1
|
Zhang R, Bai X, Chen Z, Chen M, Li X, Zeng B, Hu B. Physiological, Biochemical, and Molecular Analyses Reveal Dark Heartwood Formation Mechanism in Acacia melanoxylon. Int J Mol Sci 2024; 25:4974. [PMID: 38732191 PMCID: PMC11084464 DOI: 10.3390/ijms25094974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Acacia melanoxylon is highly valued for its commercial applications, with the heartwood exhibiting a range of colors from dark to light among its various clones. The underlying mechanisms contributing to this color variation, however, have not been fully elucidated. In an effort to understand the factors that influence the development of dark heartwood, a comparative analysis was conducted on the microstructure, substance composition, differential gene expression, and metabolite profiles in the sapwood (SW), transition zone (TZ), and heartwood (HW) of two distinct clones, SR14 and SR25. A microscopic examination revealed that heartwood color variations are associated with an increased substance content within the ray parenchyma cells. A substance analysis indicated that the levels of starches, sugars, and lignin were more abundant in SP compared to HW, while the concentrations of phenols, flavonoids, and terpenoids were found to be higher in HW than in SP. Notably, the dark heartwood of the SR25 clone exhibited greater quantities of phenols and flavonoids compared to the SR14 clone, suggesting that these compounds are pivotal to the color distinction of the heartwood. An integrated analysis of transcriptome and metabolomics data uncovered a significant accumulation of sinapyl alcohol, sinapoyl aldehyde, hesperetin, 2', 3, 4, 4', 6'-peptahydroxychalcone 4'-O-glucoside, homoeriodictyol, and (2S)-liquiritigenin in the heartwood of SR25, which correlates with the up-regulated expression of CCRs (evm.TU.Chr3.1751, evm.TU.Chr4.654_667, evm.TU.Chr4.675, evm.TU.Chr4.699, and evm.TU.Chr4.704), COMTs (evm.TU.Chr13.3082, evm.TU.Chr13.3086, and evm.TU.Chr7.1411), CADs (evm.TU.Chr10.2175, evm.TU.Chr1.3453, and evm.TU.Chr8.1600), and HCTs (evm.TU.Chr4.1122, evm.TU.Chr4.1123, evm.TU.Chr8.1758, and evm.TU.Chr9.2960) in the TZ of A. melanoxylon. Furthermore, a marked differential expression of transcription factors (TFs), including MYBs, AP2/ERFs, bHLHs, bZIPs, C2H2s, and WRKYs, were observed to be closely linked to the phenols and flavonoids metabolites, highlighting the potential role of multiple TFs in regulating the biosynthesis of these metabolites and, consequently, influencing the color variation in the heartwood. This study facilitates molecular breeding for the accumulation of metabolites influencing the heartwood color in A. melanoxylon, and offers new insights into the molecular mechanisms underlying heartwood formation in woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingshan Zeng
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (R.Z.); (X.B.); (Z.C.); (M.C.); (X.L.)
| | - Bing Hu
- Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; (R.Z.); (X.B.); (Z.C.); (M.C.); (X.L.)
| |
Collapse
|
2
|
Zhang R, Zhang Z, Yan C, Chen Z, Li X, Zeng B, Hu B. Comparative physiological, biochemical, metabolomic, and transcriptomic analyses reveal the formation mechanism of heartwood for Acacia melanoxylon. BMC PLANT BIOLOGY 2024; 24:308. [PMID: 38644502 PMCID: PMC11034122 DOI: 10.1186/s12870-024-04884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/23/2024]
Abstract
Acacia melanoxylon is well known as a valuable commercial tree species owing to its high-quality heartwood (HW) products. However, the metabolism and regulatory mechanism of heartwood during wood development remain largely unclear. In this study, both microscopic observation and content determination proved that total amount of starches decreased and phenolics and flavonoids increased gradually from sapwood (SW) to HW. We also obtained the metabolite profiles of 10 metabolites related to phenolics and flavonoids during HW formation by metabolomics. Additionally, we collected a comprehensive overview of genes associated with the biosynthesis of sugars, terpenoids, phenolics, and flavonoids using RNA-seq. A total of ninety-one genes related to HW formation were identified. The transcripts related to plant hormones, programmed cell death (PCD), and dehydration were increased in transition zone (TZ) than in SW. The results of RT-PCR showed that the relative expression level of genes and transcription factors was also high in the TZ, regardless of the horizontal or vertical direction of the trunk. Therefore, the HW formation took place in the TZ for A. melanoxylon from molecular level, and potentially connected to plant hormones, PCD, and cell dehydration. Besides, the increased expression of sugar and terpenoid biosynthesis-related genes in TZ further confirmed the close connection between terpenoid biosynthesis and carbohydrate metabolites of A. melanoxylon. Furthermore, the integrated analysis of metabolism data and RNA-seq data showed the key transcription factors (TFs) regulating flavonoids and phenolics accumulation in HW, including negative correlation TFs (WRKY, MYB) and positive correlation TFs (AP2, bZIP, CBF, PB1, and TCP). And, the genes and metabolites from phenylpropanoid and flavonoid metabolism and biosynthesis were up-regulated and largely accumulated in TZ and HW, respectively. The findings of this research provide a basis for comprehending the buildup of metabolites and the molecular regulatory processes of HW formation in A. melanoxylon.
Collapse
Affiliation(s)
- Ruping Zhang
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Zhiwei Zhang
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Caizhen Yan
- Sihui fengfu forestry development co., ltd, Sihui, 526299, China
| | - Zhaoli Chen
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Xiangyang Li
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Bingshan Zeng
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| | - Bing Hu
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
3
|
Han S, Hu Y, Li C, Yu Y, Wang Y, Gu Z, Hao Z, Xiao Y, Liu Y, Liu K, Zheng M, Du Y, Zhou Y, Yu Z. Exploring the formation mechanism of resistant starch (RS3) prepared from high amylose maize starch by hydrothermal-alkali combined with ultrasonic treatment. Int J Biol Macromol 2024; 258:128938. [PMID: 38143061 DOI: 10.1016/j.ijbiomac.2023.128938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
In this study, type III resistant starch (RS3) was prepared from high amylose maize starch (HAMS) using hydrothermal (RS-H), hydrothermal combined ultrasonication (RS-HU), hydrothermal-alkali (RS-HA), and hydrothermal-alkali combined ultrasonication (RS-HAU). The role of the preparation methods and the mechanism of RS3 formation were analyzed by studying the multiscale structure and digestibility of the starch. The SEM, NMR, and GPC results showed that hydrothermal-alkali combined with ultrasonication could destroy the granule structure and α-1,6 glycosidic bond of HAMS and reduce the molecular weight of HAMS from 195.306 kDa to 157.115 kDa. The other methods had a weaker degree of effect on the structure of HAMS, especially hydrothermal and hydrothermal combined ultrasonication. The multiscale structural results showed that the relative crystallinity, short-range orderliness, and thermal stability of RS-HAU were significantly higher compared with native HAMS. In terms of digestion, RS-HAU had the highest RS content of 69.40 %. In summary, HAMS can generate many short-chain amylose due to structural damage, which rearrange to form digestion-resistant crystals. With correlation analysis, we revealed the relationship between the multiscale structure and the RS content, which can be used to guide the preparation of RS3.
Collapse
Affiliation(s)
- Shengjun Han
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yao Hu
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chao Li
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiyang Yu
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongyan Gu
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiqun Du
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Zhenyu Yu
- Food Processing Research Institute, Anhui Engineering Laboratory for Agroproducts Processing, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Xie J, Cheng L, Li Z, Li C, Hong Y, Gu Z. Effect of non-starch components on the structural properties, physicochemical properties and in vitro digestibility of waxy highland barley starch. Int J Biol Macromol 2024; 255:128013. [PMID: 37951447 DOI: 10.1016/j.ijbiomac.2023.128013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Highland barley (HB) endosperm with an amylose content of 0-10 % is called waxy HB (WHB). WHB is a naturally slow-digesting grain, and the interaction between its endogenous non-starch composition and the WHB starch (WHBS) has an important effect on starch digestion. This paper focuses on the mechanisms by which the components of β-glucan, proteins and lipids affect the molecular, granular, crystalline structure and digestive properties of WHBS. After eliminating the main nutrients except for starch, the estimated glycemic index (eGI) of the samples rose from 62.56 % to 92.93 %, and the rapidly digested starch content increased from 60.81 % to 98.56 %, respectively. The resistant starch (RS) content, in contrast, dropped from 38.61 % to 0.13 %. Comparatively to lipids, β-glucan and protein contributed more to the rise in eGI and decline in RS content. The crystalline characteristics of starch were enhanced in the decomposed samples. The samples' gelatinization properties improved, as did the order of the starch molecules. Protein and β-glucan form a dense matrix on the surface of WHBS particles to inhibit WHBS digestion. In summary, this study revealed the mechanism influencing the digestibility of WHBS from the perspective of endogenous non-starch composition and provided a theoretical basis to develop slow-digesting foods.
Collapse
Affiliation(s)
- Jingjing Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Jiaxing Institute of Future Food, Jiaxing 314050, People's Republic of China.
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Almeida RLJ, Santos NC, Muniz CES, da Silva Eduardo R, de Almeida Silva R, Ribeiro CAC, da Costa GA, de Figueiredo MJ, Galdino PO, Dos Santos ES. Red rice starch modification - Combination of the non-thermal method with a pulsed electric field (PEF) and enzymatic method using α-amylase. Int J Biol Macromol 2023; 253:127030. [PMID: 37742893 DOI: 10.1016/j.ijbiomac.2023.127030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
The objective of this study was to investigate the dual modification of red rice starch using pulsed electric field (PEF) and α-amylase, focusing on morpho-structural, thermal, and viscoamylographic properties. Native starch (Control) underwent various treatments: PEF at 30 kV cm-1 (PEF30), α-amylase at 9.0 U mg-1 (AA0), and a combination of both (PEF30 + α and α + PEF30). The PEF30 + α treatment exhibited the highest degree of digestion (10.66 %) and resulted in morphological changes in the starch granules, which became elongated and curved, with an increased average diameter of 50.49 μm compared to the control. The starch was classified as type A, with a maximum reduction in crystallinity of up to 21.17 % for PEF30. The deconvolution of FT-IR bands indicated an increase in the double helix degree (DDH) for PEF30 and AA0, while the degree of order (DO) was reduced for PEF30, AA0, and PEF30 + α. DSC analysis revealed significant modifications in gelatinization temperatures, particularly for PEF30, and these changes were supported by a reduction in gelatinization enthalpy (ΔH) of up to 28.05 % for AA0. These findings indicate that both individual and combined treatments promote a decrease in starch gelatinization and facilitate the process, requiring less energy. Differences were observed between the formulations subjected to single and alternating dual treatments, highlighting the influence of the order of PEF application on the structural characteristics of starch, especially when applied before the enzymatic treatment (PEF + α). Regarding the viscoamylographic parameters, it was observed that AA0 presented higher values than the control, indicating that α-amylase enhances the firmness of the paste. The double modification with PEF + α was more effective in reducing syneresis and starch retrogradation, leading to improvements in paste properties. This study provided significant insights into the modification of red rice starch using an efficient and environmentally friendly approach.
Collapse
Affiliation(s)
| | - Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cecilia Elisa Sousa Muniz
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Raphael da Silva Eduardo
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | | | - Maria José de Figueiredo
- Department of Agro-industrial Management and Technology, Federal University of Paraiba, Bananeiras, PB, Brazil
| | | | | |
Collapse
|
6
|
Zhong Y, Tian Y, Głazowska S, Blennow A, Shen L, Zhang A, Liu D, Liu X. Periodic changes in chain lengths distribution parameters of wheat starch during endosperm development. Food Chem 2023; 424:136455. [PMID: 37263096 DOI: 10.1016/j.foodchem.2023.136455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
This study analyzed the molecular structure of developing wheat endosperm starch at different stages after anthesis (DAA) using chain length distribution analysis by size exclusion chromatography (SEC) and fluorophore-assisted carbohydrate electrophoresis. Our results revealed periodic changes in the content of both amylose and amylopectin fractions. Specifically, the content of amylose chains with a degree of polymerization (DP) > 100 significantly decreased from 5 to 10 DAA (28% to 21%) and from 15 to 20 DAA (29% to 26%), but increased between 10 and 15 DAA (21% to 29%) and 20 to 25 DAA (30.0% to 33%). Conversely, the content of short amylopectin chains with DP ≤ 32 showed the opposite trend. Interestingly, mRNA expression levels of key starch biosynthesis genes did not exhibit periodic changes. These findings contribute to our understanding of starch biosynthesis and provide important insights for the development of starch-based products.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Yu Tian
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
7
|
Ding L, Liang W, Qu J, Persson S, Liu X, Herburger K, Kirkensgaard JJK, Khakimov B, Enemark-Rasmussen K, Blennow A, Zhong Y. Effects of natural starch-phosphate monoester content on the multi-scale structures of potato starches. Carbohydr Polym 2023; 310:120740. [PMID: 36925255 DOI: 10.1016/j.carbpol.2023.120740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Li Ding
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Wenxin Liang
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Klaus Herburger
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark; Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark; Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Kasper Enemark-Rasmussen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Andreas Blennow
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Yuyue Zhong
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Han S, Hao Z, Hu Y, Li C, Wang Y, Gu Z, Zhang Q, Xiao Y, Liu Y, Liu K, Zheng M, Zhou Y, Yu Z. Changes in morphological and structural characteristics of high amylose maize starch in alkaline solution at different temperatures. Int J Biol Macromol 2023:125397. [PMID: 37327927 DOI: 10.1016/j.ijbiomac.2023.125397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/15/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, high amylose maize starch(HAMS)was treated by Hydrothermal-alkali. SEM, SAXS, XRD, FTIR, LC-Raman, 13C CP/MAS NMR, GPC and TGA were used to study the changes in the granules and structure of HAMS. The results show that the granule morphology, lamellar structure, and birefringence of HAMS remained intact at 30 °C and 45 °C. With increasing temperature, the starch granules are fragmented, and the crystallinity, DD, FWHM values, molecular weight, and thermal stability of HAMS decrease. The double helical structure dissociated, and the content of amorphous regions increased, indicating the from order to the disorder of the HAMS structure. A similar annealing behavior occurred in HAMS at 45 °C, with the rearrangement of amylose and amylopectin occurring. At 75 °C and 90 °C, the short-chain starch produced by chain breakage regroups to form an ordered double helix structure. In general, the granule structure level of HAMS was damaged to different degrees at varying temperatures. HAMS showed gelatinization behavior in alkaline solutions when the temperature is 60 °C. This study expects to provide a model for the gelatinization theory of HAMS systems.
Collapse
Affiliation(s)
- Shengjun Han
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yao Hu
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chao Li
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongyan Gu
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiang Zhang
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kang Liu
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yibin Zhou
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Zhenyu Yu
- Food Processing Research Institute, China; Anhui Engineering Laboratory for Agro products Processing, China; Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, China; School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Cao Y, Wang X, Zhao C, Zhang H, Zheng M, Xu X, Liu J. Study on physicochemical, structural, and functional properties of Zhengdan958 and Xianyu335 cornstarch from newly harvested corn under postharvest ripening conditions at ambient temperature. Heliyon 2023; 9:e15650. [PMID: 37153400 PMCID: PMC10160505 DOI: 10.1016/j.heliyon.2023.e15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
The importance of starch in nutrition and industry is unquestionable. This study investigated the changes in physicochemical, structural, and functional properties of cornstarch from newly harvested Zhengdan958 (Zd958) and Xianyu335 (Xy335) corn during for 0, 20, 40, and 60 d at ambient temperature. The results showed no significant changes in the proximate components and apparent structure of Zd958 and Xy335 cornstarch under postharvest ripening conditions. Compared with 0 d, the molecular weight distribution and mass fraction of Zd958 and Xy335 cornstarch have changed significantly, the relative crystallinity (RC) has significantly increased from 26.4% to 26.5%-28.8% and 28.4%, and R1045/1022 has significantly increased from 0.828 to 0.826 to 0.843 and 0.883, respectively. The changes in structure indicated that the synthesis and rearrangement of cornstarch molecules formed highly ordered crystalline structures, and the ordered structures of long-range and short-range molecules increased. Moreover, the changes in structure affected the pasting characteristics and texture profiles of cornstarch, therefore, affecting the final food quality.
Collapse
Affiliation(s)
- Yong Cao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xiujuan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Corresponding author. 2888, Xincheng Street, Changchun, Jilin Province 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Corresponding author. 2888, Xincheng Street, Changchun, Jilin Province130118, China.
| |
Collapse
|
10
|
High-amylose maize starch: Structure, properties, modifications and industrial applications. Carbohydr Polym 2023; 299:120185. [PMID: 36876800 DOI: 10.1016/j.carbpol.2022.120185] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
High-amylose maize refers to a special type of maize cultivar with a 50 %-90 % amylose content of the total starch. High-amylose maize starch (HAMS) is of interest because it possesses unique functionalities and provides many health benefits for humans. Therefore, many high-amylose maize varieties have been developed via mutation or transgenic breeding approaches. From the literature reviewed, the fine structure of HAMS is different from the waxy and normal corn starches, influencing its gelatinization, retrogradation, solubility, swelling power, freeze-thaw stability, transparency, pasting and rheological properties, and even in vitro digestion. HAMS has undergone physical, chemical, and enzymatical modifications to enhance its characteristics and thereby broaden its possible uses. HAMS has also been used for the benefit of increasing resistant starch levels in food products. This review summarizes the recent developments in our understanding of the extraction and chemical composition, structure, physicochemical properties, digestibility, modifications, and industrial applications of HAMS.
Collapse
|
11
|
Zhang H, Su J, Wang Q, Yuan M, Li C. Structure, gelatinization, and digestion characteristics of starch from Chinese wild rice. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Haifeng Zhang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, JP, P. R. China
| | - Jiamin Su
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Qiuyu Wang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Meng Yuan
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
| | - Chunmei Li
- College of Tourism and Cuisine, Yangzhou University, Yangzhou, JP, P. R. China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou University, Yangzhou, JP, P. R. China
| |
Collapse
|
12
|
Kang X, Zhu W, Xu T, Sui J, Gao W, Liu Z, Jing H, Cui B, Qiao X, Abd El-Aty AM. Characterization of starch structures isolated from the grains of waxy, sweet, and hybrid sorghum ( Sorghum bicolor L. Moench). Front Nutr 2022; 9:1052285. [PMID: 36583213 PMCID: PMC9792479 DOI: 10.3389/fnut.2022.1052285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, starches were isolated from inbred (sweet and waxy) and hybrid (sweet and waxy) sorghum grains. Structural and property differences between (inbred and hybrid) sweet and waxy sorghum starches were evaluated and discussed. The intermediate fraction and amylose content present in hybrid sweet starch were lower than those in inbred sweet starch, while the opposite trend occurred with waxy starch. Furthermore, there was a higher A chain (30.93-35.73% waxy, 13.73-31.81% sweet) and lower B2 + B3 chain (18.04-16.56% waxy, 24.07-17.43% sweet) of amylopectin in hybrid sorghum starch. X-ray diffraction (XRD) and Fourier transform infrared reflection measurements affirm the relative crystalline and ordered structures of both varieties as follows: inbred waxy > hybrid waxy > hybrid sweet > inbred sweet. Small angle X-ray scattering and 13C CP/MAS nuclear magnetic resonance proved that the amylopectin content of waxy starch was positively correlated with lamellar ordering. In contrast, an opposite trend was observed in sweet sorghum starch due to its long B2 + B3 chain content. Furthermore, the relationship between starch granule structure and function was also concluded. These findings could provide a basic theory for the accurate application of existing sorghum varieties precisely.
Collapse
Affiliation(s)
- Xuemin Kang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wentao Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Tongcheng Xu
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jie Sui
- Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zhiquan Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Haichun Jing
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Bo Cui
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China,*Correspondence: Bo Cui,
| | - Xuguang Qiao
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China,Xuguang Qiao,
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey,A. M. Abd El-Aty,
| |
Collapse
|
13
|
Han J, Guo Z, Wang M, Liu S, Hao Z, Zhang D, Yong H, Weng J, Zhou Z, Li M, Li X. Using the dominant mutation gene Ae1-5180 ( amylose extender) to develop high-amylose maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:57. [PMID: 37313014 PMCID: PMC10248602 DOI: 10.1007/s11032-022-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Maize amylose is a type of high value-added starch used for medical, food, and chemical applications. Mutations in the starch branching enzyme (SBEIIb), with recessive ae (amylose extender) and dominant Ae1-5180 alleles, are the primary way to improve maize endosperm amylose content (AC). However, studies on Ae1-5180 mutation are scarce, and its roles in starch synthesis and breeding potential are unclear. We found that the AC of the Ae1-5180 mutant was 47.23%, and its kernels were tarnished and glassy and are easily distinguished from those of the wild type (WT), indicating that the dominant mutant has the classical characteristics of the ae mutant. Starch granules of Ae1-5180 became smaller, and higher in amount with irregular shape. The degree of amylopectin polymerisation changed to induce an increase in starch thermal stability. Compared with WT, the activity of granule-bound starch synthase and starch synthase was higher in early stages and lower in later stages, and other starch synthesis enzymes decreased during kernel development in the Ae1-5180 mutant. We successfully developed a marker (mu406) for the assisted selection of 17 Ae1-5180 near isogenic lines (NILs) according to the position of insertion of the Mu1 transposon in the SBEIIb promoter of Ae1-5180. JH214/Ae1-5180, CANS-1/Ae1-5180, CA240/Ae1-5180, and Z1698/Ae1-5180 have high breeding application potential with their higher AC (> 40%) and their 100-kernel weight decreased to < 25% compared to respective recurrent parents. Therefore, using the dominant Ae1-5180 mutant as a donor can detect the kernel phenotype and AC of Ae1-5180-NILs in advance, thereby accelerating the high-amylose breeding process. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01323-7.
Collapse
Affiliation(s)
- Jienan Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zenghui Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Meijuan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Shiyuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang China
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Degui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Hongjun Yong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Zhiqiang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Mingshun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081 China
| |
Collapse
|
14
|
Pautong PA, Añonuevo JJ, de Guzman MK, Sumayao R, Henry CJ, Sreenivasulu N. Evaluation of in vitro digestion methods and starch structure components as determinants for predicting the glycemic index of rice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Lee CS, Chung HJ. Enhancing Resistant Starch Content of High Amylose Rice Starch through Heat-Moisture Treatment for Industrial Application. Molecules 2022; 27:6375. [PMID: 36234911 PMCID: PMC9573617 DOI: 10.3390/molecules27196375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study is to enhance the resistant starch (RS) content of high amylose rice starch with heat-moisture treatment (HMT) for industrial application. The optimized HMT condition for achieving the highest RS content established using response surface methodology (RSM) was a temperature of 100 °C, moisture content of 24.2%, and a time of 11.5 h. Upon HMT, the RS content increased from 32.1% for native starch to 46.4% in HMT starch with optimized condition. HMT of the starches reduced the solubility and swelling power. The surface of HMT starch granules was more irregular than native starch. The X-ray diffraction (XRD) peak intensity at 2θ = 5° was greatly reduced by HMT, and the peaks at 22.7° and 24.2° were merged. HMT increased the gelatinization temperature and reduced the gelatinization enthalpy. HMT provides a method for the production of high-yield RS2 with high amylose rice starch in industrial application.
Collapse
Affiliation(s)
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
16
|
Screening methods for cereal grains with different starch components: A mini review. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ha M, Jeong HY, Lim ST, Chung HJ. The cooking method features controlling eating quality of cooked rice: An explanation from the view of starch structure in leachate and morphological characteristics. Food Res Int 2022; 162:111980. [DOI: 10.1016/j.foodres.2022.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
|
18
|
Zhong Y, Qu JZ, Liu X, Ding L, Liu Y, Bertoft E, Petersen BL, Hamaker BR, Hebelstrup KH, Blennow A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydr Polym 2022; 287:119327. [DOI: 10.1016/j.carbpol.2022.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
|
19
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
20
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
21
|
Lin L, Zhao S, Li E, Guo D, Wei C. Structural properties of starch from single kernel of high-amylose maize. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Li C, Dhital S, Gidley MJ. High-amylose wheat bread with reduced in vitro digestion rate and enhanced resistant starch content. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Thermal and structural study of drying method effect in high amylose starch- beta-carotene nanoparticles prepared with cold gelatinization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Physicochemical, rheological and digestibility characterization of starch extracted from the marine green macroalga Ulva ohnoi. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Wang L, Xu Z, Zhang Y, Duan Y, Zhang Y, Wu Y, Yu X, Chen G, Xiong F. Agronomic Traits and Physicochemical Properties of Starch of Different Grain Positions in Wheat Spike Under Nitrogen Treatment. STARCH-STARKE 2021. [DOI: 10.1002/star.202100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leilei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Zhisheng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement Nanjing Agricultural University Nanjing 210095 China
| | - Yong Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Yuren Duan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Yumeng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Yunfei Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Xurun Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Gang Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| | - Fei Xiong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture & Agri‐Product Safety/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
| |
Collapse
|
26
|
New Type of Food Processing Material: The Crystal Structure and Functional Properties of Waxy and Non-Waxy Proso Millet Resistant Starches. Molecules 2021; 26:molecules26144283. [PMID: 34299557 PMCID: PMC8307514 DOI: 10.3390/molecules26144283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Resistant starch (RS) is widely used in the food industry because of its ability to regulate and protect the small intestine, but their distinct effects on the structural and functional properties of waxy and non-waxy proso millet starches are not completely understood. The crystalline structure and physicochemical properties of waxy and non-waxy proso millets' starch samples were analyzed after heat-moisture treatment (HMT). The analysis revealed significant differences between the RS of waxy and non-waxy proso millets. The crystal type of proso millets' starch changed from type A to type B + V. The relative crystallinity of the RS of waxy proso millet was better than that of non-waxy proso millet. The gelatinization temperature and thermal stability of RS significantly increased, and the pasting temperature (PTM) of the RS of waxy proso millet was the highest. The water solubility and swelling power of the RS in proso millet decreased, and the viscoelasticity improved. The correlation between the short-range ordered structure of RS and ΔH, and gelatinization properties has a stronger correlation. This study provides practical information for improving the nutritional benefits of waxy and non-waxy proso millet in food applications.
Collapse
|
27
|
Cai W, Wang Y, Hou Q, Zhang Z, Tang F, Shan C, Yang X, Guo Z. Rice varieties affect bacterial diversity, flavor, and metabolites of zha-chili. Food Res Int 2021; 147:110556. [PMID: 34399533 DOI: 10.1016/j.foodres.2021.110556] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023]
Abstract
The structure and diversity of bacterial communities in spontaneously fermented zha-chili prepared using two different rice varieties (glutinous rice and indica rice) were investigated using high-throughput sequencing. Through metabolic pathway prediction, electronic senses and metabolite analysis, the relationships among the rice varieties used for preparation and the bacterial microbiota, flavor, and organic acid/amino acid metabolites in zha-chili were elucidated. We observed that the structure of bacterial communities in zha-chili samples differed significantly with the rice variety used during fermentation (p < 0.05), and that there was a greater abundance of bacterial species in zha-chili prepared using glutinous rice. Lactic acid bacteria were predominant in zha-chili, with an average relative abundance of 77.09%. The aroma of zha-chili was influenced by the raw material itself, while the characteristic tastes of zha-chili - including sourness, umami and richness - were significantly correlated with the bacterial microbiota. In addition, the abundance of lactic acid bacteria was positively correlated with the levels of organic acids and negatively correlated with the levels of amino acids. This also made the zha-chili prepared using glutinous rice sourer and imparted more umami taste to the zha-chili prepared using indica rice. Our observations provide a reference for the evaluation of zha-chili quality and could effectively guide the improvement of zha-chili products.
Collapse
Affiliation(s)
- Wenchao Cai
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China.
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China.
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China.
| | - Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China.
| | - Fengxian Tang
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China.
| | - Chunhui Shan
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China.
| | - Xinquan Yang
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China; Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China.
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China; Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Sciences, Xiangyang, Hubei Province, PR China.
| |
Collapse
|
28
|
Ren Y, Yuan TZ, Chigwedere CM, Ai Y. A current review of structure, functional properties, and industrial applications of pulse starches for value-added utilization. Compr Rev Food Sci Food Saf 2021; 20:3061-3092. [PMID: 33798276 DOI: 10.1111/1541-4337.12735] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022]
Abstract
Pulse crops have received growing attention from the agri-food sector because they can provide advantageous health benefits and offer a promising source of starch and protein. Pea, lentil, and faba bean are the three leading pulse crops utilized for extracting protein concentrate/isolate in food industry, which simultaneously generates a rising volume of pulse starch as a co-product. Pulse starch can be fractionated from seeds using dry and wet methods. Compared with most commercial starches, pea, lentil, and faba bean starches have relatively high amylose contents, longer amylopectin branch chains, and characteristic C-type polymorphic arrangement in the granules. The described molecular and granular structures of the pulse starches impart unique functional attributes, including high final viscosity during pasting, strong gelling property, and relatively low digestibility in a granular form. Starch isolated from wrinkled pea-a high-amylose mutant of this pulse crop-possesses an even higher amylose content and longer branch chains of amylopectin than smooth pea, lentil, and faba bean starches, which make the physicochemical properties and digestibility of the former distinctively different from those of common pulse starches. The special functional properties of pulse starches promote their applications in food, feed, bioplastic and other industrial products, which can be further expanded by modifying them through chemical, physical and/or enzymatic approaches. Future research directions to increase the fractionation efficiency, improve the physicochemical properties, and enhance the industrial utilization of pulse starches have also been proposed. The comprehensive information covered in this review will be beneficial for the pulse industry to develop effective strategies to generate value from pulse starch.
Collapse
Affiliation(s)
- Yikai Ren
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Tommy Z Yuan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
29
|
Chi C, Li X, Huang S, Chen L, Zhang Y, Li L, Miao S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Zhu D, Fang C, Qian Z, Guo B, Huo Z. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106170] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Iqbal S, Wu P, Kirk TV, Chen XD. Amylose content modulates maize starch hydrolysis, rheology, and microstructure during simulated gastrointestinal digestion. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106171] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Affiliation(s)
- Dery Bede
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Luhu Avenue Wuxi Jiangsu Province 214122 P. R. China
| | - Lou Zaixiang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Luhu Avenue Wuxi Jiangsu Province 214122 P. R. China
| |
Collapse
|
33
|
Zhong Y, Wu Y, Blennow A, Li C, Guo D, Liu X. Structural characterization and functionality of starches from different high-amylose maize hybrids. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Villas-Boas F, Facchinatto WM, Colnago LA, Volanti DP, Franco CML. Effect of amylolysis on the formation, the molecular, crystalline and thermal characteristics and the digestibility of retrograded starches. Int J Biol Macromol 2020; 163:1333-1343. [DOI: 10.1016/j.ijbiomac.2020.07.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
|
35
|
The relationship between the expression pattern of starch biosynthesis enzymes and molecular structure of high amylose maize starch. Carbohydr Polym 2020; 247:116681. [PMID: 32829809 DOI: 10.1016/j.carbpol.2020.116681] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/21/2020] [Indexed: 11/20/2022]
Abstract
Two high amylose (HAM) inbred lines with apparent amylose contents of 55 % and 62 %, respectively, were selected to explore the relationship between molecular structure and gene expression of starch-synthase involved enzymes. GPC analysis of debranched starches showed that the HAM starches (HAMSs) had shorter amylose chains and longer amylopectin chains than normal maize starch (NMS). FACE analysis showed that these HAMSs had a higher content of amylopectin chains of DP > 21. Quantitative Real-Time PCR analysis showed that the HAM lines had specifically low expression of the starch branching enzyme IIb (SBEIIb), and the starch synthase IIIa (SSIIIa) homologue, and high expression of the isoamylase 2 (ISA2), potentially suppressing the generation of amylopectin molecules through deficient branching and excessive debranching process, thereby increasing the relative amylose content. A high expression of GBSS1 was potentially associated with increased short amylose chain lengths in HAMSs.
Collapse
|
36
|
Ashogbon AO. Dual modification of various starches: Synthesis, properties and applications. Food Chem 2020; 342:128325. [PMID: 33153808 DOI: 10.1016/j.foodchem.2020.128325] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
The problems associated with native starches (NSs) and single modified starches were stated in order to justify dual modification of various starches. Broadly, there are two types of dual modification, i.e., homogeneous dual modification and heterogeneous dual modification. The combination of two physical modifications, e.g., (extrusion/annealing); two chemical modifications, e.g., (succinylation/cross-linking) and two enzymes modification (α-amylase/pullulanase) falls under the former classification and the latter classification is the combination of two of each of the differently stated modifications, e.g., acetylation/annealing, extrusion/succinylation, and microwave-assisted phosphorylation, etc. The classification, synthesis, properties and applications of dually modified starches were discussed. There is an attempt to elucidate the problems of each of the single modification in order to justify dual modifications. In dual modifications, the order of reactions, the reaction conditions, the medium of reaction, and the botanical sources of the various starches are very important parameters.
Collapse
|
37
|
Mei J, Zhang L, Ren M, Lin Y, Fu Z. Insight into Multi‐Scale Structure and Digestibility of Sugar Palm (
Arenga pinnata
) Starch Subjected to High Speed Jet Treatment. STARCH-STARKE 2020. [DOI: 10.1002/star.201900278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiang‐Yang Mei
- Institute of Light Industry and Food Engineering Guangxi University No. 100, Daxuedong Road, Xixiangtang District Nanning Guangxi 530004 China
| | - Lu Zhang
- Institute of Light Industry and Food Engineering Guangxi University No. 100, Daxuedong Road, Xixiangtang District Nanning Guangxi 530004 China
| | - Min‐Hong Ren
- Institute of Light Industry and Food Engineering Guangxi University No. 100, Daxuedong Road, Xixiangtang District Nanning Guangxi 530004 China
| | - Ying Lin
- Institute of Light Industry and Food Engineering Guangxi University No. 100, Daxuedong Road, Xixiangtang District Nanning Guangxi 530004 China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University No. 100, Daxuedong Road, Xixiangtang District Nanning Guangxi 530004 China
| |
Collapse
|
38
|
He W, Liu X, Lin L, Xu A, Hao D, Wei C. The defective effect of starch branching enzyme IIb from weak to strong induces the formation of biphasic starch granules in amylose-extender maize endosperm. PLANT MOLECULAR BIOLOGY 2020; 103:355-371. [PMID: 32193789 DOI: 10.1007/s11103-020-00998-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/12/2020] [Indexed: 05/07/2023]
Abstract
Biphasic starch granules in maize ae mutant underwent the weak to strong SBEIIb-defective effect during endosperm development, leading to no birefringence in their exterior due to extended long branch-chains of amylopectin. Biphasic starch granules are usually detected regionally in cereal endosperm lacking starch branching enzyme (SBE). However, their molecular structure, formation mechanism, and regional distribution are unclear. In this research, biphasic starch granules were observed in the inner region of crown endosperm of maize ae mutant, and had poorly oriented structure with comb-like profiles in their exterior. The inner endosperm (IE) rich in biphasic starch granules and outer endosperm (OE) without biphasic starch granules were investigated. The starch had lower amylose content and higher proportion of long branch-chains of amylopectin in IE than in OE, and the exterior of biphasic starch granules had less amylose and more long branch-chains of amylopectin than the interior. Compared with OE, the expression pattern of starch synthesis related enzymes changed significantly in IE. The granule-bound starch synthase I activity within biphasic starch granules decreased slightly. The IE experienced more severe hypoxic stress than OE, and the up-regulated anaerobic respiration pathway indicated an increase in carbon consumption. The starch in IE underwent the SBEIIb-defective effect from weak to strong due to the lack of sufficient carbon inflow, leading to the formation of biphasic starch granules and their regional distribution in endosperm. The results provided information for understanding the biphasic starch granules.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiangguo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun, 130033, China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Ahui Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dongyun Hao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun, 130033, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
39
|
Jin Q, Xu X. Microstructure, gelatinization and pasting properties of rice starch under acid and heat treatments. Int J Biol Macromol 2020; 149:1098-1108. [DOI: 10.1016/j.ijbiomac.2020.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
|
40
|
Molecular structure of amylopectin/amylose from Solanum lycocarpum starch after enzymatic hydrolysis. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Lin L, Huang J, Zhang L, Zhang C, Liu Q, Wei C. Effects of inhibiting starch branching enzymes on molecular and crystalline structures of starches from endosperm different regions in rice. Food Chem 2019; 301:125271. [DOI: 10.1016/j.foodchem.2019.125271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
|
42
|
Effects of waterlogging at grain formation stage on starch structure and functionality of waxy maize. Food Chem 2019; 294:187-193. [DOI: 10.1016/j.foodchem.2019.05.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022]
|
43
|
Zhong Y, Liang W, Pu H, Blennow A, Liu X, Guo D. Short-time microwave treatment affects the multi-scale structure and digestive properties of high-amylose maize starch. Int J Biol Macromol 2019; 137:870-877. [DOI: 10.1016/j.ijbiomac.2019.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
44
|
Xu A, Lin L, Guo K, Liu T, Yin Z, Wei C. Physicochemical properties of starches from vitreous and floury endosperms from the same maize kernels. Food Chem 2019; 291:149-156. [DOI: 10.1016/j.foodchem.2019.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
|
45
|
Lin L, Pan T, Liu Q, Wei C. Cooking, morphological, mechanical and digestion properties of cooked rice with suppression of starch branching enzymes. Int J Biol Macromol 2019; 137:187-196. [PMID: 31255622 DOI: 10.1016/j.ijbiomac.2019.06.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Kernel components and some physicochemical properties of cooked rice were investigated and compared between a popular japonica rice Wu-xiang 9915 (WX) and its transgenic line (WX-SBEI/IIb-) with suppression of starch branching enzyme I/IIb. The starch content, especially amylopectin content, was significantly lower in WX-SBEI/IIb- than in WX. Brown rice flour had markedly higher gelatinization temperature in WX-SBEI/IIb- than in WX. The cooked kernels of WX-SBEI/IIb- had significantly lower volume swelling, leached material amount and wet weight than those of WX during cooking. Starch granules in WX kernel could be gelatinized completely and gradually from the exterior to the interior of endosperm, leading to breakage of cooked kernels. However, aggregate, elongated and small starch granules in the exterior of WX-SBEI/IIb- endosperm could not be gelatinized completely and remained their morphologies during cooking, leading to a high resistance of kernels to cooking. Brown rice flour of WX-SBEI/IIb- had significantly lower pasting viscosities, storage modulus and loss modulus but higher loss angle tangent than that of WX. The cooked kernels of WX-SBEI/IIb- had considerably higher hardness, springiness and cohesiveness but lower adhesiveness than those of WX. The starch in cooked kernels was more resistant to digestion in WX-SBEI/IIb- than in WX.
Collapse
Affiliation(s)
- Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ting Pan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
46
|
Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachis hypogaea). Food Chem 2019; 276:583-590. [DOI: 10.1016/j.foodchem.2018.10.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
47
|
Teng B, Zhang C, Zhang Y, Du S, Xi M, Song F, Ni J, Luo Z, Ni D. Effects of different Wx alleles on amylopectin molecular structure and enzymatic hydrolysis properties of rice starch. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2018.1561464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bin Teng
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Chen Zhang
- College of Life Science, Anhui Agricultural University, Hefei, P. R. China
| | - Ying Zhang
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Shiyun Du
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Min Xi
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Fengshun Song
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Jinlong Ni
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Zhixiang Luo
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| | - Dahu Ni
- Institute of Rice Research, Anhui Academy of Agricultural Sciences, Hefei, P. R. China
| |
Collapse
|
48
|
Zhang L, Liu T, Hu G, Guo K, Wei C. Comparison of Physicochemical Properties of Starches from Nine Chinese Chestnut Varieties. Molecules 2018; 23:molecules23123248. [PMID: 30544638 PMCID: PMC6321317 DOI: 10.3390/molecules23123248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
Chestnut is a popular food in many countries and is also an important starch source. In previous studies, physicochemical properties of starches have been compared among different Chinese chestnut varieties growing under different conditions. In this study, nine Chinese chestnut varieties from the same farm were investigated for starch physicochemical properties to exclude the effects of growing conditions. The dry kernels had starch contents from 42.7 to 49.3%. Starches from different varieties had similar morphologies and exhibited round, oval, ellipsoidal, and polygonal shapes with a central hilum and smooth surface. Starch had bimodal size distribution and the volume-weighted mean diameter ranged from 7.2 to 8.2 μm among nine varieties. The starches had apparent amylose contents from 23.8 to 27.3% but exhibited the same C-type crystalline structure and similar relative crystallinity, ordered degree, and lamellar structure. The gelatinization onset, peak, and conclusion temperatures ranged from 60.4 to 63.9 °C, from 64.8 to 68.3 °C, and from 70.5 to 74.5 °C, respectively, among nine starches; and the peak, hot, breakdown, final, and setback viscosities ranged from 5524 to 6505 mPa s, from 3042 to 3616 mPa s, from 2205 to 2954 mPa s, from 4378 to 4942 mPa s, and from 1326 to 1788 mPa s, respectively. The rapidly digestible starch, slowly digestible starch, and resistant starch ranged from 2.6 to 3.7%, from 5.7 to 12.7%, and from 84.4 to 90.7%, respectively, for native starch, and from 79.6 to 89.5%, from 1.3 to 3.8%, and from 7.1 to 17.4%, respectively, for gelatinized starch.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Tianxiang Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Guanglong Hu
- Institute of Forest and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100093, China.
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
49
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2495-2511. [PMID: 30374526 DOI: 10.1007/s00122-018-3221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 05/12/2023]
Abstract
Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.
Collapse
Affiliation(s)
- Jian Xia
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dong Zhu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ruomei Wang
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yue Cui
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
50
|
The relationship between enzyme hydrolysis and the components of rice starches with the same genetic background and amylopectin structure but different amylose contents. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|