1
|
Chen G, Khan IM, Zhang T, Campanella OH, Miao M. Alternansucrase as a key enabling tool of biotransformation from molecular features to applications: A review. Int J Biol Macromol 2024; 279:135096. [PMID: 39214198 DOI: 10.1016/j.ijbiomac.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alternansucrase (ASR), classified in GH70, produces unique α-glucans with alternating α-1,3 and α-1,6 glycosidic linkages in the backbone chain from renewable sucrose which is easily obtained from nature with low cost. ASR has synthesized many products with valuable functionalities that hold enormous commercial interest and promising applications. The influence of biocatalysis and fermentation parameters on the yields, and properties of products are critical for the propositions made to promote the enzyme application. Investigations on ASR have been compiled in the review to provide information on the enzyme, products and parameters. This review summarizes studies on the characteristics, conversion mechanism, products, and beneficial applications of ASR and exhibits structure-based technologies to improve enzyme activity, specificity, and thermostability for industrial applications. Finally, prospects for further development are also proposed for various ASR applications in food and other fields.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Osvaldo H Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Chen J, Zhou M, Chen L, Yang C, Deng Y, Li J, Sun S. Evaluation of Physicochemical Properties and Prebiotics Function of a Bioactive Pleurotus eryngii Aqueous Extract Powder Obtained by Spray Drying. Nutrients 2024; 16:1555. [PMID: 38892489 PMCID: PMC11173815 DOI: 10.3390/nu16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
A bioactive Pleurotus eryngii aqueous extract powder (SPAE) was obtained by spray drying and its performance in terms of physicochemical properties, in vitro digestion, inflammatory factors, and modulation of the intestinal microbiota was explored. The results indicated that the SPAE exhibited a more uniform particle size distribution than P. eryngii polysaccharide (PEP). Meanwhile, a typical absorption peak observed at 843 cm-1 in the SPAE FTIR spectra indicated the existence of α-glycosidic bonds. SPAE exhibited higher antioxidant abilities and superior resistance to digestion in vitro. In addition, SPAE supplementation to mice significantly reduced the release of factors that promote inflammation, enhanced the secretion of anti-inflammatory factors, and sustained maximum production of short-chain fatty acids (SCFAs). Additionally, it significantly enhanced the relative abundance of SCFAs-producing Akkermansia and reduced the abundance of Ruminococcus and Clostridiides in intestines of mice. These results show the potential of SPAE as a novel material with prebiotic effects for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Jianqiu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
| | - Mengling Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Chengfeng Yang
- Sanya Institute, China Agricultural University, Sanya 572025, China;
| | - Yating Deng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (M.Z.); (L.C.); (Y.D.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
3
|
Dai Y, Ge Z, Wang Z, Wang Z, Xu W, Wang D, Dong M, Xia X. Effects of water-soluble and water-insoluble α-glucans produced in situ by Leuconostoc citreum SH12 on physicochemical properties of fermented soymilk and their structural analysis. Int J Biol Macromol 2024; 267:131306. [PMID: 38574904 DOI: 10.1016/j.ijbiomac.2024.131306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
This study investigated the effect of in situ produced water-soluble α-glucan (LcWSG) and water-insoluble α-glucan (LcWIG) from Leuconostoc citreum SH12 on the physicochemical properties of fermented soymilk. α-Glucans produced by Leuc. citreum SH12 improved water-holding capacity, viscosity, viscoelasticity and texture of fermented soymilk. Gtf1365 and Gtf836 of the five putative glucansucrases were responsible for synthesizing LcWSG and LcWIG during soymilk fermentation, respectively. Co-fermentation of soymilk with Gtf1365 and Gtf836 and non-exopolysaccharide-producing Lactiplantibacillus plantarum D1031 indicated that LcWSG effectively hindered the whey separation of fermented soymilk by increasing viscosity, while LcWIG improved hardness, springiness and accelerated protein coagulation. Fermented soymilk gel formation was mainly based on hydrogen bonding and hydrophobic interactions, which were promoted by both LcWSG and LcWIG. LcWIG has a greater effect on α-helix to β-sheet translation in fermented soymilk, causing more rapid protein aggregation and thicker cross-linked gel network. Structure-based exploration of LcWSG and LcWIG from Leuc. citreum SH12 revealed their distinct roles in the physicochemical properties of fermented soymilk due to their different ratio of α-1,6 and α-1,3 glucosidic linkages and various side chain length. This study may guide the application of the water-soluble and water-insoluble α-glucans in fermented plant protein foods for their quality improvement.
Collapse
Affiliation(s)
- Yiqiang Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiwen Ge
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoying Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiudong Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
4
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Zhao X, Liang Q. Optimization, Probiotic Characteristics, and Rheological Properties of Exopolysaccharides from Lactiplantibacillus plantarum MC5. Molecules 2023; 28:molecules28062463. [PMID: 36985435 PMCID: PMC10058658 DOI: 10.3390/molecules28062463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
This study optimized the exopolysaccharides (EPS) production for Lactiplantibacillus plantarum MC5 (Lp. plantarum MC5) and evaluated the resistance to human simulated digestive juices, antioxidant activity in vitro, and rheological properties of EPS-MC5. The results showed that maximum EPS production of 345.98 mg/L (about 1.5-old greater than the initial production) was obtained at optimal conditions of inoculum size (4.0%), incubation time (30 h), incubation temperature (34.0 °C), and initial pH value (6.40). Furthermore, the resisting-digestion capacity of EPS-MC5 after 180 min in α-amylase, simulated gastric juice (pH 2.0, 3.0, 4.0), and simulated intestinal juice (pH 6.8) was 98.59%, 98.62%, 98.78%, 98.86%, and 98.74%, respectively. In addition, the radical scavenging rates of DPPH•, ABTS•, •OH, and ferric-iron reducing power (OD700) of EPS-MC5 were 73.33%, 87.74%, 46.07%, and 1.20, respectively. Furthermore, rheological results showed that the EPS-MC5 had a higher apparent viscosity (3.01 Pa) and shear stress (41.78 Pa), and the viscoelastic modulus (84.02 and 161.02 Pa at the shear frequency of 100 Hz). These results provide a new insight into the application of EPS in human health and functional foods, which could also improve theoretical guidance for the industrial application of EPS.
Collapse
Affiliation(s)
| | - Qi Liang
- Correspondence: ; Tel.: +86-139-1903-4438
| |
Collapse
|
6
|
Xu M, Pan L, Wang B, Zou X, Zhang A, Zhou Z, Han Y. Simulated Digestion and Fecal Fermentation Behaviors of Levan and Its Impacts on the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1531-1546. [PMID: 36622938 DOI: 10.1021/acs.jafc.2c06897] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levan is a microbial fructan widely explored in various fields owing to its excellent physical and biochemical properties. However, little is known about its digestion and fermentation characteristics in vitro. This study evaluated the potential prebiotic properties of levan obtained by enzymatic synthesis. Scanning electron microscopy, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the primary structures of levan remained stable after saliva-gastrointestinal digestion. The microtopography, molecular weight, and functional group of levan were seriously damaged during fecal fermentation. Moreover, the total short-chain fatty acid levels increased significantly, especially for propionic acid, butyric acid, and valeric acid. The 16S rDNA sequencing showed that levan mainly increased the abundance of Firmicutes; in genus levels, certain beneficial bacteria such as Megasphaera and Megamonas genera were remarkably promoted, and the proliferation of harmful genera was inhibited (such as Cedecea and Klebsiella). Overall, this study provided new insights into the potential probiotic mechanism of levan.
Collapse
Affiliation(s)
- Min Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Binbin Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030000, China
| | - Xuan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Aihua Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, Puerto Rico 300350, United States
| |
Collapse
|
7
|
Structure elucidation and intestinal barrier protection of an α-D-glucan in Huangshui. Int J Biol Macromol 2022; 223:595-605. [PMID: 36370853 DOI: 10.1016/j.ijbiomac.2022.11.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/29/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
WLY-0, as an α-D-glucan with a molecular weight (Mw) of 11.12 kDa, was successfully isolated and purified from Huangshui (HS). The results of methylation and NMR indicated that the mainchain of WLY-0 was (1 → 4)-α-D-glucan, with side chains linking at O-6. Meanwhile, the surface morphology characterization showed that WLY-0 had an irregular flake-like morphology with a rough and uneven surface and varies in sizes from nanometers to microns. Furthermore, WLY-0 relieved the increased paracellular permeability of FD4 and decreased TEER challenged by LPS, meanwhile inhibited the production of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and up-regulated the expression of TJ protein (Occludin, Claudin-1, ZO-1, and JAM-A) in Caco-2 cells, so to improve the intestinal barrier function. Our findings about the structural characteristics and biological activities of WLY-0 provided a scientific foundation for the utilization of HS as a potent source of an effective adjuvant in intestinal barrier injury treatment.
Collapse
|
8
|
Xu M, Pan L, Zhou Z, Han Y. Structural characterization of levan synthesized by a recombinant levansucrase and its application as yogurt stabilizers. Carbohydr Polym 2022; 291:119519. [DOI: 10.1016/j.carbpol.2022.119519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/27/2022]
|
9
|
Li X, Meng X, de Leeuw TC, Te Poele EM, Pijning T, Dijkhuizen L, Liu W. Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34907830 DOI: 10.1080/10408398.2021.2016598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.
Collapse
Affiliation(s)
- Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | | | | | - Tjaard Pijning
- Biomolecular X-ray Crystallography, University of Groningen, Groningen, The Netherlands
| | | | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Preferential growth stimulation of probiotic bacteria by galactan exopolysaccharide from Weissella confusa KR780676. Food Res Int 2021; 143:110333. [DOI: 10.1016/j.foodres.2021.110333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022]
|
11
|
Hu X, Song L, Yang Y, Wang L, Li Y, Miao M. Biosynthesis, structural characteristics and prebiotic properties of maltitol-based acceptor products. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Li X, Wang X, Meng X, Dijkhuizen L, Liu W. Structures, physico-chemical properties, production and (potential) applications of sucrose-derived α-d-glucans synthesized by glucansucrases. Carbohydr Polym 2020; 249:116818. [DOI: 10.1016/j.carbpol.2020.116818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
|
13
|
Yang Y, Ma Y, Hu X, Cui SW, Zhang T, Miao M. Reuteransucrase-catalytic kinetic modeling and functional characteristics for novel prebiotic gluco-oligomers. Food Funct 2020; 11:7037-7047. [PMID: 32812985 DOI: 10.1039/d0fo00225a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This work describes the reuteransucrase-catalyzed reaction and structural characterization as well as in vitro fermentation for the acceptor products of gluco-oligomers from sucrose and maltose. At a low concentration of sucrose, the production of gluco-oligomers was favored, resulting in a relatively large number of acceptor products (DP3-5). A mathematical model was also proposed to simulate gluco-oligomer production depending on the reaction conditions. The fine structures of major linear gluco-oligomer fractions for a sucrose : maltose ratio of 1 : 1 were assigned as follows: α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-d-Glcp, α-d-Glcp-(1→4)-α-d-Glcp-(1→4)-α-d-Glcp-(1→4)-d-Glcp, α-d-Glcp-(1→4)-α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-d-Glcp, and α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-α-d-Glcp-(1→6)-α-d-Glcp-(1→4)-d-Glcp, respectively. Compared with dextran and GOS57, the results of fermentation selectivity indicated that gluco-oligomers promoted the proliferation of gut bacteria and total SCFA production with a higher concentration of propionate. These data suggested that the gluco-oligomers synthesized via the reuteransucrase acceptor reaction had a prebiotic effect on gastrointestinal health.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Yajun Ma
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiuting Hu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Steve W Cui
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China. and Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ont., Canada N1G 5C9
| | - Tao Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
14
|
Influences of different drying methods on the structural characteristics and prebiotic activity of polysaccharides from bamboo shoot (Chimonobambusa quadrangularis) residues. Int J Biol Macromol 2020; 155:674-684. [DOI: 10.1016/j.ijbiomac.2020.03.223] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
|
15
|
Li Y, Liu Y, Cao C, Zhu X, Wang C, Wu R, Wu J. Extraction and biological activity of exopolysaccharide produced by Leuconostoc mesenteroides SN-8. Int J Biol Macromol 2020; 157:36-44. [PMID: 32339581 DOI: 10.1016/j.ijbiomac.2020.04.150] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/09/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
An exopolysaccharide (EPS)-producing strain SN-8 isolated from Dajiang was identified as Leuconostoc mesenteroides. When sucrose was used as the carbon source for fermentation, the output of EPS was 2.42 g/L. High performance liquid chromatography analysis confirmed the presence of monomers such as glucan and mannose. The molecular weight detection value is 2.0 × 105 Da. Fourier transform infrared spectroscopy displayed the EPS had the basic skeleton and functional groups of a typical polysaccharide structure. Scanning electron microscopy showed smooth surfaces and compact structure. Thermal performance analysis showed that the highest heat resistance temperature of the EPS was 80 °C. Compared with vitamin C, its hydroxyl radical scavenging rate was as high as 32% and 1,1-diphenyl-2-picrylhydrazyl scavenging rate was as high as 40% under the same concentration. The peanut oil was the most emulsifiable at a concentration of 1.5 mg/mL, and the emulsification index was 0.55. These results might show that the EPS had high application value.
Collapse
Affiliation(s)
- Yang Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Yiming Liu
- College of Foreign Language, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chengxu Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - XinYuan Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Cong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Junrui Wu
- College of Foreign Language, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
16
|
In vitro prebiotic activities of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its effect on the gut microbiota of mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103853] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
17
|
Hu X, Song L, Yang Y, Jin Z, Miao M. Synthesis of potential prebiotic α-glucooligosaccharides using microbial glucansucrase and their in vitro fecal fermentation. Food Funct 2020; 11:1672-1683. [PMID: 32031198 DOI: 10.1039/c9fo02054c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Novel α-glucooligosaccharides were synthesized by the acceptor reaction of Leuconostoc citreum SK24.002 glucansucrase with maltose and sucrose. The impact of synthesis conditions, including the ratio of sucrose to maltose and the substrate concentration, on the formation of α-glucooligosaccharides was evaluated. Under the optimized experimental conditions, the yield of a mixture of α-glucooligosaccharides with DP 3-5 reached approximately 56.4% with a concentration of 170.7 mg mL-1. Each of these α-glucooligosaccharides was purified, and the structures were assigned as follows: α-D-Glcp-(1,6)-α-D-Glcp-(1,4)-D-Glcp (DP3), α-D-Glcp-(1,3)-α-D-Glcp-(1,6)-α-D-Glcp-(1,4)-D-Glcp (DP4), and α-D-Glcp-(1,6)-α-D-Glcp-(1,3)-α-D-Glcp-(1,6)-α-D-Glcp-(1,4)-D-Glcp (DP5), respectively. For these three structurally different oligosaccharides, the fermentation selectivity by fecal bacteria was determined in anaerobic batch culture. Fructooligosaccharide (FOS) was used as a positive prebiotic control. Similar to FOS, all three α-glucooligosaccharides selectively stimulated the proliferation of Bifidobacteria and Lactobacilli compared with the control. DP3 exhibited the strongest prebiotic ability to increase the Bifidobacterium and Lactobacillus population, whereas DP5 produced the most short-chain fatty acids. In addition, DP4 produced the highest butyrate concentration and resulted in the lowest acetate : propionate ratio. These results suggested that the enzymatically synthesized α-glucooligosaccharides were potential prebiotics, underlining correlations between the structural features of oligosaccharides and their impact on the metabolism of fecal microbiota.
Collapse
Affiliation(s)
- Xiuting Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.
| | | | | | | | | |
Collapse
|
18
|
Mutaillifu P, Bobakulov K, Abuduwaili A, Huojiaaihemaiti H, Nuerxiati R, Aisa HA, Yili A. Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra. Int J Biol Macromol 2020; 144:751-759. [DOI: 10.1016/j.ijbiomac.2019.11.245] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022]
|
19
|
Llamas-Arriba MG, Puertas AI, Prieto A, López P, Cobos M, Miranda JI, Marieta C, Ruas-Madiedo P, Dueñas MT. Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Prebiotic potential of water extractable polysaccharide from red kidney bean (Phaseolus vulgaris L.). Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
C. K. Rajendran SR, Okolie CL, Udenigwe CC, Mason B. Structural features underlying prebiotic activity of conventional and potential prebiotic oligosaccharides in food and health. J Food Biochem 2017. [DOI: 10.1111/jfbc.12389] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Subin R. C. K. Rajendran
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Nova Scotia B2N5E3, Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| | - Chigozie Louis Okolie
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Nova Scotia B2N5E3, Canada
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences; University of Ottawa; Ontario K1N6N5, Canada
| | - Beth Mason
- Verschuren Centre for Sustainability in Energy and the Environment; Cape Breton University; Nova Scotia B1P6L2, Canada
| |
Collapse
|
22
|
Song L, Miao M, Jiang B, Xu T, Cui SW, Zhang T. Leuconostoc citreum SK24.002 glucansucrase: Biochemical characterisation and de novo synthesis of α-glucan. Int J Biol Macromol 2016; 91:123-31. [DOI: 10.1016/j.ijbiomac.2016.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/28/2016] [Accepted: 05/04/2016] [Indexed: 12/29/2022]
|
23
|
|