1
|
Jia H, Li Y, Tian Y, Li N, Zheng M, Zhang W, Jiang Y, Zhao Q, Man C. Recent advances in electrospray encapsulation of probiotics: influencing factors, natural polymers and emerging technologies. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39757917 DOI: 10.1080/10408398.2024.2447307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The probiotic food sector is rapidly growing due to increased consumer demand for nutritional supplements. However, ensuring probiotic viability within the harsh conditions of the gastrointestinal tract remains a major challenge. While probiotic encapsulation is a promising solution to enhance probiotic viability, most traditional encapsulation methods have significant limitations. This review underscores the significance of adopting novel encapsulation technologies, particularly electrospray (ES), which offers superior encapsulation efficiency and versatility. It begins with an introduction to the principles and classification of ES, analyzes factors influencing the properties of ES microcapsules, and reviews the use of natural polymers in ES-based encapsulation. Additionally, it discusses recent advancements in this field, focusing on improvements in ES equipment (e.g., coaxial ES and emulsion ES) and the integration of ES with other technologies (e.g., microfluidic ES and ES-fluidized bed coating). Finally, it highlights existing challenges and explores future prospects in this evolving field, offering valuable insights for advancing probiotic encapsulation technologies and enhancing public health outcomes.
Collapse
Affiliation(s)
- Haifu Jia
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Nan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Miao Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Jadhav HB, Choudhary P, Gogate P, Ramniwas S, Mugabi R, Ahmad Z, Mohammed Basheeruddin Asdaq S, Ahmad Nayik G. Sonication as a potential tool in the formation of protein-based stable emulsion - Concise review. ULTRASONICS SONOCHEMISTRY 2024; 107:106900. [PMID: 38781674 PMCID: PMC11141282 DOI: 10.1016/j.ultsonch.2024.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Emulsion systems are extensively used in the food processing sector and the use of natural emulsifiers like proteins for stabilizing emulsion has been in demand from consumers due to increased awareness about the consumption of healthy food. Numerous methods are available for the preparation of emulsion, but ultrasound got more attention among common methods owing to its economical and environment-friendly characteristics. The physical effects caused by to bursting of the cavity bubble, result in reduced droplet size, thus forming an emulsion with appreciable stability. Ultrasound ameliorates the emulsifying characteristics of natural emulsifiers like protein and improves the storage stability of the emulsion by positively boosting the rheological, emulsifying characteristics, improving zeta potential, and reducing average droplet size. The stability of protein-based emulsion is affected by environmental stresses hence conjugate of protein with polysaccharide showed good emulsifying characteristics. However, the data on the effect of ultrasound parameters on emulsifier properties is lacking and there is a need to develop a sonication device that can carry out large-scale emulsification operation. The review covers the principles and mechanisms of ultrasound-assisted formation of protein-based and protein-based conjugate emulsions. Further, the effect of ultrasound on various characteristics of protein-based emulsion is also explored. This review will provide concise data to the researchers to extend their experiments in the area of ultrasound emulsification which will help in commercializing the technology at the industrial scale.
Collapse
Affiliation(s)
- Harsh B Jadhav
- PIHM, Unit UMET, INRAE, 369 Rue Jules Guesde 59650 Villeneuve d'Ascq, France; Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic, Bhiwani, Haryana.
| | - Parag Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Zubair Ahmad
- Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian-192303, J&K, India.
| |
Collapse
|
3
|
Venezia V, Prieto C, Verrillo M, Grumi M, Silvestri B, Vitiello G, Luciani G, Lagaron JM. Electrospun films incorporating humic substances of application interest in sustainable active food packaging. Int J Biol Macromol 2024; 263:130210. [PMID: 38365144 DOI: 10.1016/j.ijbiomac.2024.130210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Sustainable active food packaging is essential to reduce the use of plastics, preserve food quality and minimize the environmental impact. Humic substances (HS) are rich in redox-active compounds, such as quinones, phenols, carboxyl, and hydroxyl moieties, making them functional additives for biopolymeric matrices, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Herein, composites made by incorporating different amounts of HS into PHBV were developed using the electrospinning technology and converted into homogeneous and continuous films by a thermal post-treatment to obtain a bioactive and biodegradable layer which could be part of a multilayer food packaging solution. The morphology, thermal, optical, mechanical, antioxidant and barrier properties of the resulting PHBV-based films have been evaluated, as well as the antifungal activity against Aspergillus flavus and Candida albicans and the antimicrobial properties against both Gram (+) and Gram (-) bacterial strains. HS show great potential as natural additives for biopolymer matrices, since they confer antioxidant, antimicrobial, and antifungal properties to the resulting materials. In addition, barrier, optical and mechanical properties highlighted that the obtained films are suitable for sustainable active packaging. Therefore, the electrospinning methodology is a promising and sustainable approach to give biowaste a new life through the development of multifunctional materials suitable in the active bio-packaging.
Collapse
Affiliation(s)
- Virginia Venezia
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy; DiSt, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy.
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | | | - Mattia Grumi
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| | - Giuseppe Vitiello
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy; CSGI-Center for Colloid and Surface Science, Via Della Lastruccia 3, 50019 Florence, Italy
| | - Giuseppina Luciani
- DICMaPI, Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| |
Collapse
|
4
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
5
|
Growth Potential of Selected Yeast Strains Cultivated on Xylose-Based Media Mimicking Lignocellulosic Wastewater Streams: High Production of Microbial Lipids by Rhodosporidium toruloides. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential of Rhodosporidium toruloides, Candida oleophila, Metschnikowia pulcherima, and Cryptococcus curvatus species to produce single-cell-oil (SCO) and other valuable metabolites on low-cost media, based on commercial-type xylose, was investigated. Rhodosporidium strains were further evaluated in shake-flasks using different lignosulphonate (LS) concentrations, in media mimicking waste streams derived from the paper and pulp industry. Increasing the LS concentration up to 40 g/L resulted in enhanced dry cell weight (DCW) while SCO production increased up to ~5.0 g/L when R. toruloides NRRL Y-27012 and DSM 4444 were employed. The intra-cellular polysaccharide production ranged from 0.9 to 2.3 g/L in all fermentations. Subsequent fed-batch bioreactor experiments with R. toruloides NRRL Y-27012 using 20 g/L of LS and xylose, led to SCO production of 17.0 g/L with maximum lipids in DCW (YL/X) = 57.0% w/w. The fatty acid (FA) profile in cellular lipids showed that oleic (50.3–63.4% w/w) and palmitic acid (23.9–31.0%) were the major FAs. Only SCO from batch trials of R. toruloides strains contained α-linolenic acid. Media that was supplemented with various LS concentrations enhanced the unsaturation profile of SCO from R. toruloides NRRL Y-27012. SCO from R. toruloides strains could replace plant-based commodity oils in oleochemical-operations and/or it could be micro- and nano-encapsulated into novel food-based formulas offering healthier food-products.
Collapse
|
6
|
Charles APR, Mu R, Jin TZ, Li D, Pan Z, Rakshit S, Cui SW, Wu Y. Application of yellow mustard mucilage and starch in nanoencapsulation of thymol and carvacrol by emulsion electrospray. Carbohydr Polym 2022; 298:120148. [DOI: 10.1016/j.carbpol.2022.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022]
|
7
|
Evaluation of green tea extract incorporated antimicrobial/antioxidant/biodegradable films based on polycaprolactone/polylactic acid and its application in cocktail sausage preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Ralaivao M, Lucas J, Rocha F, Estevinho BN. Food-Grade Microencapsulation Systems to Improve Protection of the Epigallocatechin Gallate. Foods 2022; 11:foods11131990. [PMID: 35804803 PMCID: PMC9265360 DOI: 10.3390/foods11131990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Epigallocatechin gallate (EGCG) is a catechin and one of the most abundant polyphenols in green tea, and it is under research for its potential benefit to human health and for its potential to be used in disease treatments, such as for cancer. However, the effectiveness of polyphenols depends on preserving their bioactivity, stability, and bioavailability. The EGCG was microencapsulated by a spray-drying process, using different biopolymers as encapsulating agents (gum arabic, modified chitosan and sodium alginate), in order to overcome some of the limitations of this compound. The microparticles showed a diameter around 4.22 to 41.55 µm (distribution in volume) and different morphologies and surfaces, depending on the encapsulating agent used. The EGCG release was total, and it was achieved in less than 21 min for all the formulations tested. The EGCG encapsulation efficiency ranged between 78.5 and 100.0%. The release profiles were simulated and evaluated using three kinetic models: Korsmeyer-Peppas (R2: 0.739-0.990), Weibull (R2: 0.963-0.994) and Baker-Lonsdale (R2: 0.746-0.993). The Weibull model was the model that better adjusted to the experimental EGCG release values. This study proves the success of the EGCG microencapsulation, using the spray-drying technique, opening the possibility to insert dried EGCG microparticles in different food and nutraceutical products.
Collapse
Affiliation(s)
- Mathis Ralaivao
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ENSCM—Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’Ecole Normale, CEDEX 5, 34296 Montpellier, France
| | - Jade Lucas
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ENSCM—Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l’Ecole Normale, CEDEX 5, 34296 Montpellier, France
| | - Fernando Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N. Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.R.); (J.L.); (F.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-22-041-3699
| |
Collapse
|
9
|
Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: Enhancement of oxidative stability and photoprotection. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of natural food ingredients has been increased in recent years due to the negative health implications of synthetic ingredients. Natural bioactive compounds are important for the development of health-oriented functional food products with better quality attributes. The natural bioactive compounds possess different types of bioactivities, e.g., antioxidative, antimicrobial, antihypertensive, and antiobesity activities. The most common method for the development of functional food is the fortification of these bioactive compounds during food product manufacturing. However, many of these natural bioactive compounds are heat-labile and less stable. Therefore, the industry and researchers proposed the microencapsulation of natural bioactive compounds, which may improve the stability of these compounds during processing and storage conditions. It may also help in controlling and sustaining the release of natural compounds in the food product matrices, thus, providing bioactivity for a longer duration. In this regard, several advanced techniques have been explored in recent years for microencapsulation of bioactive compounds, e.g., essential oils, healthy oils, phenolic compounds, flavonoids, flavoring compounds, enzymes, and vitamins. The efficiency of microencapsulation depends on various factors which are related to natural compounds, encapsulating materials, and encapsulation process. This review provides an in-depth discussion on recent advances in microencapsulation processes as well as their application in food systems.
Collapse
|
11
|
Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Ali A, Zaman A, Sayed E, Evans D, Morgan S, Samwell C, Hall J, Arshad MS, Singh N, Qutachi O, Chang MW, Ahmad Z. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Adv Drug Deliv Rev 2021; 176:113788. [PMID: 33957180 DOI: 10.1016/j.addr.2021.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Electrohydrodynamic atomisation (EHDA) technologies have evolved significantly over the past decade; branching into several established and emerging healthcare remits through timely advances in the engineering sciences and tailored conceptual process designs. More specifically for pharmaceutical and drug delivery spheres, electrospraying (ES) has presented itself as a high value technique enabling a plethora of different particulate structures. However, when coupled with novel formulations (e.g. co-flows) and innovative device aspects (e.g., materials and dimensions), core characteristics of particulates are manipulated and engineered specifically to deliver an application driven need, which is currently lacking, ranging from imaging and targeted delivery to controlled release and sensing. This demonstrates the holistic nature of these emerging technologies; which is often overlooked. Parametric driven control during particle engineering via the ES method yields opportunistic properties when compared to conventional methods, albeit at ambient conditions (e.g., temperature and pressure), making this extremely valuable for sensitive biologics and molecules of interest. Furthermore, several processing (e.g., flow rate, applied voltage and working distance) and solution (e.g., polymer concentration, electrical conductivity and surface tension) parameters impact ES modes and greatly influence the production of resulting particles. The formation of a steady cone-jet and subsequent atomisation during ES fabricates particles demonstrating monodispersity (or near monodispersed), narrow particle size distributions and smooth or textured morphologies; all of which are successfully incorporated in a one-step process. By following a controlled ES regime, tailored particles with various intricate structures (hollow microspheres, nanocups, Janus and cell-mimicking nanoparticles) can also be engineered through process head modifications central to the ES technique (single-needle spraying, coaxial, multi-needle and needleless approaches). Thus, intricate formulation design, set-up and combinatorial engineering of the EHDA process delivers particulate structures with a multitude of applications in tissue engineering, theranostics, bioresponsive systems as well as drug dosage forms for specific delivery to diseased or target tissues. This advanced technology has great potential to be implemented commercially, particularly on the industrial scale for several unmet pharmaceutical and medical challenges and needs. This review focuses on key seminal developments, ending with future perspectives addressing obstacles that need to be addressed for future advancement.
Collapse
|
13
|
Paximada P, Batchelor M, Lillevang S, Evageliou V, Howarth M, Dubey BN. Impact of lipophilic surfactant on the stabilization of water droplets in sunflower oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paraskevi Paximada
- National Centre of Excellence for Food EngineeringSheffield Hallam University Sheffield UK
| | | | | | - Vasiliki Evageliou
- Department of Food Science and Human Nutrition Agricultural University of Athens Athens Greece
| | - Martin Howarth
- National Centre of Excellence for Food EngineeringSheffield Hallam University Sheffield UK
| | - Bipro N. Dubey
- National Centre of Excellence for Food EngineeringSheffield Hallam University Sheffield UK
| |
Collapse
|
14
|
Dhiman A, Suhag R, Singh A, Prabhakar PK. Mechanistic understanding and potential application of electrospraying in food processing: a review. Crit Rev Food Sci Nutr 2021; 62:8288-8306. [PMID: 34039180 DOI: 10.1080/10408398.2021.1926907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrospraying (ESPR) is a cost effective, flexible, and facile method that has been used in the pharmaceutical industry, and thanks to its wide variety of uses such as bioactive compound encapsulation, micronization, and food product coating, which have received a great attention in the food market. It uses a jet of polymer solution for processing food and food-derived products. Droplet size can be extremely small up to nanometers and can be regulated by altering applied voltage and flow rate. Compared to conventional techniques, it is simple, cost effective, uses less solvent and products are obtained in one step with a very high encapsulation efficiency (EE). Encapsulation provided using it protects bioactives from moisture, thermal, oxidative, and mechanical stresses, and thus provides them a good storage stability which will help in increasing the application of these ingredients in food formulation. This technique has an enormous potential for increasing the shelf life of fruit and vegetables through coating and improvement of eating quality. This study is aimed at overviewing the operating principles of ESPR, working parameters, applications, and advantages in the food sector. The article also covers new ESPR techniques like supercritical assisted ESPR and ESPR assisted by pressurized gas (EAPG) which have high yield as compared to conventional ESPR. This article is enriched with good information for research and development in ESPR techniques for development of novel foods.
Collapse
Affiliation(s)
- Atul Dhiman
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Rajat Suhag
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Arashdeep Singh
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pramod K Prabhakar
- Department of Food Science Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| |
Collapse
|
15
|
Sabaghi M, Hoseyni SZ, Tavasoli S, Mozafari MR, Katouzian I. Strategies of confining green tea catechin compounds in nano-biopolymeric matrices: A review. Colloids Surf B Biointerfaces 2021; 204:111781. [PMID: 33930733 DOI: 10.1016/j.colsurfb.2021.111781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023]
Abstract
Catechins are polyphenolic compounds which abundantly occur in the plants, especially tea leaves. They are widely used in nutraceutical and pharmaceutical formulations due to their capability of lowering the risk of developing various diseases. Nevertheless, low stability, loss of antioxidant and antimicrobial activities hinder the direct application of catechins in food formulations. To surmount this pervasive challenge, bioactive ingredients should be entrapped in a biopolymeric matrix. Thus, nanoencapsulation technology would be an appropriate strategy to improve the stability of these bioactive compounds and to protect them against degradation. Among different types of nanocarriers, biopolymer-based nanovehicles has captured a lot of attention in both industry and academia due to their safety and biocompatibility. This revision enlarges upon the various types of biopolymeric nanostructures used for accommodation of catechins, namely nanogels, nanotubes, nanofibers, nanoemulsions and nanoparticles. Last but not least, the applications of the entrapped catechins in the food industry are highlighted.
Collapse
Affiliation(s)
- Moslem Sabaghi
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zahra Hoseyni
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Sedighe Tavasoli
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia
| | - Iman Katouzian
- Department of Food Science and Technology, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
16
|
Zhou L, Zhang J, Xing L, Zhang W. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 2021; 290:102384. [PMID: 33706198 DOI: 10.1016/j.cis.2021.102384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
18
|
Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res Int 2021; 142:110186. [PMID: 33773663 DOI: 10.1016/j.foodres.2021.110186] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Green tea, the least processed tea product, is scientifically known for its rich antioxidant content originating from polyphenols, especially catechins. The most potent green tea catechin is epigallocatechin-3-gallate (EGCG), which is responsible for a wide range of health benefits including anticancer, antidiabetics, and anti-inflammatory properties. However, green tea catechins (GTCs) are very labile under both environmental and gastrointestinal conditions; their chemical stability and bioavailability primarily depend on the processing and formulation conditions. Nanocarriers can protect GTCs against such conditions, and consequently, can be applicable for designing nanodelivery systems suitable for GTCs. In this review, the latest findings about both opportunities and limitations for the nanodelivery of GTCs and their incorporation into various functional food products are discussed. The scientific findings so far confirm that nanodelivery of GTCs can be an efficient approach towards the enhancement of their health-promoting effects with a minimal dose, controlled and targeted release, lessening the dose-related toxicity, and the efficient incorporation into functional foods. However, further investigation is yet needed to fully explain the cellular mechanisms of action of GTCs on human health and to elucidate the effect of encapsulation on their bioefficacy using well-designed, systematic, long-term, and large-scale clinical interventions. There also exists a substantial concern regarding the safety of the manufactured nanoparticles, their absorption, and the associated release mechanisms.
Collapse
|
19
|
Yaneva Z, Ivanova D. Catechins within the Biopolymer Matrix-Design Concepts and Bioactivity Prospects. Antioxidants (Basel) 2020; 9:E1180. [PMID: 33256098 PMCID: PMC7761086 DOI: 10.3390/antiox9121180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies and clinical investigations proposed that catechins extracts alone may not provide a sufficient level of bioactivities and promising therapeutic effects to achieve health benefits due to a number of constraints related to poor oral absorption, limited bioavailability, sensitivity to oxidation, etc. Modern scientific studies have reported numerous techniques for the design of micro- and nano-bio-delivery systems as novel and promising strategies to overcome these obstacles and to enhance catechins' therapeutic activity. The objective assessment of their benefits, however, requires a critical comparative estimation of the advantages and disadvantages of the designed catechins-biocarrier systems, their biological activities and safety administration aspects. In this respect, the present review objectively outlines, compares and assesses the recent advances related to newly developed design concepts of catechins' encapsulation into various biopolymer carriers and their release behaviour, with a special emphasis on the specific physiological biofunctionalities of the innovative bioflavonoid/biopolymer delivery systems.
Collapse
Affiliation(s)
- Zvezdelina Yaneva
- Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria;
| | | |
Collapse
|
20
|
Jin F, Wang Y, Tang H, Regenstein JM, Wang F. Limited hydrolysis of dehulled walnut (Juglans regia L.) proteins using trypsin: Functional properties and structural characteristics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Adv Colloid Interface Sci 2020; 282:102210. [PMID: 32726708 DOI: 10.1016/j.cis.2020.102210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/07/2020] [Accepted: 07/04/2020] [Indexed: 12/31/2022]
Abstract
The shelf-life of foods is affected by several aspects, mainly chemical and microbial events, resulting in a considerable decline in consumer's acceptance. There is an increasing interest to substitute synthetic preservatives with the plant-based bioactive ingredients which are safe and natural. However, full implementation of this replacement is postponed by some challenges associated with bioactive ingredients, including their low chemical stability, off-flavor, low solubility, and short-term effectiveness. Encapsulation could overcome these limitations. The present review explains current trends in applying natural encapsulated ingredients for food preservation based on a classified description including essential oils, plant extracts, phenolics, carotenoids, etc. and their application for extending food shelf-life mostly dealing with antimicrobial, ant-browning and antioxidant properties. Encapsulation techniques, especially nanoencapsulation, is a promising strategy to overcome their limitations. Moreover, better results are obtained using a combination of proteins and polysaccharides as wall materials than single polymers. The encapsulation method and type of encapsulants highly influences the releasing mechanism and physicochemical properties of bioactive ingredients. These factors together with optimizing the conditions of encapsulation process leads to a cost-effective and well encapsulated ingredient which is more efficient than its free form in shelf-life improvement. It has been shown that the well-designed encapsulation systems, finally, boost the shelf-life-promoting functions of the bioactive ingredients, mostly due to enhancing their solubility, homogeneity in food matrices and contact surface with deteriorative agents, and providing their prolonged presence over food storage and processing via increasing the thermal and processing stability of bioactive compounds, as well as controlling their release on food surfaces, or/and within food packages. To this end and given the numerous wall and bioactive core substances available, further studies are needed to evaluate the efficiency of many encapsulated forms of both conventional and novel bioactive ingredients in food shelf-life extending since the interactions and anti-spoiling behaviors of the ingredients in various encapsulation systems and foodstuffs are highly variable that should be optimized and characterized before any industrial application.
Collapse
|
22
|
Asadi M, Salami M, Hajikhani M, Emam-Djomeh Z, Aghakhani A, Ghasemi A. Electrospray Production of Curcumin-walnut Protein Nanoparticles. FOOD BIOPHYS 2020. [DOI: 10.1007/s11483-020-09637-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Niu B, Shao P, Feng S, Qiu D, Sun P. Rheological aspects in fabricating pullulan-whey protein isolate emulsion suitable for electrospraying: Application in improving β-carotene stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Mohammadi M, Jafari SM, Hamishehkar H, Ghanbarzadeh B. Phytosterols as the core or stabilizing agent in different nanocarriers. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Niu B, Shao P, Sun P. Ultrasound-assisted emulsion electrosprayed particles for the stabilization of β-carotene and its nutritional supplement potential. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Fabrication and characterization of starch beads formed by a dispersion-inverse gelation process for loading polyphenols with improved antioxidation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105565] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105376] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, Salehi B, Sharopov F, Cho WC, Sharifi-Rad J. Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer. Molecules 2020; 25:E467. [PMID: 31979082 PMCID: PMC7037968 DOI: 10.3390/molecules25030467] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of catechins predominantly present in svarious types of teas. EGCG is well known for a wide spectrum of biological activity as an anti-oxidative, anti-inflammatory, and anti-tumor agent. The effect of EGCG on cell death mechanisms via the induction of apoptosis, necrosis, and autophagy has been documented. Moreover, its anti-proliferative and chemopreventive action has been demonstrated in many cancer cell lines. It was also involved in the modulation of cyclooxygenase-2, in oxidative stress and inflammation of different cell processes. EGCG has been reported as a promising target for plasma membrane proteins, such as epidermal growth factor receptor (EGFR). In addition, it has been demonstrated a mechanism of action relying on the inhibition of ERK1/2, p38 MAPK, NF-κB, and vascular endothelial growth factor (VEGF). EGCG and its derivatives were used in proteasome inhibition and they were involved in epigenetic mechanisms. In summary, EGCG is the most predominant and bioactive constituent of teas and it has a pivotal role in cancer prevention. Its preclinical pharmacological activities are associated with complex molecular mechanisms that involve numerous signaling pathways.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35046 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Maira Zorzan
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET, Pz. Milani 4, Liettoli di Campolongo Maggiore (VE), 30010 Venice, Italy
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54590, Pakistan; (M.I.); (A.A.K.)
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
29
|
Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.06.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Jacobsen C, García-Moreno PJ, Mendes AC, Mateiu RV, Chronakis IS. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annu Rev Food Sci Technol 2019; 9:525-549. [PMID: 29400995 DOI: 10.1146/annurev-food-030117-012348] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of vitamins, polyphenolic antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics for the fortification of foods is increasing. However, these bioactive compounds have low stability and need to be protected to avoid deterioration in the food system itself or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative technologies such as electrospraying and electrospinning have received increasing attention. This review presents the principles of electrohydrodynamic processes for the production of nano-microstructures (NMSs) containing bioactive compounds. It provides an overview of the current use of this technology for encapsulation of bioactive compounds and discusses the future potential of the technology. Finally, the review discusses advanced microscopy techniques to study the morphology of NMSs.
Collapse
Affiliation(s)
- Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark;
| | - Pedro J García-Moreno
- Research Group for Bioactives-Analysis and Application, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark;
| | - Ana C Mendes
- Nano-Bio Science Research Group, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Ramona V Mateiu
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-Bio Science Research Group, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
32
|
Wahyudiono, Ozawa H, Machmudah S, Kanda H, Goto M. Electrospraying technique under pressurized carbon dioxide for hollow particle production. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Encapsulation of EGCG and esterified EGCG derivatives in double emulsions containing Whey Protein Isolate, Bacterial Cellulose and salt. Food Chem 2019; 281:171-177. [DOI: 10.1016/j.foodchem.2018.12.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
|
34
|
Nitta S, Iwamoto H. Lipase‐catalyzed synthesis of epigallocatechin gallate‐based polymer for long‐term release of epigallocatechin gallate with antioxidant property. J Appl Polym Sci 2019. [DOI: 10.1002/app.47693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sachiko Nitta
- Research Center for Green ScienceFukuyama University Hiroshima 729‐0292 Japan
| | - Hiroyuki Iwamoto
- Research Center for Green ScienceFukuyama University Hiroshima 729‐0292 Japan
- Department of BiotechnologyFukuyama University Hiroshima 729‐0292 Japan
| |
Collapse
|
35
|
Tapia‐Hernández JA, Del‐Toro‐Sánchez CL, Cinco‐Moroyoqui FJ, Ruiz‐Cruz S, Juárez J, Castro‐Enríquez DD, Barreras‐Urbina CG, López‐Ahumada GA, Rodríguez‐Félix F. Gallic Acid‐Loaded Zein Nanoparticles by Electrospraying Process. J Food Sci 2019; 84:818-831. [DOI: 10.1111/1750-3841.14486] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- José Agustín Tapia‐Hernández
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Carmen Lizette Del‐Toro‐Sánchez
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Francisco Javier Cinco‐Moroyoqui
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Saúl Ruiz‐Cruz
- Dept. of Biotechnology and Food ScienceInst. Technol. of Sonora 5 de febrero #818 sur, Colonia Centro 85000 Ciudad Obregón Sonora Mexico
| | - Josué Juárez
- Dept. of PhysicsUniv. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Daniela Denisse Castro‐Enríquez
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Carlos Gregorio Barreras‐Urbina
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Guadalupe Amanda López‐Ahumada
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| | - Francisco Rodríguez‐Félix
- Dept. of Research and Postgraduate in Food (DIPA)Univ. of Sonora Blvd. Luis Encinas y Rosales, S/N, Colonia Centro 83000 Hermosillo Sonora Mexico
| |
Collapse
|
36
|
Yang QQ, Wei XL, Fang YP, Gan RY, Wang M, Ge YY, Zhang D, Cheng LZ, Corke H. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery. Crit Rev Food Sci Nutr 2019; 60:1243-1264. [PMID: 30799648 DOI: 10.1080/10408398.2019.1565490] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epigallocatechin gallate (EGCG) is a natural phenolic compound found in many plants, especially in green tea, which is a popular and restorative beverage with many claimed health benefits such as antioxidant, anti-cancer, anti-microbial, anti-diabetic, and anti-obesity activities. Despite its great curative potential, the poor bioavailability of EGCG restricts its clinical applcation. However, nanoformulations of EGCG are emerging as new alternatives to traditional formulations. This review focuses on the nanochemopreventive applications of various EGCG nanoparticles such as lipid-based, polymer-based, carbohydrate-based, protein-based, and metal-based nanoparticles. EGCG hybridized with these nanocarriers is capable of achieving advanced functions such as targeted release, active targeting, and enhanced penetration, ultimately increasing the bioavailability of EGCG. In addition, this review also summarizes the challenges for the use of EGCG in therapeutic applications, and suggests future directions for progress.
Collapse
Affiliation(s)
- Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Peng Fang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Ying Ge
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Zeng Cheng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Toro-Uribe S, López-Giraldo LJ, Alvarez-Rivera G, Ibáñez E, Herrero M. Insight of Stability of Procyanidins in Free and Liposomal Form under an in Vitro Digestion Model: Study of Bioaccessibility, Kinetic Release Profile, Degradation, and Antioxidant Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1990-2003. [PMID: 30680989 DOI: 10.1021/acs.jafc.9b00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small unilamellar and multilayered liposomes loaded with polymeric (epi)catechins up to pentamers were produced. The bioaccessibility, kinetic release profile, and degradation under in vitro gastrointestinal conditions were monitored by UHPLC-DAD-QTOF-MS/MS. The results show that all of the procyanidins underwent depolymerization and epimerization into small molecular oligomers and mainly to (epi)catechin subunits. Moreover, all of the liposome formulations presented higher bioaccessibility and antioxidant activity in comparison to their respective counterparts in non-encapsulated form. Similar results were obtained with procyanidins from cocoa extract-loaded liposomes. Namely, the bioaccessibility of dimer, trimer, and tetramer fractions from cocoa-loaded liposomes were 4.5-, 2.1-, and 9.3-fold higher than those from the non-encapsulated cocoa extract. Overall, the procyanidin release profile was dependent on their chemical structure and physicochemical interaction with the lipid carrier. These results confirmed that liposomes are efficient carriers to stabilize and transport procyanidins with the aim of enhancing their bioaccessibility at a controlled release rate.
Collapse
Affiliation(s)
- Said Toro-Uribe
- Food Science & Technology Research Center (CICTA), School of Chemical Engineering , Universidad Industrial de Santander , Carrera 27, Calle 9 , 68002 Bucaramanga , Colombia
| | - Luis Javier López-Giraldo
- Food Science & Technology Research Center (CICTA), School of Chemical Engineering , Universidad Industrial de Santander , Carrera 27, Calle 9 , 68002 Bucaramanga , Colombia
| | - Gerardo Alvarez-Rivera
- Foodomics Laboratory , Institute of Food Science Research (CIAL, CSIC-UAM) , Nicolás Cabrera 9 , 28049 Madrid , Spain
| | - Elena Ibáñez
- Foodomics Laboratory , Institute of Food Science Research (CIAL, CSIC-UAM) , Nicolás Cabrera 9 , 28049 Madrid , Spain
| | - Miguel Herrero
- Foodomics Laboratory , Institute of Food Science Research (CIAL, CSIC-UAM) , Nicolás Cabrera 9 , 28049 Madrid , Spain
| |
Collapse
|
38
|
Figueroa-Lopez KJ, Vicente AA, Reis MAM, Torres-Giner S, Lagaron JM. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E144. [PMID: 30678126 PMCID: PMC6410073 DOI: 10.3390/nano9020144] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/15/2022]
Abstract
In this research, the antibacterial and antioxidant properties of oregano essential oil (OEO), rosemary extract (RE), and green tea extract (GTE) were evaluated. These active substances were encapsulated into ultrathin fibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from fruit waste using solution electrospinning, and the resultant electrospun mats were annealed to produce continuous films. The incorporation of the active substances resulted in PHBV films with a relatively high contact transparency, but it also induced a slightly yellow appearance and increased the films opacity. Whereas OEO significantly reduced the onset of thermal degradation of PHBV, both the RE and GTE-containing PHBV films showed a thermal stability profile that was similar to the neat PHBV film. In any case, all the active PHBV films were stable up to approximately 200 °C. The incorporation of the active substances also resulted in a significant decrease in hydrophobicity. The antimicrobial and antioxidant activity of the films were finally evaluated in both open and closed systems for up to 15 days in order to anticipate the real packaging conditions. The results showed that the electrospun OEO-containing PHBV films presented the highest antimicrobial activity against two strains of food-borne bacteria, as well as the most significant antioxidant performance, ascribed to the films high content in carvacrol and thymol. Therefore, the PHBV films developed in this study presented high antimicrobial and antioxidant properties, and they can be applied as active layers to prolong the shelf life of the foods in biopackaging applications.
Collapse
Affiliation(s)
- Kelly J Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
39
|
Micronization for Enhancement of Curcumin Dissolution via Electrospraying Technique. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2040060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin is a hydrophobic polyphenol compound exhibiting a wide range of biological activities such as anti-inflammatory, anti-bacterial, anti-fungal, anti-carcinogenic, anti-HIV, and anti-microbial activity. Recently, electrospraying has been successfully used to produce micro-or nano-sized particles for pharmaceutical use. In this work, polyvinylpyrrolidone (PVP) microspheres containing curcumin were prepared via electrospraying in order to improve the bioavailability of poorly-water-soluble curcumin. The influence of five processing parameters namely curcumin/PVP ratio, tip to collector distance, and electric voltage on physic-chemical properties was investigated. The characterization and aqueous solubility of particles were determined by using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and UV-Vis spectrophotometer. The result indicated that the spherical particles with particle size distribution of 164 to 730 nm obtained at a curcumin/PVP ratio of 1:30, a polymer solution concentration of 0.4%, electric voltage of 10 kV, and a tip-to-collector distance of 15 cm. Moreover, the dissolution of curcumin/PVP particle generated by electrospraying was higher than that of the original curcumin and pure curcumin particles produced by electrospraying.
Collapse
|
40
|
Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chem 2018; 279:223-230. [PMID: 30611484 DOI: 10.1016/j.foodchem.2018.11.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/26/2018] [Accepted: 11/04/2018] [Indexed: 11/21/2022]
Abstract
In this study, resveratrol was successfully encapsulated using zein-chitosan complex coacervation. The encapsulation efficiency was markedly improved (51.4%) after chitosan coating at 1:2.5 zein/chitosan ratio, compared with 38.6% using native zein. Analysis of multi-model frequency ultrasound treatment effects on resveratrol encapsulation using zein-chitosan complex coacervation showed that 28/40 kHz dual-frequency ultrasound led to the highest encapsulation efficiency (65.2%; 31.9% increase) and loading capacity (5.9%; 31.1% increase) of resveratrol, followed by multi-frequency ultrasound at 20/28/40 kHz (17.8% encapsulation efficiency increase; 17.8% loading capacity increase). Dual-frequency ultrasound treatment significantly reduced the zein-chitosan complex coacervation particle size and reduced their distribution, however, did not change the zeta potential. Fourier transform infrared spectroscopy and fluorescence spectroscopy analysis demonstrated that ultrasound treatment had no effect on secondary structure of zein-chitosan complex but markedly decreased the fluorescence emission intensity. Differential scanning calorimetry and X-ray diffraction results indicated that Dual-frequency ultrasound treatment improved the thermal stability of zein-chitosan complex coacervation but had no effect on the crystal structure. Atomic force microscopy and scanning electron microscopy images revealed uniform distribution of zein-chitosan complex coacervation followed by ultrasonic treatment.
Collapse
|
41
|
Toro-Uribe S, Ibáñez E, Decker EA, McClements DJ, Zhang R, López-Giraldo LJ, Herrero M. Design, Fabrication, Characterization, and In Vitro Digestion of Alkaloid-, Catechin-, and Cocoa Extract-Loaded Liposomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12051-12065. [PMID: 30353733 DOI: 10.1021/acs.jafc.8b04735] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Liposomes containing theobromine, caffeine, catechin, epicatechin, and a cocoa extract were fabricated using microfluidization and sonication. A high encapsulation efficiency and good physicochemical stability were obtained by sonication (75% amplitude, 7 min). Liposomes produced at pH 5.0 had mean particle diameter ranging from 73.9 to 84.3 nm. The structural and physicochemical properties of the liposomes were characterized by transmission electron microscopy, confocal fluorescence microscopy, and antioxidant activity assays. The release profile was measured by ultra-high performance liquid chromatography coupled to diode array detection. The bioaccessibility of the bioactive compounds encapsulated in liposomes was determined after exposure to a simulated in vitro digestion model. Higher bioaccessibilities were measured for all catechins-loaded liposome formulations as compared to nonencapsulated counterparts. These results demonstrated that liposomes are capable of increasing the bioaccessibility of flavan-3-ols, which may be important for the development of nutraceutical-enriched functional foods.
Collapse
Affiliation(s)
- Said Toro-Uribe
- Food Science & Technology Research Center (CICTA), School of Chemical Engineering , Universidad Industrial de Santander , Carrera 27, Calle 9 , Bucaramanga 68002 , Colombia
| | - Elena Ibáñez
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC-UAM) , Nicolás Cabrera 9 , Madrid 28049 , Spain
| | | | | | | | - Luis Javier López-Giraldo
- Food Science & Technology Research Center (CICTA), School of Chemical Engineering , Universidad Industrial de Santander , Carrera 27, Calle 9 , Bucaramanga 68002 , Colombia
| | - Miguel Herrero
- Foodomics Laboratory, Institute of Food Science Research (CIAL, CSIC-UAM) , Nicolás Cabrera 9 , Madrid 28049 , Spain
| |
Collapse
|
42
|
Ramos-Hernández JA, Ragazzo-Sánchez JA, Calderón-Santoyo M, Ortiz-Basurto RI, Prieto C, Lagaron JM. Use of Electrosprayed Agave Fructans as Nanoencapsulating Hydrocolloids for Bioactives. NANOMATERIALS 2018; 8:nano8110868. [PMID: 30360537 PMCID: PMC6265941 DOI: 10.3390/nano8110868] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 01/05/2023]
Abstract
High degree of polymerization Agave fructans (HDPAF) are presented as a novel encapsulating material. Electrospraying coating (EC) was selected as the encapsulation technique and β-carotene as the model bioactive compound. For direct electrospraying, two encapsulation methodologies (solution and emulsion) were proposed to find the formulation which provided a suitable particle morphology and an adequate concentration of β-carotene encapsulated in the particles to provide a protective effect of β-carotene by the nanocapsules. Scanning electron microscopy (SEM) images showed spherical particles with sizes ranging from 440 nm to 880 nm depending on the concentration of HDPAF and processing parameters. FTIR analysis confirmed the interaction and encapsulation of β-carotene with HDPAF. The thermal stability of β-carotene encapsulated in HDPAF was evidenced by thermogravimetric analysis (TGA). The study showed that β-carotene encapsulated in HDPAF by the EC method remained stable for up to 50 h of exposure to ultraviolet (UV) light. Therefore, HDPAF is a viable option to formulate nanocapsules as a new encapsulating material. In addition, EC allowed for increases in the ratio of β-carotene:polymer, as well as its photostability.
Collapse
Affiliation(s)
- Jorge A Ramos-Hernández
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. Tepic 63175, Nayarit, Mexico.
| | - Juan A Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. Tepic 63175, Nayarit, Mexico.
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. Tepic 63175, Nayarit, Mexico.
| | - Rosa I Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, C.P. Tepic 63175, Nayarit, Mexico.
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain.
| |
Collapse
|
43
|
Shao Y, Wu C, Wu T, Li Y, Chen S, Yuan C, Hu Y. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydr Polym 2018; 193:144-152. [DOI: 10.1016/j.carbpol.2018.03.101] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
|
44
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Nikoo M, Regenstein JM, Ahmadi Gavlighi H. Antioxidant and Antimicrobial Activities of (-)-Epigallocatechin-3-gallate (EGCG) and its Potential to Preserve the Quality and Safety of Foods. Compr Rev Food Sci Food Saf 2018; 17:732-753. [PMID: 33350134 DOI: 10.1111/1541-4337.12346] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Quality deterioration of fresh or processed foods is a major challenge for the food industry not only due to economic losses but also due to the risks associated with spoiled foods resulting, for example, from toxic compounds. On the other hand, there are increasing limitations on the application of synthetic preservatives such as antioxidants in foods because of their potential links to human health risks. With the new concept of functional ingredients and the development of the functional foods market, and the desire for a "clean" label, recent research has focused on finding safe additives with multifunctional effects to ensure food safety and quality. (-)-Epigallocatechin-3-gallate (EGCG), a biologically active compound in green tea, has received considerable attention in recent years and is considered a potential alternative to synthetic food additives. EGCG has been shown to prevent the growth of different Gram-positive and Gram-negative bacteria responsible for food spoilage while showing antioxidant activity in food systems. This review focuses on recent findings related to EGCG separation techniques, modification of its structure, mechanisms of antioxidant and antimicrobial activities, and applications in preserving the quality and safety of foods.
Collapse
Affiliation(s)
- Mehdi Nikoo
- the Dept. of Pathobiology and Quality Control, Artemia and Aquaculture Research Inst., Urmia Univ., Urmia, West Azerbaijan, 57561-51818, Iran
| | - Joe M Regenstein
- Dept. of Food Science, Cornell Univ., Ithaca, N.Y., 14853-7201, U.S.A
| | - Hassan Ahmadi Gavlighi
- Dept. of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares Univ., Tehran, 14115-336, Iran
| |
Collapse
|
46
|
Shi M, Shi YL, Li XM, Yang R, Cai ZY, Li QS, Ma SC, Ye JH, Lu JL, Liang YR, Zheng XQ. Food-grade Encapsulation Systems for (-)-Epigallocatechin Gallate. Molecules 2018; 23:E445. [PMID: 29462972 PMCID: PMC6017944 DOI: 10.3390/molecules23020445] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022] Open
Abstract
(-)-Epigallocatechin gallate (EGCG) has attracted significant research interest due to its health-promoting effects such as antioxidation, anti-inflammation and anti-cancer activities. However, its instability and poor bioavailability have largely limited its efficacy and application. Food-grade materials such as proteins, carbohydrates and lipids show biodegradability, biocompatibility and biofunctionality properties. Food-grade encapsulation systems are usually used to improve the bioavailability of EGCG. In the present paper, we provide an overview of materials and techniques used in encapsulating EGCG, in which the adsorption mechanisms of food-grade systems during in vitro digestion are reviewed. Moreover, the potential challenges and future work using food-grade encapsulates for delivering EGCG are also discussed.
Collapse
Affiliation(s)
- Meng Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xu-Min Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Rui Yang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Qing-Sheng Li
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Shi-Cheng Ma
- Liupao Tea Academy, Wuzhou 543003, Guangxi, China. .
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Khan A, Wen Y, Huq T, Ni Y. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8-19. [PMID: 29251504 DOI: 10.1021/acs.jafc.7b04204] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.
Collapse
Affiliation(s)
- Avik Khan
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Tanzina Huq
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick , Fredericton, New Brunswick E3B 5A3, Canada
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology , Tianjin 300457, China
| |
Collapse
|
48
|
Alehosseini A, Ghorani B, Sarabi-Jamab M, Tucker N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 58:2346-2363. [DOI: 10.1080/10408398.2017.1323723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Alehosseini
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Behrouz Ghorani
- Department of Food Nanotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Mahboobe Sarabi-Jamab
- Department of Food Biotechnology, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Nick Tucker
- School of Engineering, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| |
Collapse
|
49
|
Torres-Giner S, Wilkanowicz S, Melendez-Rodriguez B, Lagaron JM. Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4439-4448. [PMID: 28499089 DOI: 10.1021/acs.jafc.7b01393] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work originally reports on the use of electrohydrodynamic processing (EHDP) to encapsulate Aloe vera (AV, Aloe barbadensis Miller) using both synthetic polymers, i.e., polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVOH), and naturally occurring polymers, i.e., barley starch (BS), whey protein concentrate (WPC), and maltodextrin. The AV leaf juice was used as the water-based solvent for EHDP, and the resultant biopolymer solution properties were evaluated to determine their effect on the process. Morphological analysis revealed that, at the optimal processing conditions, synthetic polymers mainly produced fiber-like structures, while naturally occurring polymers generated capsules. Average sizes ranged from 100 nm to above 3 μm. As a result of their different and optimal morphology and, hence, higher AV content, PVP, in the form of nanofibers, and WPC, of nanocapsules, were further selected to study the AV stability against ultraviolet (UV) light exposure. Fourier transform infrared (FTIR) spectroscopy confirmed the successful encapsulation of AV in the biopolymer matrices, presenting both encapsulants a high chemical interaction with the bioactive components. Ultraviolet-visible (UV-vis) spectroscopy showed that, while PVP nanofibers offered a poor effect on the AV degradation during UV light exposure (∼10% of stability after 5 h), WPC nanobeads delivered excellent protection (stability of >95% after 6 h). This was ascribed to positive interactions between WPC and the hydrophilic components of AV and the inherent UV-blocking and oxygen barrier properties provided by the protein. Therefore, electrospraying of food hydrocolloids interestingly appears as a novel potential nanotechnology tool toward the formulation of more stable functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC) , Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Sabina Wilkanowicz
- Bioinicia R&D , Calle Algepser 65-Nave 3, Polígono Industrial Táctica, 46988 Paterna, Spain
| | - Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC) , Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC) , Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
50
|
|