1
|
Mahmood N, Muhoza B, Huang Y, Munir Z, Zhang Y, Zhang S, Li Y. Effects of emerging food pretreatment and drying techniques on protein structures, functional and nutritional properties: An updated review. Crit Rev Food Sci Nutr 2024; 64:9365-9381. [PMID: 37377348 DOI: 10.1080/10408398.2023.2212302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Protein is one of the most important components of food which significantly contributes to the structure, functionality, and sensory properties which may affect consumer acceptability of processed products. Conventional thermal processing affects protein structure and induce undesirable degradation of food quality. This review provides an overview of emerging pretreatment and drying technologies (plasma treatment, ultrasound treatment, electrohydrodynamic, radio frequency, microwave, and superheated steam drying) in food processing by assessing protein structural changes to enhance functional and nutritional properties. In addition, mechanisms and principles of these modern technologies are described while challenges and opportunities for the development of these techniques in the drying process are also critically analyzed. Plasma discharges can lead to oxidative reactions and cross-linking of proteins that can change the structure of proteins. Microwave heating contributes to the occurrence of isopeptide or disulfide bonds which promotes α-helix and β-turn formation. These emerging technologies can be adopted to improve protein surface by exposing more hydrophobic groups which restrict water interaction. It is expected that these innovative processing technologies should become a preferred choice in the food industry for better food quality. Moreover, there are some limitations for industrial scale application of these emerging technologies that need to be addressed.
Collapse
Affiliation(s)
- Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Zeeshan Munir
- Department of Agricultural Engineering, University of Kassel, Witzenhausen, Germany
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Pereira RN, Rodrigues R, Avelar Z, Leite AC, Leal R, Pereira RS, Vicente A. Electrical Fields in the Processing of Protein-Based Foods. Foods 2024; 13:577. [PMID: 38397554 PMCID: PMC10887823 DOI: 10.3390/foods13040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Electric field-based technologies offer interesting perspectives which include controlled heat dissipation (via the ohmic heating effect) and the influence of electrical variables (e.g., electroporation). These factors collectively provide an opportunity to modify the functional and technological properties of numerous food proteins, including ones from emergent plant- and microbial-based sources. Currently, numerous scientific studies are underway, contributing to the emerging body of knowledge about the effects on protein properties. In this review, "Electric Field Processing" acknowledges the broader range of technologies that fall under the umbrella of using the direct passage of electrical current in food material, giving particular focus to the ones that are industrially implemented. The structural and biological effects of electric field processing (thermal and non-thermal) on protein fractions from various sources will be addressed. For a more comprehensive contextualization of the significance of these effects, both conventional and alternative protein sources, along with their respective ingredients, will be introduced initially.
Collapse
Affiliation(s)
- Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Zita Avelar
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ana Catarina Leite
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Rita Leal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - Ricardo S. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
| | - António Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (R.R.); (Z.A.); (A.C.L.); (R.L.); (R.S.P.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Joeres E, Drusch S, Töpfl S, Juadjur A, Psathaki OE, Heinz V, Terjung N. Formation of amyloid fibrils from ovalbumin under Ohmic heating. Heliyon 2023; 9:e22061. [PMID: 38027889 PMCID: PMC10658388 DOI: 10.1016/j.heliyon.2023.e22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Ohmic heating (OH) is an alternative sustainable heating technology that has demonstrated its potential to modify protein structures and aggregates. Furthermore, certain protein aggregates, namely amyloid fibrils (AF), are associated with an enhanced protein functionality, such as gelation. This study evaluates how Ohmic heating (OH) influences the formation of AF structures from ovalbumin source under two electric field strength levels, 8.5 to 10.5 and 24.0-31.0 V/cm, respectively. Hence, AF aggregate formation was assessed over holding times ranging from 30 to 1200 sunder various environmental conditions (3.45 and 67.95 mM NaCl, 80, 85 and 90 °C, pH = 7). AF were formed under all conditions. SDS-PAGE revealed that OH had a higher tendency to preserve native ovalbumin molecules. Furthermore, Congo Red and Thioflavin T stainings indicated that OH reduces the amount of AF structures. This finding was supported by FTIR measurements, which showed OH samples to contain lower amounts of beta-sheets. Field flow fractioning revealed smaller-sized aggregates or aggregate clusters occurred after OH treatment. In contrast, prolonged holding time or higher treatment temperatures increased ThT fluorescence, beta-sheet structures and aggregate as well as cluster sizes. Ionic strength was found to dominate the effects of electric field strength under different environmental conditions.
Collapse
Affiliation(s)
- Eike Joeres
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
- Technical University of Berlin, Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science, Königin-Luise-Str. 22, 14195, Berlin, Germany
| | - Stephan Drusch
- Technical University of Berlin, Institute of Food Technology and Food Chemistry, Department of Food Technology and Food Material Science, Königin-Luise-Str. 22, 14195, Berlin, Germany
| | - Stefan Töpfl
- University of Applied Science Osnabrück, Department of Agricultural Science and Landscape Architecture, Oldenburger Landstr. 62, 49090, Osnabrück, Germany
| | - Andreas Juadjur
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
| | | | - Volker Heinz
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
| | - Nino Terjung
- DIL – German Institute of Food Technologies (DIL e.V.), Professor-von-Klitzing-Str. 7, 49160, Quakenbrück, Germany
| |
Collapse
|
4
|
Shi R, Mu Z, Hu J, Jiang Z, Hou J. Non-thermal techniques as an approach to modify the structure of milk proteins and improve their functionalities: a review of novel preparation. Crit Rev Food Sci Nutr 2023:1-29. [PMID: 37811663 DOI: 10.1080/10408398.2023.2263571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Milk proteins (MPs) have been widely used in the food industry due to their excellent functionalities. However, MPs are thermal-unstable substances and their functional properties are easily affected by heat treatment. Emerging non-thermal approaches (i.e., high-pressure homogenization (HPH), ultrasound (US), pulsed electric field (PEF)) have been increasingly popular. A detailed understanding of these approaches' impacts on the structure and functionalities of MPs can provide theoretical guidance for further development to accelerate their industrialization. SCOPE AND APPROACH This review assesses the mechanisms of HPH, US and PEF technologies on the structure and functionalities of MPs from molecular, mesoscopic and macroscopic levels, elucidates the modifications of MPs by these theologies combined with other methods, and further discusses their existing issues and the development in the food filed. KEY FINDINGS AND CONCLUSIONS The structure of MPs changed after HPH, US and PEF treatment, affecting their functionalities. The changes in these properties of MPs are related to treated-parameters of used-technologies, the concentration of MPs, as well as molecular properties. Additionally, these technologies combined with other methods could obtain some outstanding functional properties for MPs. If properly managed, these theologies can be tailored for manufacturing superior functional MPs for various processing fields.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng, PR China
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Zhishen Mu
- National Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Huhhot, PR China
| | - Jialun Hu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
5
|
Lima Nascimento LG, Odelli D, Fernandes de Carvalho A, Martins E, Delaplace G, Peres de Sá Peixoto Júnior P, Nogueira Silva NF, Casanova F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023; 12:2385. [PMID: 37372596 DOI: 10.3390/foods12122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the context of a diet transition from animal protein to plant protein, both for sustainable and healthy scopes, innovative plant-based foods are being developing. A combination with milk proteins has been proposed as a strategy to overcome the scarce functional and sensorial properties of plant proteins. Based on this mixture were designed several colloidal systems such as suspensions, gels, emulsions, and foams which can be found in many food products. This review aims to give profound scientific insights on the challenges and opportunities of developing such binary systems which could soon open a new market category in the food industry. The recent trends in the formulation of each colloidal system, as well as their limits and advantages are here considered. Lastly, new approaches to improve the coexistence of both milk and plant proteins and how they affect the sensorial profile of food products are discussed.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | | | | | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Ohmic vs. conventional heating: Influence of moderate electric fields on properties of potato protein isolate gels. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Tomato Processing By-Products Valorisation through Ohmic Heating Approach. Foods 2023; 12:foods12040818. [PMID: 36832895 PMCID: PMC9957376 DOI: 10.3390/foods12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Tomato by-products from processing industries have a higher potential to be reused as a source of bioactive compounds. Reliable national data on tomato by-products and physicochemical characterisation that will inform and find effective planning on tomato waste management in Portugal is absent. To help obtain this knowledge, selected Portugal companies were recruited to obtain representative samples of by-products generation, and physicochemical composition was evaluated. Furthermore, an environmental-friendly method (the ohmic heating (OH) method, which allows the recovery of bioactive compounds in absence of hazardous reagents) was also used and compared with conventional methods to explore new safe value-added ingredients. Total antioxidant capacity and total and individual phenolic compounds were also evaluated by spectrophotometric and high-performance liquid chromatography (HPLC), respectively. Tomato processing by-products have revealed a higher potential since both collected samples from companies were rich in protein (between 16.3 to 19.4 g/100 g DW, with fibre content ranging from 57.8 to 59.0 g/100 g DW). In addition, these samples contain 17.0 g/100 g of fatty acids (mainly polyunsaturated, monounsaturated and saturated, such as linoleic, oleic, and palmitic acid, respectively). Also, they present mainly chlorogenic acid and rutin as phenolic compounds. After understanding its composition, the OH was applied to determine added-value solutions to tomato by-products. With extractions, two types of fractions were obtained, namely liquid fraction rich in phenols, free sugars, and carotenoids and a solid fraction rich in fibre bound to phenols and carotenoids. This treatment has been shown to have the ability to preserve carotenoids, such as lycopene relative to conventional methods. Nevertheless, new molecules were identified by LC-ESI-UHR-OqTOF-MS analysis, such as phene-di-hexane and N-acethyl-D-tryptophan. According to the results, the OH boosts the potential of tomato by-products and can be directly introduced into the process, contributing to the circular economy and zero by-products.
Collapse
|
8
|
Innovation and Winemaking By-Product Valorization: An Ohmic Heating Approach. Processes (Basel) 2023. [DOI: 10.3390/pr11020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The by-products of the winemaking process can represent chances for the development of new products. This study focused on the “zero waste” strategy development for by-products generated within winemaking from white and red grape varieties cultivated in the north of Portugal. The phytochemical properties of by-products were identified and characterized. Ohmic heating (OH) as a green extraction method was also applied to grape pomace due to their unknown effects on centesimal and phytochemical compositions. Both protein and carbohydrates were shown to be higher in grape bagasse than in stems. Additionally, red bagasse is richer in bioactive compounds (BC) than white bagasse. The sugar content was 21.91 and 11.01 g/100 g of DW in red and white grape bagasse, respectively. The amount of protein was 12.46 g/100 g of DW for red grape bagasse and 13.18 g/100 g of DW for white. Regarding the extraction methods, two fractions were obtained, a liquid fraction and solid (the remainder after the methodology application). OH presented a higher antioxidant capacity than a conventional (CONV) method. In addition, both extracts presented similar contents of anthocyanins, e.g., delphinidin-3-O-glucoside, petunidin-3-O-glucoside, and peonidin-3-O-glucoside. The solid fraction presented higher amounts of protein and phenols bound to fiber than CONV, which allows its use as a functional ingredient. In conclusion, OH can be an alternative extraction method compared with CONV methods, avoiding non-food grade solvents, thus contributing to circular economy implementation.
Collapse
|
9
|
Wang H, Wang N, Chen X, Wu Z, Zhong W, Yu D, Zhang H. Effects of moderate electric field on the structural properties and aggregation characteristics of soybean protein isolate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Wang X, Wang W, Hu X, Zhu X, Wang L, Zhang N, Yu D. Structural and physical properties of soybean protein isolate films with ohmic heating treatment: Impacts of electric field. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Li D, Yu X, Wang P, Cui B, Xu E, Tao Y, Han Y. Effect of pre-gelatinization on α-amylase-catalyzed hydrolysis of corn starch under moderate electric field. Int J Biol Macromol 2022; 221:1335-1344. [PMID: 36087753 DOI: 10.1016/j.ijbiomac.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to explore the roles of starch structure in α-amylase-catalyzed hydrolysis under moderate electric field (MEF). Corn starch was gelatinized by controlling the temperature procedure of rapid viscos-analysis, and then the pre-gelatinized starch (3.0 g) was treated by MEF (2.5 and 5 V/cm) in the presence of α-amylase (1.5 mL). Only a slight hydrolysis occurred for native starch, showing minor increases in reducing sugar content (RSC, ∼0.19 mg/mL), slight changes in granular and semicrystalline structure, and decreases in thermostability (the maximum decomposition temperature (Tmax) decreased from 322 to 300 °C). The densely-packed semicrystalline within starch granules was destroyed by pre-gelatinization, thus enhancing the hydrolysis and further decreasing the thermostability, presenting RSC values of 0.63-0.92 mg/mL and Tmax of 291-292 °C. Moreover, some special crystals were formed by IEF-induced orientation of hydrolyzed starch chains. Overall, these results confirmed that the semicrystalline structure of starch dominated in MEF-assisted hydrolysis, which could provide guidance for the application of electro-based techniques in starch modification.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Xinhong Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong Province, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
12
|
Ohmic heating treatment in high-protein vanilla flavored milk: Quality, processing factors, and biological activity. Food Res Int 2022; 161:111827. [DOI: 10.1016/j.foodres.2022.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
|
13
|
Impact of Cell Disintegration Techniques on Curcumin Recovery. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In recent years, the improvement of curcumin recovery from turmeric by cell and tissue disintegration techniques has been gaining more attention; these emerging techniques were used for a reproducible and robust curcumin extraction process. Additionally, understanding the material characteristics is also needed to choose the optimized technique and appropriate processing parameters. In this review, an outlook about the distribution of different fractions in turmeric rhizomes is reviewed to explain matrix challenges on curcumin extraction. Moreover, the most important part, this review provides a comprehensive summary of the latest studies on ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), high-pressure-assisted extraction (HPAE), pulsed electric field-assisted extraction (PEFAE), and ohmic heating-assisted extraction (OHAE). Lastly, a detailed discussion about the advantages and disadvantages of emerging techniques will provide an all-inclusive understanding of the food industry’s potential of different available processes.
Collapse
|
14
|
Ohmic vs. conventional heating: Influence of moderate electric fields on properties of egg white protein gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Taha A, Casanova F, Šimonis P, Stankevič V, Gomaa MAE, Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022; 11:foods11111556. [PMID: 35681305 PMCID: PMC9180040 DOI: 10.3390/foods11111556] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins' structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions.
Collapse
Affiliation(s)
- Ahmed Taha
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (F.C.); (A.S.)
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Voitech Stankevič
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania; (A.T.); (P.Š.); (V.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
- Correspondence: (F.C.); (A.S.)
| |
Collapse
|
16
|
Effect of moderate electric fields on the structural and gelation properties of pea protein isolate. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Cooking the Chicken Meat with Moderate Electric Field: Rheological Properties and Image Processing of Microstructure. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Advanced Technologies Applied to Enhance Properties and Structure of Films and Coatings: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02768-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Queiroz LS, Casanova F, Feyissa AH, Jessen F, Ajalloueian F, Perrone IT, de Carvalho AF, Mohammadifar MA, Jacobsen C, Yesiltas B. Physical and Oxidative Stability of Low-Fat Fish Oil-in-Water Emulsions Stabilized with Black Soldier Fly ( Hermetia illucens) Larvae Protein Concentrate. Foods 2021; 10:foods10122977. [PMID: 34945527 PMCID: PMC8701752 DOI: 10.3390/foods10122977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/03/2023] Open
Abstract
The physical and oxidative stability of fish oil-in-water (O/W) emulsions were investigated using black soldier fly larvae (BSFL) (Hermetia illucens) protein concentrate as an emulsifier. To improve the protein extraction and the techno-functionality, defatted BSFL powder was treated with ohmic heating (BSFL-OH) and a combination of ohmic heating and ultrasound (BSFL-UOH). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were performed in order to characterize the secondary structure and thermal stability of all protein concentrate samples. The interfacial properties were evaluated by the pendant drop technique. The lowest interfacial tension (12.95 mN/m) after 30 min was observed for BSFL-OH. Dynamic light scattering, ζ-potential and turbiscan stability index (TSI) were used to evaluate the physical stability of emulsions. BSFL-OH showed the smallest droplet size (0.68 μm) and the best emulsion stability (TSI = 8.89). The formation of primary and secondary volatile oxidation products and consumption of tocopherols were evaluated for all emulsions, revealing that OH and ultrasound treatment did not improve oxidative stability compared to the emulsion with untreated BSFL. The results revealed the promising application of BSFL proteins as emulsifiers and the ability of ohmic heating to improve the emulsifying properties of BSFL proteins.
Collapse
Affiliation(s)
- Lucas Sales Queiroz
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
| | - Federico Casanova
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Aberham Hailu Feyissa
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Flemming Jessen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Fatemeh Ajalloueian
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Italo Tuler Perrone
- Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora (UFJF), Rua José Lourenço Kelmer, São Pedro, Juiz de Fora 36036-900, Brazil;
| | - Antonio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, Brazil
- Correspondence: (A.F.d.C.); (B.Y.)
| | - Mohammad Amin Mohammadifar
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (L.S.Q.); (F.C.); (A.H.F.); (F.J.); (M.A.M.); (C.J.)
- Correspondence: (A.F.d.C.); (B.Y.)
| |
Collapse
|
20
|
Ferreira S, Machado L, Pereira RN, Vicente AA, Rodrigues RM. Unraveling the nature of ohmic heating effects in structural aspects of whey proteins – The impact of electrical and electrochemical effects. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Effects of microsecond pulsed electric field (μsPEF) and modular micro reaction system (MMRS) treatments on whey protein aggregation. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
|
23
|
Pereira RN, Rodrigues RM. Emergent Proteins-Based Structures-Prospects towards Sustainable Nutrition and Functionality. Gels 2021; 7:161. [PMID: 34698195 PMCID: PMC8544527 DOI: 10.3390/gels7040161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022] Open
Abstract
The increased pressure over soils imposed by the need for agricultural expansion and food production requires development of sustainable and smart strategies for the efficient use of resources and food nutrients. In accordance with worldwide transformative polices, it is crucial to design sustainable systems for food production aimed at reducing environmental impact, contributing to biodiversity preservation, and leveraging a bioeconomy that supports circular byproduct management. Research on the use of emergent protein sources to develop value-added foods and biomaterials is in its infancy. This review intends to summarize recent research dealing with technological functionality of underused protein fractions, recovered from microbial biomass and food waste sources, addressing their potential applications but also bottlenecks. Protein-based materials from dairy byproducts and microalgae biomass gather promising prospects of use related to their techno-functional properties. However, a balance between yield and functionality is needed to turn this approach profitable on an industrial scale basis. In this context, downstream processing should be strategically used and properly integrated. Food solutions based on microbial proteins will expand in forthcoming years, bringing the opportunity to finetune development of novel protein-based biomaterials.
Collapse
Affiliation(s)
- Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | | |
Collapse
|
24
|
Novel technologies for extending the shelf life of drinking milk: Concepts, research trends and current applications. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Avelar Z, Vicente AA, Saraiva JA, Rodrigues RM. The role of emergent processing technologies in tailoring plant protein functionality: New insights. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Elucidating the pH influence on pulsed electric fields-induced self-assembly of chitosan-zein-poly(vinyl alcohol)-polyethylene glycol nanostructured composites. J Colloid Interface Sci 2021; 588:531-546. [PMID: 33429349 DOI: 10.1016/j.jcis.2020.12.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The high incompatibility of bio-based materials such as protein and polysaccharides require a series of modifications to develop stable microstructures effectively. By modifying the density and charge of surface residues, pulsed electric fields processing can improve inter/intramolecular interactions, compatibility, and microstructure of bio-based nanostructured composites. EXPERIMENT In this work, the impact of pulsed electric fields at a specific energy of 60-700 kJ/kg (electric field strength = 1.6 kV/cm) on self-assembly of zein-chitosan-poly(vinyl alcohol)-polyethylene glycol composite dispersion was investigated at pH 4.0, 5.7, and 6.8. FINDINGS Superior complex coacervated matrices were assembled at pH 4.0 and 5.7 before and after pulsed electric fields treatment at a specific energy of 390-410 kJ/kg. The compact and homogenous behaviour was attributable to pulsed electric fields-induced alteration of functional group interactions in a pH-dependent manner. Irrespective of the pH, very high electric field intensity caused excessive system perturbation leading to severe fragmentation and poor development of coacervates. The crucial insights from this study reveal that the self-assembly behaviour and integration of biopolymer-based systems possessing different local charges can be enhanced by optimising pulsed electric fields processing parameters and the properties of the colloidal systems such as the pH.
Collapse
|
27
|
Understanding the relationship between rheological characteristics of pulsed electric fields treated chitosan-zein-poly(vinyl alcohol)-polyethylene glycol composite dispersions and the structure-function of their resulting thin-films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Silva-Avellaneda E, Bauer-Estrada K, Prieto-Correa RE, Quintanilla-Carvajal MX. The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Sci Rep 2021; 11:7161. [PMID: 33785792 PMCID: PMC8010073 DOI: 10.1038/s41598-021-86233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The use of oleogels is an innovative and economical option for the technological development of some food products, among them ice creams. The aim of this study was to establish the best processing conditions to obtain an emulsion which form oleogels with the lowest ζ-potential and average droplet size (ADS) for use as ice cream base. Using surface response methodology (SRM), the effects of three numerical factors (microfluidization pressure, oil and whey protein concentration, WP) and four categorical factors (oil type, temperature, surfactant, and type of WP) on formation of emulsions were assessed. The response variables were ζ, ADS, polydispersity index (PDI), viscosity (η), hardness, cohesiveness and springiness. Additionally, a numerical optimization was performed. Two ice creams containing milk cream and oleogel, respectively were compared under the optimization conditions. Results suggest oleogels obtained from the microfluidization of whey and high oleic palm oil are viable for the replacement of cream in the production of ice cream.
Collapse
Affiliation(s)
- E Silva-Avellaneda
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | - K Bauer-Estrada
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | - R E Prieto-Correa
- Facultad de Ingeniería, Universidad de La Sabana, Km 7 vía autopista Norte, Bogotá, Colombia
| | | |
Collapse
|
29
|
Coelho MC, Ribeiro TB, Oliveira C, Batista P, Castro P, Monforte AR, Rodrigues AS, Teixeira J, Pintado M. In Vitro Gastrointestinal Digestion Impact on the Bioaccessibility and Antioxidant Capacity of Bioactive Compounds from Tomato Flours Obtained after Conventional and Ohmic Heating Extraction. Foods 2021; 10:foods10030554. [PMID: 33800085 PMCID: PMC8002034 DOI: 10.3390/foods10030554] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.
Collapse
Affiliation(s)
- Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Tânia B. Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição, 2, Oliveira do Hospital, 3405-155 Lagares, Portugal
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | - Patricia Batista
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | - Pedro Castro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | - Ana Rita Monforte
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
| | | | - José Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.C.); (T.B.R.); (C.O.); (P.B.); (P.C.); (A.R.M.)
- Correspondence:
| |
Collapse
|
30
|
Matos GS, Pereira SG, Genisheva ZA, Gomes AM, Teixeira JA, Rocha CMR. Advances in Extraction Methods to Recover Added-Value Compounds from Seaweeds: Sustainability and Functionality. Foods 2021; 10:foods10030516. [PMID: 33801287 PMCID: PMC7998159 DOI: 10.3390/foods10030516] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023] Open
Abstract
Seaweeds are a renewable natural source of valuable macro and micronutrients that have attracted the attention of the scientists in the last years. Their medicinal properties were already recognized in the ancient traditional Chinese medicine, but only recently there has been a considerable increase in the study of these organisms in attempts to demonstrate their health benefits. The extraction process and conditions to be used for the obtention of value-added compounds from seaweeds depends mainly on the desired final product. Thermochemical conversion of seaweeds, using high temperatures and solvents (including water), to obtain high-value products with more potential applications continues to be an industrial practice, frequently with adverse impact on the environment and products’ functionality. However more recently, alternative methods and approaches have been suggested, searching not only to improve the process performance, but also to be less harmful for the environment. A biorefinery approach display a valuable idea of solving economic and environmental drawbacks, enabling less residues production close to the much recommended zero waste system. The aim of this work is to report about the new developed methods of seaweeds extractions and the potential application of the components extracted.
Collapse
Affiliation(s)
- Gabriela S. Matos
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Sara G. Pereira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Zlatina A. Genisheva
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Ana Maria Gomes
- Centro de Biotecnologia e Química Fina—Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, 4169-005 Porto, Portugal;
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal; (G.S.M.); (S.G.P.); (Z.A.G.); (J.A.T.)
- Correspondence: ; Tel.: +315-253-604-400
| |
Collapse
|
31
|
Rodrigues RM, Pereira RN, Vicente AA, Cavaco-Paulo A, Ribeiro A. Ohmic heating as a new tool for protein scaffold engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111784. [PMID: 33545911 DOI: 10.1016/j.msec.2020.111784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
Ohmic heating (OH) is recognised as an emerging processing technology which recently is gaining increasing attention due to its ability to induce and control protein functionality. In this study, OH was used for the first time in the production of scaffolds for tissue engineering. BSA/casein solutions were processed by OH, promoting protein denaturation and aggregation, followed by cold-gelation through the addition of Ca2+. The formation of stable scaffolds was mostly dependent on the temperature and treatment time during OH processing. The variations of the electric field (EF) induced changes in the functional properties of both gel forming solutions and final scaffolds (contact angle, swelling, porosity, compressive modulus and degradation rate). The scaffolds' biological performance was evaluated regarding their ability to support the adhesion and proliferation of human fibroblast cells. The production process resulted in a non-cytotoxic material and the changes imposed by the presence of the EF during the scaffolds' production improved cellular proliferation and metabolic activity. Protein functionalization assisted by OH presents a promising new alternative for the production of improved and tuneable protein-based scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Ricardo N Pereira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Ribeiro
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
32
|
Coelho M, Pereira R, Rodrigues A, Teixeira J, Pintado M. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - Novel perspectives on food and potential health implications. Food Res Int 2020; 137:109709. [PMID: 33233283 DOI: 10.1016/j.foodres.2020.109709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/22/2020] [Accepted: 09/06/2020] [Indexed: 12/29/2022]
Abstract
Electric fields (EF) technologies have been establishing a solid position in emergent food processing and have seen as serious alternatives to traditional thermal processing. During the last decades, research has been devoted to elucidation of technological and safety issues but also fundamental aspects related with interaction of electric fields (EF) with important macromolecules, such as proteins. Proteins are building blocks for the development of functional networks that can encompass health benefits (i.e. nutritional and bioactive properties) but may be also linked with adverse effects such as neurodegenerative diseases (amyloid fibrils) and immunological responses. The biological function of a protein depends on its tridimensional structure/conformation, and latest research evidences that EF can promote disturbances on protein conformation, change their unfolding mechanisms, aggregation and interaction patterns. This review aims at bringing together these recent findings as well as providing novel perspectives about how EF can shape the behavior of proteins towards the development of innovative foods, aiming at consumers' health and wellbeing.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Zita Avelar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Luís Machado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
34
|
Araújo JF, Bourbon AI, Simões LS, Vicente AA, Coutinho PJG, Ramos OL. Physicochemical characterisation and release behaviour of curcumin-loaded lactoferrin nanohydrogels into food simulants. Food Funct 2020; 11:305-317. [PMID: 31799527 DOI: 10.1039/c9fo01963d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Whey protein nanostructures can be used as vehicles for the incorporation of nutraceuticals (e.g., antioxidants or vitamins) aimed at the development of functional foods, because nanostructures provide greater protection, stability and controlled release to such nutraceuticals. Fundamental knowledge is required regarding the behaviour of nanostructures when associated with nutraceuticals and their interactions with real food matrices. In this study, a lactoferrin (LF) nanohydrogel was developed to encapsulate curcumin (nutraceutical model) and its behaviour was evaluated in terms of the LF structure and the interaction with curcumin. The release kinetics of curcumin from LF nanohydrogels was also assessed using food simulants with a hydrophilic nature (10% ethanol) and lipophilic nature (50% ethanol). This system was able to encapsulate curcumin at 80 μg mL-1 with an efficiency of ca. 90% and loading capacity of ca. 3%. Through spectroscopic characterisation, it is suggested that LF and curcumin bind via hydrophobic interactions and the average binding distance between LF and curcumin was found to be 1.91 nm. Under refrigerated conditions (4 °C), this system showed stability for up to 35 days, while at room temperature (25 °C) it was shown to be stable for up to 14 days of storage. The LF nanohydrogel presented higher release rates of curcumin in a lipophilic food simulant (stable after ca. 7 h) as compared to a hydrophilic simulant (stable after ca. 4 h). LF nanohydrogels were successfully incorporated into a gelatine matrix and showed no degradation in this process. The behaviour of this system and the curcumin release kinetics in food stimulants make the LF nanohydrogel an interesting system to associate with lipophilic nutraceuticals and to incorporate in refrigerated food products of a hydrophilic nature.
Collapse
Affiliation(s)
- João F Araújo
- Escola de Ciências, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
35
|
de Souza Queirós M, Viriato RLS, Vega DA, Ribeiro APB, Gigante ML. Milk fat nanoemulsions stabilized by dairy proteins. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:3295-3304. [PMID: 32728278 PMCID: PMC7374681 DOI: 10.1007/s13197-020-04362-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Droplet size, polydispersity, physical and polymorphic stability of milk fat nanoemulsions produced by hot high-pressure homogenization and stabilized by whey protein isolate (WPI pH 4.0 or 7.0) or sodium caseinate (NaCas pH 7.0) were evaluated for 60 days of storage at 25 °C. Smaller droplets were observed for the NaCas pH 7.0 nanoemulsion, which also showed a lower polydispersity index, resulting in a stable emulsified system for 60 days. On the other hand, the nanoemulsion with bigger droplet size (WPI pH 4.0) showed reduced stability, probably due to the pH near the isoelectric point of the whey proteins. The nanostructured milk fat exhibited the same melting behavior as the bulk milk fat, with a balance between liquid and crystallized fat, and crystals in polymorphic form β'. This could be an advantage concerning the application of the system for delivery of bioactive compounds and improvement of the sensory properties of fat-based food. In summary, nanoemulsions stabilized by NaCas (pH 7.0) showed higher kinetic stability over the storage time, which from a technological application point of view is a very important factor in the food industry.
Collapse
Affiliation(s)
- Mayara de Souza Queirós
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo 13083-862 Brazil
| | - Rodolfo Lázaro Soares Viriato
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo 13083-862 Brazil
| | - Daniela Almeida Vega
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo 13083-862 Brazil
| | - Ana Paula Badan Ribeiro
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo 13083-862 Brazil
| | - Mirna Lúcia Gigante
- Department of Food Technology, Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo 13083-862 Brazil
| |
Collapse
|
36
|
Silva-Vera W, Avendaño-Muñoz N, Nuñez H, Ramírez C, Almonacid S, Simpson R. CO2 laser drilling coupled with moderate electric fields for enhancement of the mass transfer phenomenon in a tomato (Lycopersicon esculentum) peeling process. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
37
|
Simões LS, Martins JT, Pinheiro AC, Vicente AA, Ramos OL. β-lactoglobulin micro- and nanostructures as bioactive compounds vehicle: In vitro studies. Food Res Int 2020; 131:108979. [DOI: 10.1016/j.foodres.2020.108979] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/25/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
|
38
|
Hernández-Castillo JBE, Bernardino-Nicanor A, Vivar-Vera MDLÁ, Montañez-Soto JL, Teniente-Martínez G, Juárez-Goiz JMS, González-Cruz L. Modifications of the Protein Characteristics of Pacaya Caused by Thermal Treatment: A Spectroscopic, Electrophoretic and Morphological Study. Polymers (Basel) 2020; 12:E1016. [PMID: 32365750 PMCID: PMC7285206 DOI: 10.3390/polym12051016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 01/18/2023] Open
Abstract
The inflorescences of Chamaedorea tepejilote Liebm. are consumed as food in Central America and southern Mexico but is an underutilized food because of its sensory characteristics, principally due to its bitter taste. However, the inflorescences of Chamaedorea tepejilote Liebm. are nutritionally promising due to their high protein content (approximately 25%). Protein isolates from pacaya were modified via three different thermal treatments to determine the effect of the treatments on the protein structures. Scanning electron microscopy indicated that the pacaya protein isolate particles had less rough and irregular surfaces with larger particle sizes due to an aggregation process when a thermal treatment was used compared to those when no thermal treatment was used. An increase in the intensity of the low molecular weight protein fractions (≤20 kDa) in the electrophoretic pattern of the proteins was observed, which was generated by the hydrolysis of the proteins by heat treatment. The modifications in the FT-IR spectra showed that thermal treatment of pacaya affected the secondary structure of its proteins, mainly when microwave treatment was used. Raman spectroscopy revealed that the α-helical structure was dominant in the proteins of pacaya and that thermal treatment increased the fraction of the β-sheet structure at the expense of the α-helical structure.
Collapse
Affiliation(s)
- Jocelyn Blanca Esthela Hernández-Castillo
- Doctorado en Ciencias en Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico;
| | - Aurea Bernardino-Nicanor
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| | - María de los Ángeles Vivar-Vera
- Tecnológico Nacional de México/IT de Tuxtepec, Av. Dr. Víctor Bravo Ahuja S/N Col. 5 de Mayo, Tuxtepec 68350, Oaxaca, Mexico;
| | - José Luis Montañez-Soto
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional del Instituto Politécnico Nacional, Unidad Michoacán, Justo Sierra N°28, Jiquilpan 59510, Michoacán, Mexico;
| | - Gerardo Teniente-Martínez
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| | - José Mayolo Simitrio Juárez-Goiz
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| | - Leopoldo González-Cruz
- Tecnológico Nacional de México/IT de Celaya, Antonio García Cubas Pte. #600 esq. Av. Tecnológico, Celaya 38010, Guanajuato, Mexico; (A.B.-N.); (G.T.-M.); (J.M.S.J.-G.)
| |
Collapse
|
39
|
Effects of moderate electric fields on cold-set gelation of whey proteins – From molecular interactions to functional properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105505] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Ohmic heating as an innovative approach for the production of keratin films. Int J Biol Macromol 2020; 150:671-680. [PMID: 32061691 DOI: 10.1016/j.ijbiomac.2020.02.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Ohmic heating is a thermal processing method based on the application of electric fields directly into a semi-conductive medium. In this study, we explored for the first time the use of ohmic heating to obtain keratin films. The properties of the films prepared by ohmic heating and conventional heating were evaluated and compared under similar thermal profiles. A lower increase in free thiols' concentration was obtained for the keratin solutions and keratin films submitted to ohmic heating (16% increase for the keratin solution extracted from virgin hair, pH 9, submitted to ohmic heating and 23% when submitted to conventional heating). Significant differences in the swelling results were observed for the films prepared with keratin extracted from virgin hair, with a swelling decrease in about 55% for the films prepared by ohmic heating. Generally, the keratin films obtained by ohmic heating showed distinct properties comparatively to the films produced by conventional methods. The application of a fusion protein on the keratin films demonstrated their capacity to be used as substitutes to hair fibers when evaluating the potential of new cosmetic products. This work suggests that ohmic heating show potential to tailor keratin films properties depending on an intended application or functionality.
Collapse
|
42
|
Rodrigues RM, Avelar Z, Vicente AA, Petersen SB, Pereira RN. Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions. Food Chem 2020; 304:125442. [DOI: 10.1016/j.foodchem.2019.125442] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
|
43
|
Pereira RN, Costa J, Rodrigues RM, Villa C, Machado L, Mafra I, Vicente A. Effects of ohmic heating on the immunoreactivity of β-lactoglobulin – a relationship towards structural aspects. Food Funct 2020; 11:4002-4013. [DOI: 10.1039/c9fo02834j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ohmic heating changes the immunoreactivity of monomeric and aggregated β-LG forms.
Collapse
Affiliation(s)
| | - Joana Costa
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | | | - Caterina Villa
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | - Luís Machado
- Centre of Biological Engineering – University of Minho
- Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | - António Vicente
- Centre of Biological Engineering – University of Minho
- Portugal
| |
Collapse
|
44
|
Iahnke AOES, Vargas CG, Mercali GD, Rios ADO, Rahier H, Flôres SH. Effect of moderate electric field on the properties of gelatin capsule residue-based films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Rodrigues RM, Vicente AA, Petersen SB, Pereira RN. Electric field effects on β-lactoglobulin thermal unfolding as a function of pH – Impact on protein functionality. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Effect of Ohmic heating on functionality of sodium caseinate - A relationship with protein gelation. Food Res Int 2019; 116:628-636. [PMID: 30716989 DOI: 10.1016/j.foodres.2018.08.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022]
Abstract
Sodium caseinate (NaCAS) is widely used in the food industry to provide nutritional and functional benefits. This work deals with the effects of applying moderate electric fields (MEF) of different intensity - ranging from 2 V·cm-1 to 17 V·cm-1 - on the physical and functional properties of NaCAS solutions during Ohmic heating (OH) at 95 °C. Self-standing gels were produced regardless the heating technique applied (i.e. conventional or OH), and these gels were much more prone to physical rupture when compared with the ones produced from unheated NaCAS. Interestingly, OH treatment formed gels with lower values of strain at rupture and water holding capacity than unheated samples; this pattern was not observed for gels obtained through the conventional heating treatment (at 0 V·cm-1). These effects may be linked with disturbances of the distribution of random coil structures and enhanced solubility of NaCAS at its isoelectric point, reducing aggregation and impairing the development of a more compact protein network. Results show that OH presents potential to be used as volumetric heating tool for NaCAS solubilization and for the production of distinctive acidified systems.
Collapse
|
47
|
Silva HD, Beldíková E, Poejo J, Abrunhosa L, Serra AT, Duarte CM, Brányik T, Cerqueira MA, Pinheiro AC, Vicente AA. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
PEGylation may reduce allergenicity and improve gelling properties of protein isolate from black kidney bean (Phaseolus vulgaris L.). FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Whey acerola-flavoured drink submitted Ohmic Heating: Bioactive compounds, antioxidant capacity, thermal behavior, water mobility, fatty acid profile and volatile compounds. Food Chem 2018; 263:81-88. [DOI: 10.1016/j.foodchem.2018.04.115] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/10/2023]
|
50
|
Zhang M, Yang N, Guo L, Li D, Wu S, Wu F, Jin Z, Xu X. Physicochemical properties of apple juice influenced by induced potential difference (induced electric field) during disposable continuous-flow treatment. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|