix contents increased from 23.7 % to 26.8 % and 34.4 % to 37.2 %, respectively. During short-term fermentation, the structural amorphization facilitated interactions between starch molecular chains and water molecules, which increased the peak viscosity from 275.4 to 320.6 mPa·s and the swelling power from 7.99 to 8.52 g/g. In contrast, starches extracted from long-term fermented dough displayed the opposite results. Interestingly, the hardness and springiness of starch gels gradually decreased as fermentation time increased. These findings extend our understanding of the starch structure-property relationship during varied fermentation stages, potentially benefiting the production of better-fermented foods.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jiajia Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yusong Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Shuaihao Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Xingli Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yanyan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Xuewei Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ke Xu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
7
|
Fan JX, Guo XN, Zhu KX. Insight into the dynamic molecular mechanism underlying the endogenous polyphenols inhibiting the in vitro starch digestion of highland barley noodles. Food Chem 2024; 437:137870. [PMID: 37918153 DOI: 10.1016/j.foodchem.2023.137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Highland barley is a type of grain with slow-digesting characteristics. It is worth exploring the impact of non-starch components on starch digestion. In this study, four varieties of highland barley were used to investigate the impacts of endogenous polyphenols (EP) on the relationship between starch structure, physicochemical properties, and the time course digestibility of highland barley noodles. The results showed that EP removal decreased the proportion of long-chain amylopectin and disrupted the crystalline structure, while increasing the short-range ordered structure in the residue. Significant correlations indicated that these structural changes make starch more susceptible to thermal degradation and digestion, causing a 12.60%-52.00% increase in rapidly digestible starch (RDS) and a 12.70%-25.22% decrease in resistant starch (RS). These results revealed the internal factors that affect the slow digestion characteristics of highland barley noodles from the perspective of EP and provide important reference values for a slow digestion diet.
Collapse
Affiliation(s)
- Jia-Xuan Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Zhao Y, Tu D, Wang D, Xu J, Zhuang W, Wu F, Tian Y. Structural and property changes of starch derivatives under microwave field: A review. Int J Biol Macromol 2024; 256:128465. [PMID: 38029893 DOI: 10.1016/j.ijbiomac.2023.128465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Native starches are commonly modified for desired properties because of their limited applications. Among various modifications, microwave irradiation has been gaining strong interests and becoming a focal area to transform starch during the last few years. Such interests reside in microwave irradiation's high heating rates, lesser extent of loss in nutritional qualities, and so on when compared with other approaches. This review summaries the effects of microwave field on the structural (e.g. morphology characteristic, lamellae structure, crystallinity, and molecular structure) and physicochemical properties (e.g. pasting properties and gelatinization) of naturally existing starch derivatives. Different microwave-assisted chemical derivatizations can directly or indirectly affect starch structure from the macroscopic to the microscopic level, thereby resulting in various functionalities. Moreover, conventional starch modification processes can be optimized by applying microwave irradiation to obtain modified starch with high degree of substitution and low viscosity. The future research will help to better understand the structural changes of microwave-assisted starch chemical derivatization and thereby creating a wide range of functionalities.
Collapse
Affiliation(s)
- Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China
| | - Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danni Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxin Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China
| | - Fuhan Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Lab of Quality Science and Processing Technology in Special Starch, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Tian Y, Wang Y, Herbuger K, Petersen BL, Cui Y, Blennow A, Liu X, Zhong Y. High-pressure pasting performance and multilevel structures of short-term microwave-treated high-amylose maize starch. Carbohydr Polym 2023; 322:121366. [PMID: 37839836 DOI: 10.1016/j.carbpol.2023.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
Microwave treatment is an environmentally friendly method for modification of high-amylose maize starch (HAMS). Here, the effects of short-time (≤120 s) microwave treatment on the structure and pasting of two types of HAMSs, Gelose 50 (HAMSI) and Gelose 80 (HAMSII), with apparent amylose content (AAC) of 45 % and 58 %, respectively, was studied using a multiscale approach including X-ray scattering, surface structures, particle size distribution, molecular size distributions and high temperature/pressure Rapid Visco Analysis (RVA)-4800 pasting. As compared to starch with no amylose (waxy maize starch, WMS) and 25 % amylose content (normal maize starch, NMS), HAMSI underwent similar structural and pasting changes as WMS and NMS upon microwave treatment, and it might primarily be attributed to the amylopectin fraction that was affected by cleavage of the connector chains between double helices and backbone chains, which decreased the crystallinity and thickness of the crystalline lamellae. However, the multi-scale structure of HAMSII was almost unaffected by this treatment. The pasting properties of fully gelatinized HAMSI starch showed a decrease in RVA-4800 peak and final viscosities after microwave treatment. In contrast, for HAMSII starch, the microwave treatment led to an increase in these viscosities. The combined results highlight the influence of varying AAC on the effects of microwave-mediated modification, leading to diverse alterations in the structure and functionality of starches.
Collapse
Affiliation(s)
- Yu Tian
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Ying Wang
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Klaus Herbuger
- Institute of Biological Sciences, University of Rostock, Germany
| | - Bent L Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Ying Cui
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; Sustainable and Bio-inspired Materials, Max-Planck Institute of Colloids and Interfaces, Germany.
| |
Collapse
|
10
|
Li Y, Wang H, Wang L, Qiu J, Li Z, Wang L. Multi-scale structure and digestive property of bran starch in different particle size wheat bran. Food Chem 2023; 414:135744. [PMID: 36821917 DOI: 10.1016/j.foodchem.2023.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
In this study, the multi-scale (granular, molecular, crystalline, lamellar and helical) structure and digestive property of starch isolated from wheat bran of different particle size, including plant scale (1110 μm), tissue scale (235 μm, 83 μm) and cell scale (19 μm), were investigated and compared with wheat flour starch. Bran milling modified bran starch to varying degrees. Tissue-scale milling of bran reduced the granule size of bran starch, but did not significantly modify its molecular, lamellar, crystalline and helical structure. However, cell-scale milling caused significant destruction of crystalline regions and double helix, and increase in starch digestibility. In addition, compared to wheat flour starch, wheat bran starch had more resistant starch and lower digestibility, which were highly correlated with its thinner lamellas, more double helix proportion and compact fractal. This study highlights the effect of supramolecular structure on bran starch digestibility and contributes to the application of bran starch.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Haoran Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Lijuan Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Ju Qiu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Zaigui Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
11
|
Balakumaran M, Gokul Nath K, Giridharan B, Dhinesh K, Dharunbalaji AK, Malini B, Sunil CK. White finger millet starch: Hydrothermal and microwave modification and its characterisation. Int J Biol Macromol 2023; 242:124619. [PMID: 37141966 DOI: 10.1016/j.ijbiomac.2023.124619] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
White finger millet (WFM) starch was modified by hydrothermal (HS) and microwave (MS) methods. Modification methods had a significant change in the b* value observed in the HS sample, and it caused the higher chroma (∆C) value. The treatments have not significantly changed the chemical composition and water activity (aw) of native starch (NS) but reduced the pH value. The gel hydration properties of modified starch enhanced significantly, especially in the HS sample. The least NS gelation concentration (LGC) of 13.63 % increased to 17.74 % in HS and 16.41 % in MS. The pasting temperature of the NS got reduced during the modification process and altered the setback viscosity. The starch samples exhibit the shear thinning behavior and reduce starch molecules' consistency index (K). FTIR results exhibit that the modification process highly altered the short-range order of starch molecules more than the double helix structure. A significant reduction in relative crystallinity was observed in the XRD diffractogram, and the DSC thermogram depicts the significant change in the hydrogen bonding of starch granules. It can be inferred that the HS and MS modification method significantly alters the properties of starch, which can increase the food applications of WFM starch.
Collapse
Affiliation(s)
- M Balakumaran
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - K Gokul Nath
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - B Giridharan
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - K Dhinesh
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - A K Dharunbalaji
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - B Malini
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India
| | - C K Sunil
- Dept. of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India; Centre of Excellence for Grain Sciences, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur (NIFTEM-T), MoFPI, GOI, Thanjavur 613005, India.
| |
Collapse
|
12
|
Lu X, Zhan J, Ma R, Tian Y. Structure, thermal stability, and in vitro digestibility of rice starch-protein hydrolysate complexes prepared using different hydrothermal treatments. Int J Biol Macromol 2023; 230:123130. [PMID: 36610573 DOI: 10.1016/j.ijbiomac.2022.123130] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
In this study, rice starch-protein hydrolysate (WPH-S) complexes with high resistant starch (RS) content were prepared by heat-moisture treatment (HMT) and annealing (ANN). The effects of different hydrothermal treatments on the structure and thermal stability of the WPH-S complexes and their relationship with starch digestibility were further discussed. The results showed that RS contents of ANN-WPH-S complexes (35.09-40.26 g/100 g) were higher than that of HMT-WPH-S complexes (24.15-38.74 g/100 g). Under hydrothermal treatments, WPH decreased the hydrolysis kinetic constant (k) of starch form 4.07 × 10-2-4.63 × 10-2 min-1 to 3.29 × 10-2-3.67 × 10-2 min-1. HMT and ANN promoted hydrogen bonding between WPH and starch molecules, thus increasing the molecular size of starch. In addition, the shear stability of WPH-S mixture was improved with the hysteresis loop area decreased after HMT/ANN treatments, resulting in a more stable structure. Most importantly, the hydrothermal treatment made the scatterers of WPH-S complexes denser and the surface smoother. Especially after ANN treatment, the WPH60-S complex formed a denser aggregate structure, which hindered the in vitro digestion of starch to a certain extent. These results enrich our understanding of the regulation of starch digestion by protein hydrolysates under different hydrothermal treatments and have guiding significance for the development of foods with a low glycemic index.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
13
|
Mao Y, Shi J, Cai L, Hwang W, Shi YC. Microstructures of Starch Granules with Different Amylose Contents and Allomorphs as Revealed by Scattering Techniques. Biomacromolecules 2023; 24:1980-1993. [PMID: 36716424 DOI: 10.1021/acs.biomac.2c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, as-is (ca. 12% moisture by mass) and hydrated (50% water by mass) granules of waxy potato (WP), waxy wheat (WW), waxy maize, normal maize, and high-amylose maize (HAM) starches were investigated by using small-angle neutron and X-ray scattering (SANS and SAXS), wide-angle X-ray scattering, and ultra-small-angle neutron scattering. The SANS and SAXS data were fitted using the two-phase stacking model of alternating crystalline and amorphous layers. The partial crystalline lamellar structures inside the growth rings of granules were analyzed based on the inter-lamellar distances, thicknesses of the crystalline lamellae and amorphous layers, thickness polydispersities, and water content in each type of layer. Despite having a longer average chain length of amylopectin, the WP and HAM starches, which had B-type allomorph, had a shorter inter-lamellar distance than the other three starches with A-type allomorph. The WP starch had the most uniform crystalline lamellar thickness. After hydration, the amorphous layers were expanded, resulting in an increase of inter-layer distance. The low-angle intensity upturn in SANS and SAXS was attributed to scattering from interfaces/surfaces of larger structures, such as growth rings and macroscopic granule surfaces. Data analysis methods based on model fitting and 1D correlation function were compared. The study emphasized─owing to inherent packing disorder inside granules─that a comprehensive analysis of different parameters was essential in correlating the microstructures with starch properties.
Collapse
Affiliation(s)
- Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Jialiang Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Liming Cai
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Wonseok Hwang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| |
Collapse
|
14
|
Zhou D, Yang G, Tian Y, Kang J, Wang S. Different effects of radio frequency and heat block treatments on multi-scale structure and pasting properties of maize, potato, and pea starches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Chi C, Xu K, Wang H, Zhao L, Zhang Y, Chen B, Wang M. Deciphering multi-scale structures and pasting properties of wheat starch in frozen dough following different freezing rates. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Shen D, Zhang M, Mujumdar AS, Li J. Advances and application of efficient physical fields in extrusion based 3D food printing technology. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
In-vitro digestibility of rice starch and factors regulating its digestion process: A review. Carbohydr Polym 2022; 291:119600. [DOI: 10.1016/j.carbpol.2022.119600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
|
18
|
Li G, Hemar Y, Zhu F. Supramolecular structure of quinoa starch affected by nonenyl succinic anhydride (NSA) substitution. Int J Biol Macromol 2022; 218:181-189. [PMID: 35809675 DOI: 10.1016/j.ijbiomac.2022.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022]
Abstract
Quinoa starch granular structure as affected by nonenyl succinic anhydride (NSA) substitution was investigated by multiple approaches, including scattering, spectroscopic, and microscopic techniques. The modification had little impact on the morphology of starch granules. The NSA substitution was found mainly in the amorphous lamellae and amorphous growth rings. The NSA modification increased the thickness of the amorphous lamellae. The homogeneity of the ordered structure in the granules was improved, probably because the NSA modification reduced the amount of defects in the semi-crystalline growth ring. Compared to other chemical modifications such as acylation, succinylation was more effective in modifying the starch lamellar structure. A possible reaction pattern of NSA modification on quinoa starch is proposed, in which the NSA modification may follow the sequence of amorphous growth rings, the amorphous matrices among blocklets, amorphous and crystalline lamellae in semi-crystalline growth rings. This study provides new insights on the structural changes of starch granules induced by succinylation on the supramolecular level.
Collapse
Affiliation(s)
- Guantian Li
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yacine Hemar
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong 518060, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
19
|
The formation of starch-lipid complexes by microwave heating. Food Chem 2022; 382:132319. [DOI: 10.1016/j.foodchem.2022.132319] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 01/07/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022]
|
20
|
Li S, Li Q, Zhu F, Song H, Wang C, Guan X. Effect of vacuum combined ultrasound treatment on the fine structure and physiochemical properties of rice starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Effects of Hydrothermal and Microwave Dual Treatment and Zein on the Enzymolysis of High Amylose Corn Starch. Gels 2022; 8:gels8010029. [PMID: 35049564 PMCID: PMC8775258 DOI: 10.3390/gels8010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Resistant starch (RS) type 2-high-amylose corn starch (HACS) was subjected to simultaneous hydrothermal (25% moisture content, 90 °C for 12 h) and microwave (35% moisture content, 40 W/g microwaving for 4 min) treatment and zein (at a zein to treated starch ratio of 1:5, 50 °C for 1 h) to improve its resistance to enzymolysis. Scanning electron microscopy (SEM) highlighted the aggregation and adhesion of the composite. The average particle size of the composite (27.65 μm) was exceeded that of both the HACS (12.52 μm) and the hydrothermal and microwave treated HACS (hydro-micro-HACS) (12.68 μm). The X-ray diffraction results revealed that the hydro-micro-HACS and composite remained B-type, while their crystallinity significantly decreased to 16.98% and 12.11%, respectively. The viscosity of the hydro-micro-HACS and composite at 50 °C was 25.41% and 35.36% lower than that of HACS. The differential scanning calorimetry (DSC) results demonstrated that the composite displayed a new endothermic peak at 95.79 °C, while the weight loss rate and decomposition temperature were 7.61% and 2.39% lower than HACS, respectively. The RS content in HACS, the hydro-micro-HACS, and composite was 47.12%, 57.28%, and 62.74%, respectively. In conclusion, hydrothermal and microwave treatment combined with zein provide an efficient physical strategy to enhance the RS type 2-HACS.
Collapse
|
22
|
Wang C, McClements DJ, Jiao A, Wang J, Jin Z, Qiu C. Resistant starch and its nanoparticles: Recent advances in their green synthesis and application as functional food ingredients and bioactive delivery systems. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Mohamed IO. Effects of processing and additives on starch physicochemical and digestibility properties. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Huong NTM, Hoa PN, Van Hung P. Effects of microwave treatments and retrogradation on molecular crystalline structure and in vitro digestibility of debranched mung-bean starches. Int J Biol Macromol 2021; 190:904-910. [PMID: 34534585 DOI: 10.1016/j.ijbiomac.2021.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
The objective of this study was to investigate morphology, molecular crystalline structure, and digestibility of debranched mung bean starches with or without microwave treatment and retrogradation at different temperature. The mung bean starch was firstly debranched with pullulanase, and then the debranched starch containing 20% moisture content was treated by microwave irradiation for 3 min with or without further retrograded at +25, +4, or -18 °C for 24 h. All treated starches exhibited the B + V-type crystalline polymorph as determined by the XRD and the 13CNMR. The FT-IR results showed that the debranched starches had lower degree of order but higher degree of double helix than those of the native starch. The microwave treatment or further recrystallization of the debranched starch for more 24 h significantly improved crystalline structure of starch granules with higher degree of relative crystallinity, degree of order, and degree of double helices. The resistant starch content of the treated starch was in a range of 39.7-52.8%, significantly higher than that of the native starch (15.6%). As a result, the microwave-assisted debranched starch with further crystallization for 24 h was found to have highly ordered structure of granules, which highly resisted to the enzyme digestion.
Collapse
Affiliation(s)
- Nguyen Thi Mai Huong
- Department of Food Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Institute of Biotechnology and Food Technology, Industrial University of HoChiMinh City, 12 Nguyen Van Bao, Ward 4, Go Vap District, HoChiMinh City, Viet Nam; Vietnam National University in Ho Chi Minh City, Viet Nam
| | - Phan Ngoc Hoa
- Department of Food Technology, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University in Ho Chi Minh City, Viet Nam
| | - Pham Van Hung
- Department of Food Technology, International University, Quarter 6, LinhTrung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam; Vietnam National University in Ho Chi Minh City, Viet Nam.
| |
Collapse
|
25
|
Chen X, Liu Y, Xu Z, Zhang C, Liu X, Sui Z, Corke H. Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Lu H, Tian Y. Nanostarch: Preparation, Modification, and Application in Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6929-6942. [PMID: 34142546 DOI: 10.1021/acs.jafc.1c01244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanostarch, as a food-grade Pickering emulsion stabilizer, has attracted wide attention owing to its biodegradability, nontoxicity, small size, and large specific surface area. In this review, the preparation, modification, and application of Pickering emulsions incorporating nanostarch are described. At present, methods for nanostarch preparation mainly include acid hydrolysis, acid hydrolysis combined with other treatments, nanoprecipitation, ultrasonication, ball milling, and cross-linking. Nanostarch is a promising Pickering emulsion stabilizer, and its emulsifying ability of nanostarch is significantly improved by hydrophobic modification. The hydrophobicity, charge, size, and content of nanostarch affect the emulsion stability. Future developments in this area of research include the efficient and environmentally friendly preparation of nanostarch as well as the control of its hydrophobicity via modification. Future studies should focus on the digestibility and storage stability of Pickering emulsions stabilized by nanostarch under different conditions.
Collapse
Affiliation(s)
- Hao Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
27
|
Tang J, Zhang Q, Zhou J, Fang H, Yang H, Wang F. Investigation of pesticide residue removal effect of gelatinized starch using surface-enhanced Raman scattering mapping. Food Chem 2021; 365:130448. [PMID: 34218109 DOI: 10.1016/j.foodchem.2021.130448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022]
Abstract
This study investigated the effectiveness of gelatinized starch (GS) in the removal of surface and internalized pesticide residues from basil leaves. Surface activity of GS was confirmed by surface tension and fluorescence study. Surface-enhanced Raman scattering (SERS) mapping was applied for in situ and real-time tracking of pesticides over time. Results showed that gelatinized starch has better and safer pesticide removing effect compared to commercial surfactants. Simulation study showed that starch fragment can adjust its three-dimensional conformation according to the size of the guest with ~ four repeating α-1,4-d-glucopyranose residues interacting efficiently with pesticides. However, washing by small molecular weight surfactants will lead to a "secondary contamination" due to its amphilphilic nature and small molecular size, which can escort pesticide deeper into the leaf. Due to the wide availability, easy fabrication, efficient rinsing effect and bio-safety nature, GS should be highly recommended in family practice.
Collapse
Affiliation(s)
- Jie Tang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China
| | - Qiong Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China
| | - Jie Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China
| | - Huichao Fang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China.
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors and Department of Chemistry, Shanghai Normal University, Shanghai 200234, PR China.
| |
Collapse
|
28
|
Structural variations of rice starch affected by constant power microwave treatment. Food Chem 2021; 359:129887. [PMID: 33964655 DOI: 10.1016/j.foodchem.2021.129887] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Although lots of work has reported the structural variations of starch in microwave treatment, most of them are detected in the environment with non-constant microwave power and inhomogeneous heating, and the results are always in poor repeatability. In this study, the equipment with constant microwave power (CPM) and homogeneous heating was designed. And the phase transition of multi-scale structure of rice starch (30% moisture content) caused by CPM treatments with two heating modes, namely rapid microwave heating (RWH) and slow microwave heating (SWH) were investigated systematically. SEM results showed that the surface of starch granules after CPM treatment were rough and broken, and the damage caused by RWH was more distinct than that by SWH. SAXS, XRD and 13C NMR results revealed that the CPM treatment decreased the degree of crystallinity and content of double helices of starch. Moreover, the influence of RWH on the variation of starch granules was greater than that of SWH, which can be attributed to the intensive friction and collision as well as the rapid evaporation of water in RWH treatment. Specifically, it exhibited greater destruction on the linkage of starch and the internal crystalline region in RWH treatment than SWH treatment, thereby resulting in more obvious damages on the lamellar and morphological structure of rice starch. In conclusion, CPM equipment has improved the problems of uneven heating and poor experimental repeatability. After CPM treated starch, the molecular structure of starch was destroyed, which provides a useful method to modify properties of starch.
Collapse
|
29
|
Chi C, Li X, Huang S, Chen L, Zhang Y, Li L, Miao S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
He H, Bian H, Xie F, Chen L. Different effects of pectin and κ-carrageenan on the multiscale structures and in vitro digestibility of extruded rice starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106216] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Zhang C, Yang Y, Chen Z, Chen F, Pan L, Lu Y, Li Q, Fan X, Sun Z, Liu Q. Characteristics of Grain Physicochemical Properties and the Starch Structure in Rice Carrying a Mutated ALK/SSIIa Gene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13950-13959. [PMID: 33140950 DOI: 10.1021/acs.jafc.0c01471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The gelatinization temperature (GT) of endosperm starch influences rice eating and the cooking quality (ECQ). ALK encoding soluble starch synthase IIa (SSIIa) is the major gene determining grain GT in rice. Herein, we identified a spontaneous ALK mutant named ALKd, which resulted from a G/T single-nucleotide polymorphism (SNP) in exon 1 of the ALKc allele from the high-GT indica rice cultivar. Compared with grains from the ALKc near-isogenic line (NIL), NIL(ALKd) grains exhibited a high GT (2.3 °C) and improved retrogradation properties. The NIL(ALKd) grain starch contained an increased proportion of amylopectin intermediate chains (DP 13-24) at the expense of short chains (DP < 12), resulting in enhancements in both the crystallinity and the lamellar peak intensity compared with low-GT rice grains. Moreover, both NIL(ALKd) and NIL(ALKc) grains also featured a significantly lower apparent amylose content (AAC), harder gel consistency (GC), higher pasting curve, and poorer taste values in comparison to Nip(ALKa) grains. Taken together, this work provides novel insights underlying the allelic variation of the ALK gene in rice.
Collapse
Affiliation(s)
- Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yong Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Zhuanzhuan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Fei Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lixu Pan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yan Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Zhizhong Sun
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
32
|
Insights into the multi-scale structure and in vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment. Food Res Int 2020; 137:109612. [DOI: 10.1016/j.foodres.2020.109612] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
|
33
|
Liu Z, Wang C, Liao X, Shen Q. Measurement and comparison of multi-scale structure in heat and pressure treated corn starch granule under the same degree of gelatinization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Sun Y, Zhang M, Chen H. LF-NMR intelligent evaluation of rheology and printability for 3D printing of cookie dough pretreated by microwave. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109752] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Tao Y, Yan B, Fan D, Zhang N, Ma S, Wang L, Wu Y, Wang M, Zhao J, Zhang H. Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
|
37
|
Han Z, Shi R, Sun DW. Effects of novel physical processing techniques on the multi-structures of starch. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Zheng M, Xiao Y, Yang S, Liu H, Liu M, Yaqoob S, Xu X, Liu J. Effects of heat-moisture, autoclaving, and microwave treatments on physicochemical properties of proso millet starch. Food Sci Nutr 2020; 8:735-743. [PMID: 32148783 PMCID: PMC7020272 DOI: 10.1002/fsn3.1295] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/09/2022] Open
Abstract
Proso millet starch was modified by heat-moisture treatment (HMT), autoclaving treatment (AT), and microwave treatment (MT). The effects of these treatments on the starch physicochemical, structural, and molecular properties were investigated. The amylose and resistant starch contents were increased by AT and MT, but only slightly by HMT. HMT and AT significantly increased the water-holding capacity, to 172.66% and 191.63%, respectively. X-ray diffractometry showed that the relative crystallinity of the HMT sample decreased by 20.88%, and the crystalline peaks disappeared from the AT and MT sample patterns. The thermal treatments decreased the proso millet starch molecular weight to 1.769 × 106, 7.886 × 105, and 3.411 × 104 g/mol, respectively. The thermal enthalpy decreased significantly in HMT. Modification significantly changed the pasting profiles of the native proso millet starch, and the peak viscosity, setback, and breakdown values decreased. These results clarify the mechanism of starch changes caused by thermal treatment.
Collapse
Affiliation(s)
- Ming‐zhu Zheng
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunJilinChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
| | - Yu Xiao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunJilinChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
| | - Shuang Yang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunJilinChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
| | - Hui‐min Liu
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
- College of Life ScienceJilin Agricultural UniversityChangchunJilinChina
| | - Mei‐hong Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunJilinChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
| | - Sanabil Yaqoob
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunJilinChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
| | - Xiu‐ying Xu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunJilinChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
| | - Jing‐sheng Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunJilinChina
- National Engineering Laboratory for Wheat and Corn Deep ProcessingChangchunJilinChina
| |
Collapse
|
39
|
Lin L, Chi C, Wu C. How to calculate starch lamellar features with improved accuracy by small angle X-ray scattering. Int J Biol Macromol 2019; 141:622-625. [DOI: 10.1016/j.ijbiomac.2019.09.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
|
40
|
Chi C, Li X, Lu P, Miao S, Zhang Y, Chen L. Dry heating and annealing treatment synergistically modulate starch structure and digestibility. Int J Biol Macromol 2019; 137:554-561. [DOI: 10.1016/j.ijbiomac.2019.06.137] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
|
41
|
Zhong Y, Liang W, Pu H, Blennow A, Liu X, Guo D. Short-time microwave treatment affects the multi-scale structure and digestive properties of high-amylose maize starch. Int J Biol Macromol 2019; 137:870-877. [DOI: 10.1016/j.ijbiomac.2019.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
42
|
Jiao X, Cao H, Fan D, Huang J, Zhao J, Yan B, Zhou W, Zhang W, Ye W, Zhang H. Effects of fish oil incorporation on the gelling properties of silver carp surimi gel subjected to microwave heating combined with conduction heating treatment. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Zhou D, Ma Z, Yin X, Hu X, Boye JI. Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Rockembach CT, Ferreira CD, Ramos AH, Luz SR, Vanier NL, de Oliveira M. Microwave Parboiling: Reduction in Process Time, Browning of Rice and Residual Phosphorus Content in the Waste Water. J Food Sci 2019; 84:2222-2227. [PMID: 31339565 DOI: 10.1111/1750-3841.14738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
The conventional prolonged parboiling process results in high operation cost and grain darkening, which may limit consumption. Moreover, residue generation by rice industries is another challenge. The objective of this study was to evaluate the use of microwave irradiation during soaking and gelatinization stages of parboiling rice. Processing time, colorimetric profile, broken and nongelatinized grains, sucrose and glucose content, free 5-hydroxymethyl-2-furfural, and residual phosphorus were evaluated. As the soaking and gelatinization times during microwave treatments increased, the colorimetric parameters increased; however, the values were lower than those with the conventional process. Regardless of soaking time, a decrease in broken and nongelatinized grains was obtained by using the lowest steaming time (5 min). Additionally, lower residual phosphorus content was found in soaking water (10 and 20 min) when using microwave irradiation. Under favorable conditions, a reduction in the levels of broken and nongelatinized grains, residual phosphorus, and color changes was observed, indicating that microwave irradiation may be more beneficial than conventional parboiling. PRACTICAL APPLICATION: Parboiling requires a high volume of water and soaking time, which leads to high costs, underutilization of infrastructures, and high residue in the water after processing. The rapid parboiling process involves the use of microwaves during the soaking and gelatinization stages. The main advantages of the microwave parboiling process include reduced processing time, ranging from 83% to 95%, higher gelatinization, greater yield, reduced darkening, and reduced residual phosphorus in the effluents by 60%. This report can aid industries in streamlining their processes, thereby providing a high-quality, lower cost, and environmentally safe product.
Collapse
Affiliation(s)
| | | | - Adriano Hirsch Ramos
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, 96010-900, Pelotas, RS, Brazil
| | - Suzane Rickes Luz
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, 96010-900, Pelotas, RS, Brazil
| | - Nathan Levien Vanier
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, 96010-900, Pelotas, RS, Brazil
| | - Maurício de Oliveira
- Dept. of Agroindustrial Science and Technology, Federal Univ. of Pelotas, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
45
|
Li G, Zhu F, Mo G, Hemar Y. Supramolecular structure of high hydrostatic pressure treated quinoa and maize starches. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Panda BK, Shrivastava SL. Microwave assisted rapid hydration in starch matrix of paddy (Oryza sativa L.): Process development, characterization, and comparison with conventional practice. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Chi C, Li X, Zhang Y, Chen L, Xie F, Li L, Bai G. Modulating the in vitro digestibility and predicted glycemic index of rice starch gels by complexation with gallic acid. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
|
49
|
Morphological and physicochemical properties of rice grains submitted to rapid parboiling by microwave irradiation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Yan B, Shen H, Fan D, Tao Y, Wu Y, Wang M, Zhao J, Zhang H. Microwave treatment regulates the free volume of rice starch. Sci Rep 2019; 9:3876. [PMID: 30846823 PMCID: PMC6405908 DOI: 10.1038/s41598-019-40598-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/19/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of this work was to investigate the role of microwave parameters and moisture content on the free volume (FV) changes of rice starch by positron annihilation lifetime spectroscopy analysis (PALS) and to explore the potential relationship between the changes of FV and physicochemical properties of rice starch. Microwave heating and water molecules lead to the increasing of FV of starch. However, this result is largely influenced by the plasticization of water molecule. The anti-plasticization caused by water evaporation resulting in a decrease in the size and concentration of FV during microwave heating. Significant decrease (p < 0.05) in the thickness of amorphous region of microwave-heated rice starch was found by small angle X-ray scattering (SAXS), and the glass transition temperature (Tg) and gelatinization temperature significantly increase (p < 0.05) after microwave heating. According to correlation analysis, the power intensity and heating time were correlated negatively with the lifetime of o-Ps. In addition, the changes of amorphous region and Tg of rice starch were strongly related to FV changes. These results provided a theoretical basis for further research on the directional regulation of FV and improvement the quality of starch-based food by using microwave treatment.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huijie Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, Hong Kong, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, 214122, China.
| | - Yuan Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yejun Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, Hong Kong, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Wuxi, 214122, China
| |
Collapse
|