1
|
Jiang C, Meng Z. Natural shellac-based microcapsules as lipase carriers for recyclable efficient Pickering interfacial biocatalysis. Food Chem 2024; 460:140466. [PMID: 39032294 DOI: 10.1016/j.foodchem.2024.140466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Enzyme is an important class of catalyst. However, the efficiency of enzyme-catalyzed reactions is constrained by the limited contact between the enzyme and its substrate. In this study, to overcome this challenge, lipase-loaded microcapsules were prepared from natural shellac and nanoparticles using the emulsion template method. These microcapsules can perform dual roles as stabilizers and enzyme carriers to construct a water-in-oil Pickering interfacial biocatalytic system. The results showed that the hydrolytic conversion of the microcapsules could reach 90% within 20 min, which was significantly higher than that of the traditional biphasic system. The catalytic activity was influenced by the oil-to-water volume ratio and the microcapsule content. The microcapsules remained highly catalytic efficiency even after storage for three months or seven cycles of reuse. These microcapsules were prepared without the use of any cross-linkers or harsh solvents. This green and efficient catalytic system has great application prospects in the food industry.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Liu Z, Zheng K, Yan R, Tang H, Jia Z, Zhang Z, Yang C, Wang J. Effects of different solid particle sizes on oat protein isolate and pectin particle-stabilized Pickering emulsions and their use as delivery systems. Food Chem 2024; 454:139681. [PMID: 38820636 DOI: 10.1016/j.foodchem.2024.139681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Oat protein isolate (OPI)/high methoxyl pectin (HMP) complexes (OPP) were prepared to stabilized Pickering emulsions and applied as nutraceutical delivery systems. The different mass ratios and pH changed the interactions between OPI and HMP that caused the different size of OPP. Specifically, smaller particle size of OPP (125.7-297.6 nm) were formed when hydrophobic interactions along with electrostatic forces predominant in OPP (OPI:HMP = 3:1, pH 4, 5). Among these particles, OPP-2 could stabilize Pickering emulsion efficiently through formation of dense interfacial film, which exhibited the highest apparent viscosity and the smallest average droplet size (23.39 μm). Moreover, OPP-2 stabilized Pickering emulsions with superior stability not only exhibited higher encapsulation efficiency of 85.63%, but also could control curcumin release in simulated gastrointestinal fluids to improve curcumin's bioaccessibility. These results verified the possibility of OPP to be a Pickering emulsions stabilizer, and also identified its potential to be a stable delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Ziyun Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kaiwen Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruizhe Yan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Huihuang Tang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zengyan Jia
- Tianjin Huikang Biotechnology Co., LTD, Tianjin 300304, China
| | - Zhiqiang Zhang
- Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen 518000, China
| | - Chen Yang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jianming Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Yao X, Zhu Y, Chen H, Xiao H, Wang Y, Zhen H, Tan C. Shellac-based delivery systems for food bioactive compounds. Int J Biol Macromol 2024; 271:132623. [PMID: 38845255 DOI: 10.1016/j.ijbiomac.2024.132623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Shellac is a natural resin featuring some attractive properties such as amphiphilicity, pH responsiveness, biocompatibility, and biodegradability. There has been increasing interest in employing shellac for controlled delivery of food bioactive compounds. This review outlines the recent advances in different types of shellac-based delivery systems, including nanoparticles, zein-shellac particles, hydrogels, nanofibers, and nanomicelles. The preparation method, formation mechanism, structure, and delivery performance are investigated. These systems could improve the stability and shelf-life of bioactive compounds, allow for targeted release at the small intestine or colon site, and increase bioavailability. The deficiencies and challenges of each of the systems are also discussed. The promising results in this review could guide future trends in more efficient shellac-based delivery platforms for functional food applications.
Collapse
Affiliation(s)
- Xueqing Yao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yubo Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huiyun Chen
- Institute of Agricultural Processing Research, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongmin Zhen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
4
|
Aliabbasi N, Emam-Djomeh Z, Askari G, Salami M. Design of glucono-δ-lactone-induced pinto bean protein isolate/κ-carrageenan mixed gels with various microstructures: fabrication, characterization, and release behavior. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1484-1498. [PMID: 36184820 DOI: 10.1002/jsfa.12246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Protein gels are used for different purposes, such as providing good texture, serving as fat replacers, and enhancing the nutritional and functional characteristics of foods. They can also deliver controlled release agents for sensitive drugs. The objective of this study was to investigate the impact of κ-carrageenan (kcr) concentration (0, 1.5, 3, and 4.5 mg g-1 ) on the morphological and physicochemical properties and release behavior of glucono-δ-lactone (GDL)-induced pinto bean protein aggregate (PBA) gels. RESULTS When κ-carrageenan concentration increased from 0 to 1.5 and 3 mg.g-1 , the firmness of the samples increased significantly, by 2.04 and 3.7 fold, respectively (P < 0.05). A compact and homogenous network with considerable strength and maximum water-holding capacity (97.52 ± 1.17%) was obtained with the addition of 3 mg g-1 κ-carrageenan to the gel system. Further increasing the κ-carrageenan concentration to 4.5 mg g-1 produced a coarse gel structure with higher storage modulus (G'), firmness (6.30-fold), thermal stability, and entrapment efficiency (85.6%). Depending on the κ-carrageenan concentration, various microstructures from protein continuous phase to κ-carrageenan continuous phase were observed. The release test indicated that 70.25% of the loaded curcumin was released in the simulated gastrointestinal tract for pure PBA gels. In contrast, for binary gels containing 4.5 mg g-1 κ-carrageenan, curcumin was protected in the upper gastrointestinal tract, and 64.45% of loaded curcumin was delivered to the colon. CONCLUSION Our study showed that κ-carrageenan/PBA gels had high entrapment efficiency and could protect curcumin in the upper gastrointestinal tract. The hydrogels are therefore very valuable for colon-targeting delivery purposes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neda Aliabbasi
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Zahra Emam-Djomeh
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Gholamreza Askari
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Maryam Salami
- Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
5
|
Qiao P, Yu L, Liu H, Yan X, Pi X. An intelligent intestinal bleeding diagnosis and treatment capsule system based on color recognition. Biomed Microdevices 2023; 25:6. [PMID: 36695970 DOI: 10.1007/s10544-022-00642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 01/26/2023]
Abstract
To our best knowledge, there are no non-invasive and painless means for the diagnosis and treatment of intestinal bleeding as of now, especially the segment of intestine that cannot be reached by endoscopy. We proposed an intelligent intestinal bleeding diagnosis and treatment capsule (IBDTC) system for the first time to diagnose and treat intestinal bleeding with low power consumption, estimated to be about 2.16mW. A hue-saturation-light (HSL) color space method was applied to diagnose bleeding according to H (hue) values of the film dyed by blood. A MEMS-based micro-igniter works as the critical component of the micro-thruster that houses the propellant (74.6% potassium nitrate, 11.9% sulfur, 13.5% charcoal) and the detonating agent (dinitrodiazophenol), to help release drug. Bleeding detection and ignition tests were performed to justify its feasibility and reliability. Results demonstrated that the bleeding diagnosis module of the IBDTC can effectively detect bleeding and the micro-igniter can successfully ignite the propellant. Owing to its simplicity and intelligence, the IBDTC system will pave a way for future accurate treatment of small intestinal bleeding with no injury, no pain, no complicated supporting equipment, no need for in vitro operation and positioning.
Collapse
Affiliation(s)
- Panpan Qiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, People's Republic of China.
| | - Luo Yu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Hongying Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, People's Republic of China.
- Chongqing Engineering Research Center of Medical Electronics Technology, Chongqing, 400030, China.
| | - Xueping Yan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Xitian Pi
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, People's Republic of China.
- Key Laboratories for National Defense Science and Technology of Innovative Micro-Nano Devices and System Technology, Chongqing University, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
6
|
Guo Y, Zhang ZG, Cai J, Li WR, Chen LY, Wu WC. Co-folding of soy protein isolates and shellac by structural interplays to induce hydrogels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
8
|
Yang C, Wang X, Hu H, Feng Y, Tang H, Zhang W, Wang J. Cold-set oat protein isolate--gellan gum binary gels with various microstructures: Fabrication, characterization, formation mechanism, and controlled release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Thombare N, Kumar S, Kumari U, Sakare P, Yogi RK, Prasad N, Sharma KK. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. Int J Biol Macromol 2022; 215:203-223. [PMID: 35718149 DOI: 10.1016/j.ijbiomac.2022.06.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Shellac is a physically refined form of lac resin, a natural biopolymer of animal origin obtained from tiny insects feeding on the sap of specific host trees. Shellac, in its basic form, is a polyester macromolecule composed of inter and intra esters of polyhydroxy aliphatic and sesquiterpene acids. It has been used in several industries for ages due to its exceptional properties such as film-forming, adhering, bonding, thermoplasticity, water-resistance and easy solubility in spirit and aqueous alkali solvents. From the beginning of the 21st century, due to increasing demand for natural products, a paradigm shift in the scope and applications of shellac has been witnessed, especially in green electronics, 3D printing, stealth technology, intelligent sensors, food and pharmaceutical industries. Shellac offers enormous potential for greener technologies as a natural and environmentally friendly material. This review provides an insight into the lac in detail, covering various forms of the lac, structure, properties, different applications of shellac and its future potential. This article would benefit the researchers involved in shellac research and others looking for natural and greener alternatives to synthetic polymers in various applications.
Collapse
Affiliation(s)
- Nandkishore Thombare
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India.
| | - Saurav Kumar
- CSIR - Central Scientific Instruments Organisation, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Usha Kumari
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Priyanka Sakare
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Raj Kumar Yogi
- ICAR - Directorate of Rapeseed Mustard Research, Bharatpur 321303, Rajasthan, India
| | - Niranjan Prasad
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Kewal Krishan Sharma
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| |
Collapse
|
10
|
Teimouri S, Kasapis S, Dokouhaki M. Diffusional characteristics of food protein-based materials as nutraceutical delivery systems: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Teimouri S, Kasapis S. Mechanistic interpretation of vitamin B6 transport from swelling matrices of genipin-crosslinked gelatin, BSA and WPI. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Liu S, Xiao J, Feng Y, Zhang M, Li Y, Tu J, Niu L. Anthocyanin‐fortified konjac glucomannan/sodium alginate composite edible boba: characteristics of texture, microstructure,
in vitro
release behavior and antioxidant capacity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sha Liu
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - JianHui Xiao
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - YaPing Feng
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - MianLing Zhang
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - Ying Li
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - Jin Tu
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| | - LiYa Niu
- School of Food Science and Engineering Jiangxi Agricultural University 1101 Zhimin Road Nanchang 330045 China
| |
Collapse
|
13
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
14
|
Antibacterial Fresh-Keeping Films Assembled by Synergistic Interplay Between Casein and Shellac. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09698-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Rajić D, Spasojević L, Gojković Cvjetković V, Bučko S, Fraj J, Milinković Budinčić J, Petrović L, Pilić B, Sharipova A, Babayev A, Aidarova S, Katona J. Zein–resin composite nanoparticles with coencapsulated carvacrol. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Danijela Rajić
- Faculty of Technology University of Novi Sad Novi Sad Serbia
- Faculty of Technology University of East Sarajevo Zvornik Bosnia and Herzegovina
| | | | | | - Sandra Bučko
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | - Jadranka Fraj
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | | | - Lidija Petrović
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | - Branka Pilić
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| | | | | | - Saule Aidarova
- Kazakh National Research Technical University Almaty Kazakhstan
- Kazakh–British Technical University Almaty Kazakhstan
| | - Jaroslav Katona
- Faculty of Technology University of Novi Sad Novi Sad Serbia
| |
Collapse
|
16
|
|
17
|
|
18
|
Alavi F, Tian Z, Chen L, Emam-Djomeh Z. Effect of CaCl2 on the stability and rheological properties of foams and high-sugar aerated systems produced by preheated egg white protein. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105887] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Paramita VD, Panyoyai N, Kasapis S. Molecular Functionality of Plant Proteins from Low- to High-Solid Systems with Ligand and Co-Solute. Int J Mol Sci 2020; 21:E2550. [PMID: 32268602 PMCID: PMC7178117 DOI: 10.3390/ijms21072550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
In the food industry, proteins are regarded as multifunctional systems whose bioactive hetero-polymeric properties are affected by physicochemical interactions with the surrounding components in formulations. Due to their nutritional value, plant proteins are increasingly considered by the new product developer to provide three-dimensional assemblies of required structure, texture, solubility and interfacial/bulk stability with physical, chemical or enzymatic treatment. This molecular flexibility allows them to form systems for the preservation of fresh food, retention of good nutrition and interaction with a range of microconstituents. While, animal- and milk-based proteins have been widely discussed in the literature, the role of plant proteins in the development of functional foods with enhanced nutritional profile and targeted physiological effects can be further explored. This review aims to look into the molecular functionality of plant proteins in relation to the transport of bioactive ingredients and interaction with other ligands and proteins. In doing so, it will consider preparations from low- to high-solids and the effect of structural transformation via gelation, phase separation and vitrification on protein functionality as a delivery vehicle or heterologous complex. Applications for the design of novel functional foods and nutraceuticals will also be discussed.
Collapse
Affiliation(s)
- Vilia Darma Paramita
- Department of Chemical Engineering, State Polytechnic of Ujung Pandang, Tamalanrea, Makassar 90245, Indonesia;
| | - Naksit Panyoyai
- Department of Agroindustry, Rajabhat Chiang Mai University, Chiang Mai 50330, Thailand;
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
20
|
Yang C, Wang Y, Xie Y, Liu G, Lu Y, Wu W, Chen L. Oat protein-shellac nanoparticles as a delivery vehicle for resveratrol to improve bioavailability in vitro and in vivo. Nanomedicine (Lond) 2019; 14:2853-2871. [PMID: 31752574 DOI: 10.2217/nnm-2019-0244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Oat protein-shellac nanoparticles (NPs) were developed as a delivery system for resveratrol to improve bioavailability. Materials & methods: The NPs were prepared from w/w emulsion followed by cold-gelation. In vitro release and cell uptake mechanism of NPs were estimated by HPLC and confocal laser scanning microscopy. In vivo bioavailability and hepatoprotective activity of encapsulated resveratrol were studied using rat models. Results & conclusion: NPs (90-300 nm) protected resveratrol in gastric fluid, while allowing controlled release into small intestine in vitro. The optimized NPs showed improvement in resveratrol cell uptake and transport when compared with free resveratrol. NP-100S increased resveratrol bioavailability up to 72.4%, and the absorbed resveratrol effectively prevented CCl4-induced hepatotoxicity by attenuating oxidative stress.
Collapse
Affiliation(s)
- Chen Yang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yixiang Wang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yike Xie
- Key Laboratory of Smart Drug Delivery of MOE & PLA, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guangyu Liu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE & PLA, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE & PLA, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
21
|
Tomaszewska‐Ciosk E, Zdybel E, Lech K, Nemś A. Effect of ethanol on properties of extrudates enriched with high‐fibre by‐products. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ewa Tomaszewska‐Ciosk
- Department of Food Storage and Technology Faculty of Biotechnology and Food Science Wroclaw University of Environmental and Life Sciences Chełmońskiego 37/41 Str Wrocław 51‐630 Poland
| | - Ewa Zdybel
- Department of Food Storage and Technology Faculty of Biotechnology and Food Science Wroclaw University of Environmental and Life Sciences Chełmońskiego 37/41 Str Wrocław 51‐630 Poland
| | - Krzysztof Lech
- Faculty of Life Sciences and Technology Institute of Agricultural Engineering Wroclaw University of Environmental and Life Sciences Chełmońskiego 37/41 Str Wrocław 51‐630 Poland
| | - Agnieszka Nemś
- Department of Food Storage and Technology Faculty of Biotechnology and Food Science Wroclaw University of Environmental and Life Sciences Chełmońskiego 37/41 Str Wrocław 51‐630 Poland
| |
Collapse
|
22
|
Nowak E, Livney YD, Niu Z, Singh H. Delivery of bioactives in food for optimal efficacy: What inspirations and insights can be gained from pharmaceutics? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Condict L, Paramita VD, Kasapis S. Dairy protein–ligand interactions upon thermal processing and targeted delivery for the design of functional foods. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Du Y, Wang L, Mu R, Wang Y, Li Y, Wu D, Wu C, Pang J. Fabrication of novel Konjac glucomannan/shellac film with advanced functions for food packaging. Int J Biol Macromol 2019; 131:36-42. [DOI: 10.1016/j.ijbiomac.2019.02.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/28/2019] [Accepted: 02/23/2019] [Indexed: 01/28/2023]
|
25
|
Sedaghat Doost A, Kassozi V, Grootaert C, Claeys M, Dewettinck K, Van Camp J, Van der Meeren P. Self-assembly, functionality, and in-vitro properties of quercetin loaded nanoparticles based on shellac-almond gum biological macromolecules. Int J Biol Macromol 2019; 129:1024-1033. [DOI: 10.1016/j.ijbiomac.2019.02.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 01/23/2023]
|
26
|
Gao J, Li K, Xu J, Zhang W, Ma J, Liu L, Sun Y, Zhang H, Li K. Unexpected Rheological Behavior of a Hydrophobic Associative Shellac-Based Oligomeric Food Thickener. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6799-6805. [PMID: 29878772 DOI: 10.1021/acs.jafc.8b01148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sodium shellac constituted of a "surfactant" monomer, which is sensitive to shear stress, exhibits shear-thickening behavior at a low concentration (5 wt %), and reacts with H+ to retain transient high viscosity under shear, is introduced in this study. The steady shear flow test proved that, under a high shear rate, sodium shellac suspension could change from Newtonian fluid to continuous shear-thickening non-Newtonian fluid. The dynamic oscillation test suggested that the sodium shellac solution at low concentrations (0.1 and 1 wt %) under a low shear rate behaved as the viscous fluid ( G″ > G'), and the solution at high concentrations (5, 10, and 15 wt %) behaved as the elastic fluid ( G″ < G'). Moreover, a high shear rate caused a cross-linking point between the G″ and G' curve. At a low concentration, it could be the sol-gel point. At a high concentration, it could be the gel-sol point. All of these transforming points were related to the interaction between the sodium clusters. This interaction should be the hydrophobic association between the particles. To prove the assumption, hydrophilic polymer poly(ethylene oxide) (PEO) was employed as the disrupting factor to the hydrophobic association. As expected, the shear-thickening behavior vanished after mixing with PEO, which verified our assumption. On the other hand, the high viscosity of the suspension under shear could be retained by reaction with H+ to solidify the transient hydroclusters under shear. Meanwhile, sodium shellac had great potential as the functional shear thickener, which could modify the rheological property of the polymer with carboxyl groups, e.g., pectin, alginate, or poly(acrylic acid). Thus, this natural and green thicker has great potential in food, medical gel, green adhesive, or cosmetic products.
Collapse
Affiliation(s)
- Jianan Gao
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
- Faculty of Chemical Engineering and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650224 , People's Republic of China
| | - Kun Li
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Juan Xu
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Wenwen Zhang
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Jinju Ma
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Lanxiang Liu
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Yanlin Sun
- Faculty of Chemical Engineering and Technology , Kunming University of Science and Technology , Kunming , Yunnan 650224 , People's Republic of China
| | - Hong Zhang
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| | - Kai Li
- Research Institute of Resources Insects , Chinese Academy of Forestry , Kunming , Yunnan 650224 , People's Republic of China
| |
Collapse
|