1
|
Liang B, Feng S, Zhang X, Ye Y, Sun C, Ji C, Li X. Physicochemical properties and in vitro digestion behavior of emulsion micro-gels stabilized by κ-carrageenan and whey protein: Effects of sodium alginate addition. Int J Biol Macromol 2024; 271:132512. [PMID: 38795879 DOI: 10.1016/j.ijbiomac.2024.132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Emulsion micro-gels exhibit significant potential as functional ingredients for modifying food texture, replacing saturated fats, or serving as templates for the controlled release of bioactive compounds. Structural design principles are being applied more frequently to develop innovative emulsion micro-gels. In this paper, whey protein concentrate (WPC), κ-carrageenan and sodium alginate (SA) were utilized for preparing emulsion micro-gels. To reveal the regulation mechanism of the structural and physicochemical properties of emulsion micro-gels on lipid digestion, the influence of SA additions on the structural, physicochemical properties and in vitro digestion behavior of κ-carrageenan/WPC-based emulsion micro-gel were explored. The FTIR results suggest that the emulsion micro-gels are formed through non-covalent interactions. With the increase of SA addition (from 0.7 g/100 mL to 1.0 g/100 mL), the decreased mean droplet size, the increased hardness, elasticity indexes, and water holding capacity, the reduced the related peak times all indicated that the emulsion micro-gels exhibit enhanced rheological, stability, and mechanical properties. It can be concluded from the microstructure, particle size distribution of the emulsion micro-gels during simulated digestion and free fatty acid release that both κ-carrageenan/WPC-based emulsion micro-gel and κ-carrageenan/WPC/SA-based emulsion micro-gel can inhibit lipid digestion due to the ability to maintain structural stability and hindering the penetration of bile salts and lipase through the hydrogel networks. And the ability is regulated by the binding properties the gel matrix and oil droplets, which determine the structure and physicochemical properties of emulsion micro-gels. The research suggested that the structure of emulsion micro-gels can be modified to produce various lipid digestion profiles. It may be significant for certain practical application in the design of low-fat food and controlled release of bioactive agents.
Collapse
Affiliation(s)
- Bin Liang
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, 264025, PR China.
| | - Sisi Feng
- College of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Food Green Processing and Quality Control, Ludong University, Yantai, Shandong, 264025, PR China
| | - Xirui Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Ying Ye
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China.
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu normal university, Jinan, Shandong 250200, PR China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| |
Collapse
|
2
|
Stavarache C, Gȃrea SA, Serafim A, Olăreț E, Vlăsceanu GM, Marin MM, Iovu H. Three-Dimensional-Printed Sodium Alginate and k-Carrageenan-Based Scaffolds with Potential Biomedical Applications. Polymers (Basel) 2024; 16:305. [PMID: 38337194 DOI: 10.3390/polym16030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
This work reports the development of a marine-derived polysaccharide formulation based on k-Carrageenan and sodium alginate in order to produce a novel scaffold for engineering applications. The viscoelastic properties of the bicomponent inks were assessed via rheological tests prior to 3D printing. Compositions with different weight ratios between the two polymers, without any crosslinker, were subjected to 3D printing for the first time, to the best of our knowledge, and the fabrication parameters were optimized to ensure a controlled architecture. Crosslinking of the 3D-printed scaffolds was performed in the presence of a chloride mixture (CaCl2:KCl = 1:1; v/v) of different concentrations. The efficiency of the crosslinking protocol was evaluated in terms of swelling behavior and mechanical properties. The swelling behavior indicated a decrease in the swelling degree when the concentration of the crosslinking agent was increased. These results are consistent with the nanoindentation measurements and the results of the macro-scale tests. Moreover, morphology analysis was also used to determine the pore size of the samples upon freeze-drying and the uniformity and micro-architectural characteristics of the scaffolds. Overall, the registered results indicated that the bicomponent ink, Alg/kCG = 1:1 may exhibit potential for tissue-engineering applications.
Collapse
Affiliation(s)
- Cristina Stavarache
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- "C.D. Neniţescu" Institute of Organic and Supramolecular Chemistry, 202-B Splaiul Independentei, 060023 Bucharest, Romania
| | - Sorina Alexandra Gȃrea
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Andrada Serafim
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Elena Olăreț
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - George Mihail Vlăsceanu
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Faculty of Medical Engineering, National University of Science and Technology POLITEHNICA Bucuresti, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Maria Minodora Marin
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, National University of Science and Technology POLITEHNICA București, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
3
|
Campelo MDS, Mota LB, Câmara Neto JF, Barbosa MLL, Gonzaga MLDC, Leal LKAM, Bastos MDSR, Soares SDA, Ricardo NMPS, Cerqueira GS, Ribeiro MENP. Agaricus blazei Murill extract-loaded in alginate/poly(vinyl alcohol) films prepared by Ca 2+ cross-linking for wound healing applications. J Biomed Mater Res B Appl Biomater 2023; 111:1035-1047. [PMID: 36455230 DOI: 10.1002/jbm.b.35212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
This work aimed the development and evaluation of the wound healing activity of films based on sodium alginate, polyvinyl alcohol (PVA) and Ca2+ loaded with Agaricus blazei Murill hydroalcoholic extract (AbE). Firstly, AbE was prepared using a previously standardized methodology. The films were prepared by casting technique and cross-linked with Ca2+ using CaCl2 as cross-linking agent. The physicochemical, morphological and water vapor barrier properties of the films were analyzed and the pre-clinical efficacy was investigated against the cutaneous wound model in mice. The films showed barrier properties to water vapor promising for wound healing. AbE showed physical and chemical interactions between both polymers, noticed by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal analysis. The delivery of AbE in alginate/PVA films enhanced the antioxidant and wound healing properties of these polymers. Consequently, a reduction of malondialdehyde levels was observed, as well as an increase of the epidermis/dermis thickness and enhancement in collagen I deposition. Thus, these formulations are promising biomaterials for wound care and tissue repairing.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil.,Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Lucas Barroso Mota
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Maria Lucianny Lima Barbosa
- Núcleo de Estudos em Microscopia e Processamento de Imagens, Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Maria Leônia da Costa Gonzaga
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil.,Laboratório de Tecnologia de Embalagens de Alimentos, Embrapa Agroindústria Tropical, Fortaleza, Brazil
| | | | | | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Gilberto Santos Cerqueira
- Núcleo de Estudos em Microscopia e Processamento de Imagens, Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil.,Núcleo de Estudos em Microscopia e Processamento de Imagens, Departamento de Morfologia, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Agarose/konjac glucomannan double network hydrogels to mimic the texture of beef tripe. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Designing and characterizing multicomponent, plant-based bigels of rice bran wax, gums, and monoglycerides. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Quantification using rheological blending-law analysis and verification with 3D confocal laser scanning microscopy of the phase behaviour in agarose-gelatin co-gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Carrageenan‐based Hybrids with Biopolymers and Nano‐structured Materials for Biomimetic Applications. STARCH-STARKE 2022. [DOI: 10.1002/star.202200018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Saluri M, Kaljuvee KL, Paalme T, Reile I, Tuvikene R. Structural variability and rheological properties of furcellaran. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Potier M, Tea L, Benyahia L, Nicolai T, Renou F. Viscosity of Aqueous Polysaccharide Solutions and Selected Homogeneous Binary Mixtures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathieu Potier
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Lingsam Tea
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Lazhar Benyahia
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Taco Nicolai
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| | - Frederic Renou
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 Le Mans Cedex 9, France
| |
Collapse
|
10
|
Fan F, Liang X, Wang S, Wang L, Guo Y. A facile process for the preparation of organic gel-assisted silica microsphere material for multi-mode liquid chromatography. J Chromatogr A 2020; 1628:461472. [PMID: 32822994 DOI: 10.1016/j.chroma.2020.461472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 11/29/2022]
Abstract
Organic gel (OG) has excellent characteristics, including a large surface area, adjustable pore/channel size, and good chemical stability, and has attracted great attention in the field of materials. However, the OG packed column is difficult to pack due to the weak mechanical strength and poor monodispersity. Herein, 1-allyl-3-methyl imidazolium hexafluorophosphate-co-1-dodecanethiol ([AMIm]PF6-co-TDDM) was prepared on the silica microsphere for chromatographic packing available in multimode liquid chromatography (LC) mode with the good mechanical properties of silica microspheres through a simple OG synthesis method. [AMIm]PF6-co-TDDM@SiO2 hybrid microspheres with uniform particles and narrow particle size distribution are used as stationary phases of LC. These microspheres are used in anion-exchange (IEC), reversed-phase (RP), and hydrophilic interaction (HILIC) mode for the separation of different analytes. Such microspheres can also be used for the preliminary qualitative analysis of active ingredients in actual samples in addition to organic acids, alkylbenzenes, and nucleoside bases. The [AMIm]PF6-co-TDDM@SiO2 chromatography packing also has good reproducibility and stability. The adhesive properties of organogels and the adsorption properties of silica gel simplify the synthesis of stationary phase materials. This simple and effective strategy for preparing [AMIm]PF6-co-TDDM@SiO2 composite microspheres by one-pot method can expand the application of OG as a functional additive on silica microspheres in LC.
Collapse
Affiliation(s)
- Fangbin Fan
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojing Liang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuai Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Licheng Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Guo
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
11
|
Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070481] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.
Collapse
|
12
|
Effects of Hybridized Organically Modified Montmorillonite and Cellulose Nanocrystals on Rheological Properties and Thermal Stability of K-Carrageenan Bio-Nanocomposite. NANOMATERIALS 2019; 9:nano9111547. [PMID: 31683602 PMCID: PMC6915427 DOI: 10.3390/nano9111547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
Herein, hybrid k-carrageenan bio-nanocomposite films were fabricated by using two types of nanofillers, organically modified montmorillonite (OMMT), and cellulose nanocrystals (CNCs). Hybrid bio-nanocomposite films were made by casting techniques employing 4 wt% of CNCs, OMMT, and hybridized CNCs/OMMT in a 1:1 ratio. The rheological and morphological properties and thermal stability of all composites were investigated using rotational rheometry, thermogravimetry analysis, differential scanning calorimetry, field emission scanning electron microscopy, and transmission electron microscopy (TEM). The results showed that the hybrid CNC/OMMT bio-nanocomposite exhibited significantly improved properties as compared to those for the bio-nanocomposites with single fillers due to the nanosize and homogenous nanofiller dispersion in the matrix. Rheological analysis of the hybrid bio-nanocomposite showed higher dynamic shear storage modulus and complex viscosity values when compared to those for the bio-nanocomposite with individual fillers. The TEM analysis of the hybridized CNC/OMMT bio-nanocomposite revealed that more particles were packed together in the CNC network, which restricted the matrix mobility. The heat resistance and thermal stability bio-nanocomposite k-carrageenan film enhanced rapidly with the addition of hybridized CNCs/OMMT to 275 °C. The hybridized CNCs/OMMT exhibited synergistic effects due to the good affinity through interfacial interactions, resulting in the improvement of the material properties.
Collapse
|
13
|
Wurm F, Nussbaumer F, Pham T, Bechtold T. Structural elucidation of mixed carrageenan gels using rheometry. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|