1
|
Wang J, Zhang N, Xia T, Nie Y, Zhang X, Lang F, Liang K, Li T, Wang M. Melanoidins from Shanxi aged vinegar: Characterization and behavior after in vitro simulated digestion and colonic fermentation. Food Chem 2025; 464:141769. [PMID: 39481311 DOI: 10.1016/j.foodchem.2024.141769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
This study aims to elucidate the structure, physicochemical properties, and potential behavior of vinegar melanoidins (VM) during digestion and intestinal microbial fermentation in vitro. Our findings revealed that VM mainly consisted of carbohydrates. The particle size (166.46 ± 10.06 nm) of VM was significantly larger than that of model melanoidins (MM, 20.69 ± 0.05 nm). VM exhibited stability in vitro digestion process. However, the carbohydrate contents and Mw were reduced. Total phenol content (TPC), total flavonoid content (TFC), antioxidant capacity and SCFAs were significantly increased after colonic fermentation. TPC and TFC were 79.48 ± 9.52 mg GAE/g DW and 0.422 ± 0.024 mg RE/g DW at 48 h. In addition, VM exhibited intestinal modulatory effects on the microbiota by promoting an increase in beneficial bacteria including Firmicutes and Bifidobacterium. Collectively, these results suggest that VM as a potential prebiotic can be applied in the field of functional food.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nannan Zhang
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yaning Nie
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodong Zhang
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fanfan Lang
- Shanxi Provincial Key Laboratory for Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industy Co.,Ltd., Taiyuan 030400, China
| | - Kai Liang
- Shanxi Provincial Key Laboratory for Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industy Co.,Ltd., Taiyuan 030400, China
| | - Tianmeng Li
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety/Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Rastmanesh S, Jafarizadeh-Malmiri H, Javadi A, Anarjan N. Enzymatically and chemically starch nanoparticles preparation using ultrasonication, precipitation and lyophilization post-treatments: Screening and characterization. Int J Biol Macromol 2024; 277:134506. [PMID: 39106931 DOI: 10.1016/j.ijbiomac.2024.134506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
Starch nanoparticles (SNPs) have been used in food emulsions as natural stabilizer and emulsifier. SNPs in colloidal form were produced using enzymatically, acidic and alkaline hydrolyses in combination to ultrasonication and precipitation methods. X-Ray diffraction test for produced SNPs indicated that enzymatically and acidic prepared SNPs had amorphous structure while, the resulted SNPs using alkaline hydrolysis had lower relatively crystallinity. Results indicated that, enzymatically prepared SNPs, had minimum particle size (225 ± 10 nm) and polydispersity index (0.472 ± 0.05), and maximum zeta potential (-26.3 ± 1 mV), antioxidant activity (3.36 ± 0.05 %) and specific surface area (1.8 ± 0.1 m2g-1). Transmission electron microscopy revealed that prepared SNPs had spherical shape and enzymatically prepared SNPs had mean particle size of <100 nm. SNPs in powder form were prepared using freeze drying (pressure and temperature of 100 Pa and - 70 °C). Atomic force microscopy results demonstrated that starch granules had smooth surface, with polyhedral shape and particle size ranging 5 to 25 μm, and after hydrolysis, SNPs had particle size in nanometer scale. Emulsion ability test indicated that oil separation time from the prepared emulsions containing 10 % (W/V) starch, and enzymatically, acidic and alkaline prepared SNPs powder were 41, 70, 82 and 101 s, respectively.
Collapse
Affiliation(s)
- Sahar Rastmanesh
- Department of Food Science and Technology, Mamaghan branch, Islamic Azad University, Mamaghan, East Azarbaijan, Iran
| | - Hoda Jafarizadeh-Malmiri
- Department of Food Engineering, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz 51335-1996, East Azarbaijan, Iran.
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Science, Islamic Azad University, Tabriz, East Azarbaijan, Iran; Health Promotion Research Center, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Navideh Anarjan
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Science, Islamic Azad University, Tabriz, East Azarbaijan, Iran; Department of Engineering, Tabriz Branch, Islamic Azad University, Tabriz, East Azarbaijan, Iran
| |
Collapse
|
3
|
Chen B, Chen L, Li C, Huang W, Zhao Y, Ai C, Teng H. Ultrasound-assisted glycosylation of ovalbumin and dextran conjugate carrier for anthocyanins and their stability evaluation. ULTRASONICS SONOCHEMISTRY 2024; 109:107024. [PMID: 39146820 PMCID: PMC11375140 DOI: 10.1016/j.ultsonch.2024.107024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Anthocyanins (AC) are vulnerable to degradation when affected by external factors. The present study employed ultrasound-assisted glycosylation of ovalbumin (OVA) and dextran (Dex) to generate conjugate carrier for AC to improve its stability. The results showed that sonication significantly improved the progression of Maillard reaction to OVA. Compared to traditional glycosylation, ultrasound treatment showed a higher degree of grafting, a lower number of free-SH, and smaller particle size and uniform distribution. The SDS-PAGE results indicated covalent interaction. Intrinsic fluorescence (INF), Fourier transform infrared spectroscopy (FTIR), and Circular dichroism (CD) analysis results suggested that ultrasound-assisted glycosylation altered the OVA structure. The scanning electron microscope (SEM) and X-ray diffractometer (XRD) observed that the ultrasound-assisted complex had a more compact and smoother structure and protein unfolding were better. The protein solubility increased significantly after glycosylation. Thermal gravimetric analysis (TGA) and Differential scanning calorimetry (DSC) indicated that the glycosylated conjugates can significantly improve the thermal stability of AC In addition, the AC showed an improved processing and storage stability when conjugated with glycosylated carrier. The glycosylated protein-anthocyanins complex may help provide new ideas and scientific basis for the development of naturally sourced anthocyanins-relevant products in pharmaceutical and food industry applications.
Collapse
Affiliation(s)
- Boyu Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Chen Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Wanhuan Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Yanan Zhao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Li J, Sun C, Ma W, Wen K, Wang Y, Yue X, Wang Y, Bai Y. The Effects of Assisted Freezing with Different Ultrasound Power Rates on the Quality and Flavor of Braised Beef. Foods 2024; 13:1566. [PMID: 38790866 PMCID: PMC11121095 DOI: 10.3390/foods13101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of ultrasound-assisted immersion freezing (UIF) at different power rates (0, 200, 400, and 600 W) on the changes in beef quality and flavor after braising. The results demonstrated that UIF treatment at 400 W significantly reduced the juice loss (cooking loss decreased from 49.04% to 39.74%) and fat oxidation (TBARS value decreased from 0.32 mg/kg to 0.20 mg/kg) of braised beef. In addition, the tenderness (hardness value decreased from 5601.50 g to 2849.46 g) and color stability of braised beef were improved after UIF treatment. The flavor characteristics of braised beef were characterized using an electronic nose and an electronic tongue. The PCA analysis data showed that the cumulative contribution rates of the first and second principal components were 85% and 93.2%, respectively, with the first principal component accounting for a higher proportion. The UIF-400 W group had the highest concentration for the first principal component, and the differentiation was not significant compared to the control group. The total amino acid values of different power UIF treatment groups were improved compared to the AF treatment group, indicating that UIF can effectively reduce the losses caused by freezing. The results demonstrate that ultrasound-assisted freezing treatment is beneficial in enhancing the tenderness and flavor attributes of beef after braising, providing new insights into the processing of meat products with desirable quality characteristics.
Collapse
Affiliation(s)
- Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Chenhao Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Wuchao Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Kexin Wen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
| | - Yu Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Xiaonan Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yuntao Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (J.L.); (C.S.); (W.M.); (K.W.); (Y.W.); (X.Y.); (Y.W.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Zhengzhou University of Light Industry, Ministry of Education, Zhengzhou 450001, China
- Henan Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, Luohe 462000, China
| |
Collapse
|
5
|
Su X, Liu W, Yang B, Yang S, Hou J, Yu G, Feng Y, Li J. Constructing network structures to enhance stability and target deposition of selenium nanoparticles via amphiphilic sodium alginate and alkyl glycosides. Int J Biol Macromol 2024; 267:131588. [PMID: 38615860 DOI: 10.1016/j.ijbiomac.2024.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.
Collapse
Affiliation(s)
- Xiaona Su
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Shujuan Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Jinjian Hou
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Gaobo Yu
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Jiacheng Li
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| |
Collapse
|
6
|
Habelreeh HH, Athinarayanan J, Periasamy VS, Alshatwi AA. Maillard Reaction-Derived S-Doped Carbon Dots Promotes Downregulation of PPARγ, C/EBPα, and SREBP-1 Genes In-Vitro. Molecules 2024; 29:2008. [PMID: 38731499 PMCID: PMC11085050 DOI: 10.3390/molecules29092008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 μg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Ali A. Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (H.H.H.); (J.A.)
| |
Collapse
|
7
|
Zhong L, Xu J, Hu Q, Zhan Q, Ma N, Zhao M, Zhao L. Improved bioavailability and antioxidation of β-carotene-loaded biopolymeric nanoparticles stabilized by glycosylated oat protein isolate. Int J Biol Macromol 2024; 263:130298. [PMID: 38382783 DOI: 10.1016/j.ijbiomac.2024.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/03/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The limited bioavailability of β-carotene hinders its potential application in functional foods, despite its excellent antioxidant properties. Protein-based nanoparticles have been widely used for the delivery of β-carotene to overcome this limitation. However, these nanoparticles are susceptible to environmental stress. In this study, we utilized glycosylated oat protein isolate to prepare nanoparticles loaded with β-carotene through the emulsification-evaporation method, aiming to address this challenge. The results showed that β-carotene was embedded into the spherical nanoparticles, exhibiting relatively high encapsulation efficiency (86.21 %) and loading capacity (5.43 %). The stability of the nanoparticles loaded with β-carotene was enhanced in acidic environments and under high ionic strength. The nanoparticles offered protection to β-carotene against gastric digestion and facilitated its controlled release (95.76 % within 6 h) in the small intestine, thereby leading to an improved in vitro bioavailability (65.06 %) of β-carotene. This improvement conferred the benefits on β-carotene nanoparticles to alleviate tert-butyl hydroperoxide-induced oxidative stress through the upregulation of heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1 expression, as well as the promotion of nuclear translocation of nuclear factor-erythroid 2-related factor 2. Our study suggests the potential for the industry application of nanoparticles based on glycosylated proteins to effectively deliver hydrophobic nutrients and enhance their application.
Collapse
Affiliation(s)
- Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Xu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Zhou C, Huang C, Li L, Tian Y, Zhang J, Lin L, Li C, Ye Y. Apricot polysaccharides as new carriers to make curcumin nanoparticles and improve its stability and antibacterial activity. J Food Sci 2024; 89:881-899. [PMID: 38193203 DOI: 10.1111/1750-3841.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Apricot polysaccharides (APs) as new types of natural carriers for encapsulating and delivering active pharmaceutical ingredients can achieve high-value utilization of apricot pulp and improve the solubility, the stability, and the antibacterial activity of insoluble compounds simultaneously. In this research, the purified APs reacted with bovine serum albumin (BSA) by the Maillard reaction, and with d-α-tocopheryl succinate (TOS) and pheophorbide A (PheoA) by grafting to fabricate two materials for the preparation of curcumin (Cur)-encapsulated AP-BSA nanoparticles (CABNs) and Cur-embedded TOS-AP-PheoA micelles (CTAPMs), respectively. The biological activities of two Cur nano-delivery systems were evaluated. APs consisted of arabinose (22.36%), galactose (7.88%), glucose (34.46%), and galacturonic acid (31.32%) after the optimized extraction. Transmission electron microscopy characterization of CABNs and CTAPMs displayed a discrete and non-aggregated morphology with a spherical shape. Compared to the unencapsulated Cur, the release rates of CABNs and CTAPMs decreased from 87% to 70% at 3 h and from 92% to 25% at 48 h, respectively. The antioxidant capacities of CABNs and CTAPMs were significantly improved. The CTAPMs exhibited a better antibacterial effect against Escherichia coli than CABNs due to the synergistic photosensitive effect between Cur and PheoA.
Collapse
Affiliation(s)
- Chunka Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chuanqing Huang
- National Key Laboratory of Non-food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Lu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yunong Tian
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jin Zhang
- Gaoyao District Comprehensive Emergency Rescue Center, Zhaoqing, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, China
- Jiangxi Environmental Engineering Vocational College, Ganzhou, China
| |
Collapse
|
9
|
Wang S, Ding Y, Huo Z, Li J, Song J, Jian W, Gao Q, Zhang M, Zhao L, Zhang J, Zhang J, Ge W. Conjugation of dual-natural milk-derived proteins with fucoidan to prepare controllable glycosylation products via dielectric barrier discharge cold plasma. Int J Biol Macromol 2024; 255:128035. [PMID: 37972841 DOI: 10.1016/j.ijbiomac.2023.128035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
This study reported that fibrillar bridges (whey protein isolate nanofibrils, WPNs) were used to associate the casein (CA) nanoparticles through the pH-driven method to obtain the self-assembled WPN-CA complexes. Then, a novel technology involving cold plasma (CP) was innovatively proposed to enhance the protective properties of complexes. The confirmation of structural transitions and interactions resulting from the adjustment of WPN-to-CA ratios (WtCs) led to the identification of the complexes named WPCA (WtC1.0:1). Next, the results showed a rapid conjugation between WPCA and fucoidan (FD) with a degree of grafting of 16.03 % after 10 min CP treatment. The coupling of WPCA with FD to form conjugates was confirmed by SDS-PAGE analysis, indicating covalent bonds' formation. FTIR spectroscopy revealed an augmentation in the intensity of the OH stretching vibration of the WPCA-FD conjugate, concomitant with a decrease in β-turns and an elevation in β-sheets content. Furthermore, the application of glycosylation treatment to WPCA-FD resulted in a noteworthy enhancement of both the thermal stability and antioxidant activity characteristics of WPCA. Our findings move a step forward, as CP-assisted Maillard reaction has shown potential as an efficient and energy-saving method to enhance the functional properties of milk-derived proteins in the food industry.
Collapse
Affiliation(s)
- Shuangshuang Wang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Yi Ding
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Zhenquan Huo
- Zhejiang Zhongmengchang Health Technology Co., Ltd., Hangzhou 310000, China
| | - Jiaming Li
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Jiaqing Song
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Weiwen Jian
- Shaanxi Baiyue Youlishi Dairy Industry Co., Ltd., Xianyang 712000, China
| | - Qinyi Gao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Minghui Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Lili Zhao
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Jiaying Zhang
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
10
|
Guo M, Cui W, Li Y, Fei S, Sun C, Tan M, Su W. Microfluidic fabrication of size-controlled nanocarriers with improved stability and biocompatibility for astaxanthin delivery. Food Res Int 2023; 170:112958. [PMID: 37316049 DOI: 10.1016/j.foodres.2023.112958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Improving the stability of astaxanthin (AST) is a vital way to enhance its oral bioavailability. In this study, a microfluidic strategy for the preparation of astaxanthin nano-encapsulation system was proposed. Thanks to the precise control of microfluidic and the rapid preparation ability of the Mannich reaction, the resulting astaxanthin nano-encapsulation system (AST-ACNs-NPs) was obtained with average sizes of 200 nm, uniform spherical shape and high encapsulation rate of 75%. AST was successfully doped into the nanocarriers, according to the findings of the DFT calculation, fluorescence spectrum, Fourier transform spectroscopy, and UV-vis absorption spectroscopy. Compared with free AST, AST-ACNs-NPs showed better stability under the conditions of high temperature, pH and UV light with<20% activity loss rate. The nano-encapsulation system containing AST could significantly reduce the hydrogen peroxide produced by reactive oxygen species, keep the potential of the mitochondrial membrane at a healthy level, and improve the antioxidant ability of H2O2-induced RAW 264.7 cells. These results indicated that microfluidics-based astaxanthin delivery system is an effective solution to improve the bioaccessibility of bioactive substances and has potential application value in food industry.
Collapse
Affiliation(s)
- Meng Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weina Cui
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuanchao Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Siyuan Fei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
11
|
Chen H, Lin S, Wu J, Xu Y, Cai X, Wang S. The structure, antioxidant activity, and stability of fish gelatin/chitooligosaccharide nanoparticles loaded with apple polyphenols. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4211-4220. [PMID: 36647322 DOI: 10.1002/jsfa.12455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Apple polyphenols (APs) with multiple biological effects have attracted extensive attention due to their broad opportunities for application. However, the use of APs is hampered by their instability in the face of environmental changes. Designing efficient carriers to improve the bioavailability of APs is the key to solving these problems. In this study, gelatin-chitooligosaccharide nanoparticles produced by the Maillard reaction (GCM) were fabricated to encapsulate AP, and the structure, antioxidant activity, and stability of the GMM-AP nanoparticle system were evaluated. RESULTS The results of endogenous fluorescence spectrum, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction, and simultaneous thermal analysis confirmed structural changes and interactions between GCM and AP. Combination with GCM did not adversely affect the antioxidant properties of AP, and the GCM-AP nanoparticles possessed superior temperature and storage stability. In comparison with fish gelatin-apple polyphenol nanoparticles, the GCM-AP nanoparticles were more stable at a wider pH range, and were more resistant to the electrostatic shielding effect of NaCl. After simulating gastric digestion, the particle size and polydispersity index (PDI) of GCM-AP nanoparticles were almost unchanged. CONCLUSION The findings suggest that GCM nanoparticles loaded with AP could be used as good carriers with good antioxidant activity and stability. This study therefore provides a theoretical foundation for the development and industrial application of food functional factors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Sheng Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiulin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yizhou Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
12
|
Hashemilar H, Jafarizadeh-Malmiri H, Ahmadi O, Jodeiri N. Enzymatically preparation of starch nanoparticles using freeze drying technique - Gelatinization, optimization and characterization. Int J Biol Macromol 2023; 237:124137. [PMID: 36965561 DOI: 10.1016/j.ijbiomac.2023.124137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
Starch nanoparticles (SNPs) in colloidal forms were prepared using enzymatically pretreatment and four different gelatinization methods based on autoclave, microwave, ultrasonication and normal heating with stirring. Furthermore, SNPs in powder form were prepared using freeze drying technique. Results indicated that the formed SNPs using starch solution (1 % W/V) and ultrasonication technique had lowest mean particle size (151 nm) and PDI (0.173), and highest zeta potential (-8.8 mV) values. Optimization procedure using response surface methodology, based on central composite design, indicated that using 1.5 mL of α-amylase and sonication time of 15 min, SNPs with lowest particle size (49.3 nm) and highest zeta potential (-10.8 mV) were produced. Using prepared colloidal solution under optimal conditions, SNPs powder were produced by freeze dryer, adjusted at pressure and temperature of 100 Pa and - 70 °C, for 24 h. Results indicated that formed SNPs powder with squared-shape, had particle size, zeta potential, specific surface area, decomposition temperature of 197 nm, -13.9 mV, 1.9 m2g-1 and 162 °C, respectively. While, for native starch these values were 5018 nm, -6.01 mV, 0.68 m2g-1 and 170.2 °C, respectively. Results revealed that emulsification ability of SNPs powder was three times higher than that of the native starch.
Collapse
Affiliation(s)
- Haniyeh Hashemilar
- Faculty of Chemical Engineering, Sahand University of Technology, East Azarbaijan, Tabriz, Iran
| | - Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering, Sahand University of Technology, East Azarbaijan, Tabriz, Iran.
| | - Omid Ahmadi
- Faculty of Chemical Engineering, Sahand University of Technology, East Azarbaijan, Tabriz, Iran
| | - Naimeh Jodeiri
- Faculty of Chemical Engineering, Sahand University of Technology, East Azarbaijan, Tabriz, Iran
| |
Collapse
|
13
|
Lu H, He X, Qin Y, Ji N, Dai L, Xiong L, Shi R, Wang T, Sun Q. Preparation and characterization of V-type starch nanoparticles by an oil-water interface method. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Food-borne melanoidin-based nanozyme mimics natural peroxidase for efficient catalytic disinfection. Colloids Surf B Biointerfaces 2022; 220:112948. [DOI: 10.1016/j.colsurfb.2022.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
15
|
Cross-linked gluten/zein nanofibers via Maillard reaction with the loading of star anise essential oil/β-cyclodextrin inclusions for food-active packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Sun H, Guo W, Han Y, Gou Z, Liang Y, Dan J, Kang Y, Wang J, Zhang W. Food-borne melanoidin based peroxidase mimic for the precise detection of total antioxidant capacity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Yin M, Matsuoka R, Yanagisawa T, Xi Y, Zhang L, Wang X. Effect of different drying methods on free amino acid and flavor nucleotides of scallop (patinopecten yessoensis) adductor muscle. Food Chem 2022; 396:133620. [PMID: 35843006 DOI: 10.1016/j.foodchem.2022.133620] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 01/17/2023]
Abstract
The effects of hot air drying (HAD), vacuum hot air drying (VHAD), microwave drying (MWD), and vacuum freeze drying (VFD) on free amino acids (FAAs) and flavor nucleotides in scallop adductor muscle (SAM) were studied. The liquid chromatography and multidimensional infrared spectroscopy (MM-IR) were used. Compared with fresh SAM, the main FAAs were glycine, alanine, arginine, and glutamic acid in dried SAM. The total FAAs content in VFD group was 1.40-1.90 times of the other group. The umami taste nucleotides (IMP and AMP) content in the VFD and MWD groups was significantly higher than that in HAD and VHAD groups. Equivalent umami concentrations were found: VFD > MWD > VHAD > HAD. MM-IR analysis was an efficient method for identifying taste components. The results revealed FAAs and flavor nucleotides and the mutual adjustment of compounds were related to drying method, and VFD was preferred for taste substance retention in scallops.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | | | | | - Yinci Xi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
18
|
Han H, Jiao Y, Chang Y, Cheng Y, Shi L. Glycosylation of Zein Hydrolysate as a Nanocarrier for Lutein Delivery: Preparation and Stability. Front Pharmacol 2022; 13:905059. [PMID: 35586048 PMCID: PMC9108384 DOI: 10.3389/fphar.2022.905059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lutein is a functional carotenoid that has a wide range of physiological benefits in humans. However, it easily degrades and becomes inactivated during storage and processing, resulting in low bioavailability. The development of new nanocarriers can effectively improve the stability and biological activity of lutein. In this study, zein hydrolysate (ZH) carriers were glycosylated with glucosamine (GLU) under the action of transglutaminase, and lutein-loaded glycosylated ZH nanoparticles (GZH-LUT) were constructed by liquid–liquid dispersion. The results showed that the GZH-LUT particles had a narrow size distribution in the range of 200–300 nm and a decreased zeta potential and polydispersity index. In particular, GZH trapped lutein more efficiently than ZH. In addition, GZH-LUT had better physical and chemical properties, including better water solubility, oxidative stability, and environmental stability than free lutein and ZH-LUT. These results indicate that glycosylated zein hydrolysate has the potential to be used as a novel protein-based nanocarrier to enhance the solubility and stability of lutein, which can further improve its bioavailability.
Collapse
|
19
|
Li W, Yu Y, Dai Z, Peng J, Wu J, Wang Z. Encapsulation of Curcumin in a Ternary Nanocomplex Prepared with Carboxymethyl Short Linear Glucan-Sodium-Caseinate-Pectin Via Electrostatic Interactions. J Food Sci 2022; 87:780-794. [PMID: 35040140 DOI: 10.1111/1750-3841.16026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
This work chemically modified short linear glucan (SLG) by introducing a surface carboxymethyl group to obtain carboxymethylated SLG (CMSLG), then prepared CMSLG-based ternary nanocomplex particles based on electrostatic interactions with sodium-caseinate (NaCas) and pectin. These nanocomplex particles are homogeneous, generally exhibiting sizes of <200 nm with spherical shape and negative surface charge. In addition, the results showed the increase in both the mass ratio of CMSLG and NaCas and the synthesis temperature can improve the colloidal stability of nanocomplex particles when they are exposed to simulated gastrointestinal fluids containing digestive enzymes. Moreover, nanocomplex particles have an exceptional capability to encapsulate curcumin, and this encapsulation efficiency increased as the mass ratios of CMSLG and NaCas were increased. The study also investigated the antioxidant activity and in vitro release properties of curcumin encapsulated by nanocomplex particles and found that CMSLG/NaCas/pectin had improved higher ABTS radical scavenging capacity and allowed for the controlled, sustained release of curcumin in simulated gastrointestinal fluid within 6 hours. Thus, this study provides new insights into the design of a CMSLG-based ternary nanocomplex and its use as a potential oral delivery system for lipophilic bioactive compounds. PRACTICAL APPLICATION: Curcumin, as a sort of natural polyphenolic compound, has many physiologic functions such as anti-oxidation, anticancer, and prevention of Alzheimer's disease. However, the application of the curcumin has been limited by its poor water solubility and unstable physicochemical property. To solve this problem, the nanotechnology has been used to prepare the nano-delivery carriers for curcumin. This work prepared a ternary nanoparticle based on the carboxymethyl short linear glucan, sodium-caseinate, and pectin. The ternary nanoparticle can achieve a higher encapsulation efficiency for curcumin. In addition, the ternary nanoparticle can enhance the ABTS radical scavenging capacity and provided control and sustained release of curcumin in the simulated gastrointestinal fluid.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Yu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Dai
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jielong Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Xie H, Ma X, Lin W, Dong S, Liu Q, Chen Y, Gao Q. Linear Dextrin as Potential Insulin Delivery System: Effect of Degree of Polymerization on the Physicochemical Properties of Linear Dextrin-Insulin Inclusion Complexes. Polymers (Basel) 2021; 13:polym13234187. [PMID: 34883690 PMCID: PMC8659932 DOI: 10.3390/polym13234187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/28/2022] Open
Abstract
In the current study, linear dextrin (LD) was prepared using waxy potato starch debranched with pullulanase, which has attracted immense interest in the food, pharmaceutical, and cosmetic industries as a versatile ingredient. Various LDs were separated on the basis of their differential solubility in aqueous/ethanol solutions of different volumetric ratios. Three LD products—LD Fabrications with 40% ethanol (F-40); LD Fabrications with 50% ethanol (F-50); and LD Fabrications with 60%, 70%, and 80% ethanol (F-M)—were obtained with an average degree of polymerization (DP) values of 31.44, 21.84, and 16.10, respectively. The results of Fourier transform infrared spectroscopy (FT-IR) analysis revealed that the reaction mainly involved hydrogen bonding and a hydrophobic interaction between LD and insulin in the process of inclusion complex formation. X-ray diffraction (XRD) results indicated that insulin was encapsulated in LD. The results of circular dichroism (CD) showed that the changes in the secondary structure of insulin were negligible during the release from the inclusion complexes. The order of encapsulation capacity is as follows: the complex composed of F-M and insulin (F-M-INS) > the complex composed of LD and insulin (LD-INS) > the complex composed of F-50 and insulin (F-50-INS) > and the complex composed of F-40 and insulin (F-40-INS). F-M-INS inclusion complexes showed a better effect on reducing the release of insulin in gastric juice and promoting the release of insulin in intestinal juice and blood plasma than LD-INS.
Collapse
Affiliation(s)
- Huifang Xie
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
| | - Xin Ma
- School of Computer Science and Technology, Tiangong University, Tianjin 300387, China; (X.M.); (W.L.)
| | - Wenbin Lin
- School of Computer Science and Technology, Tiangong University, Tianjin 300387, China; (X.M.); (W.L.)
| | - Shiting Dong
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
| | - Qiang Liu
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
| | - Yi Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (H.X.); (S.D.); (Q.L.)
- Correspondence: ; Tel.: +86-136-6026-1703; Fax: +86-020-87113848
| |
Collapse
|
21
|
Physicochemical properties and antioxidant activity of Maillard reaction products derived from Dioscorea opposita polysaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Naik RR, Wang Y, Selomulya C. Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Crit Rev Food Sci Nutr 2021; 62:7036-7061. [PMID: 33849344 DOI: 10.1080/10408398.2021.1910139] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plant-derived protein research has gained attention in recent years due to the rise of health concerns, allergenicity, trends toward vegan diet, food safety, and sustainability; but the lower techno-functional attributes of plant proteins compared to those of animals still remain a challenge for their utilization. Maillard conjugation is a protein side-chain modification reaction which is spontaneous, and do not require additional chemical additive to initiate the reaction. The glycoconjugates formed during the reaction significantly improves the thermal stability and pH sensitivity of proteins. The modification of plant-derived protein using Maillard conjugation requires a comprehensive understanding of the influence of process conditions on the conjugation process. These factors can be used to establish a correlation with different functional and bioactive characteristics, to potentially adapt this approach for selective functionality enhancement and nutraceutical development. This review covers recent advances in plant-derived protein modification using Maillard conjugation, including different pretreatments to modify the functionality and bioactivity of plant proteins and their potential uses in practice. An overview of different properties of conjugates and MRPs, including food safety aspects, is given.
Collapse
Affiliation(s)
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW, Australia
| | | |
Collapse
|
23
|
Kwak HW, Park J, Yun H, Jeon K, Kang DW. Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Liu Q, Li F, Ji N, Dai L, Xiong L, Sun Q. Acetylated debranched starch micelles as a promising nanocarrier for curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106253] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Feng J, Berton-Carabin CC, Ataç Mogol B, Schroën K, Fogliano V. Glycation of soy proteins leads to a range of fractions with various supramolecular assemblies and surface activities. Food Chem 2020; 343:128556. [PMID: 33183873 DOI: 10.1016/j.foodchem.2020.128556] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/07/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Dry and subsequent wet heating were used to glycate soy proteins with dextran or glucose, followed by fractionation based on size and solubility. Dry heating led to protein glycation (formation of furosine, Nε-(carboxymethyl)-l-lysine, Nε-(carboxyethyl)-l-lysine, and protein-bound carbonyls) and aggregation (increased particle size); while subsequent wet heating induced partial unfolding and de-aggregation. The measurable free amino group content of soy proteins changed from 0.77 to 0.14, then to 0.62 mmol/g upon dry and subsequent wet heating; this non-monotonic evolution is probably due to protein structural changes, and shows that this content should be interpreted with caution as a glycation marker. After both heating steps, the smaller-sized water-soluble fractions showed higher surface activity than the larger insoluble ones, and dextran conjugates exhibited a higher surface activity than their glucose counterparts. We thereby achieved a comprehensive understanding of the properties of various fractions in plant protein fractions, which is essential when targeting applications.
Collapse
Affiliation(s)
- Jilu Feng
- Food Quality and Design Group, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands; INRAE, UR BIA, F-44316 Nantes, France
| | - Claire C Berton-Carabin
- INRAE, UR BIA, F-44316 Nantes, France; Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - Burçe Ataç Mogol
- Food Quality and Design Group, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - Karin Schroën
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, Bornse Weilanden 9, Wageningen 6708 WG, the Netherlands.
| |
Collapse
|
26
|
Chen X, Jiang D, Xu P, Geng Z, Xiong G, Zou Y, Wang D, Xu W. Structural and antimicrobial properties of Maillard reaction products in chicken liver protein hydrolysate after sonication. Food Chem 2020; 343:128417. [PMID: 33406574 DOI: 10.1016/j.foodchem.2020.128417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
This study aimed to investigate the structural and antimicrobial properties of Maillard reaction products (MRPs) in chicken liver protein (CLP) and its hydrolysate (CLPH) after sonication (SCLPH). The MRPs of CLP (CLPM), CLPH (CLPHM) and SCLPH (SCLPHM) were analyzed by several spectrometric techniques. The molecular weights of the CLPHM and SCLPHM were primarily between 1.35 kDa and 17 kDa. Moreover, the molecular weights in the CLPHM and SCLPHM below 1.35 kDa were increased, which indicated that cross-linking and thermal degradation occurred during the Maillard reaction (MR). The SCLPHM showed an obvious network skeleton, and the surface had many small crystal-shaped particles after ultrasound treatment and MR by scanning electron microscopy. The SCLPHM had more negative charges than the CLPHM, thus effectively inhibiting the growth of S. saprophyticus and E. coli. MR and ultrasound treatment could be a promising technology to expand the application prospects of low-value meat byproducts.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, 230036, PR China
| | - Di Jiang
- Science and Technology Literature Development Service Center, Jiangsu Information Institute of Science and Technology, Nanjing 210042, PR China
| | - Pingping Xu
- Science and Technology Literature Development Service Center, Jiangsu Information Institute of Science and Technology, Nanjing 210042, PR China
| | - Zhiming Geng
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Guoyuan Xiong
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, 230036, PR China
| | - Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China.
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing 210095, PR China
| |
Collapse
|
27
|
Liu Q, Ji N, Xiong L, Sun Q. Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking. Carbohydr Polym 2020; 246:116586. [DOI: 10.1016/j.carbpol.2020.116586] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
|
28
|
Patrignani M, González‐Forte LDS. Characterisation of melanoidins derived from Brewers' spent grain: new insights into their structure and antioxidant activity. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mariela Patrignani
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas UNLP‐CIC‐ CCT La Plata ‐CONICET 47 y 116 1900 La Plata Argentina
| | - Lucía del Sol González‐Forte
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) Facultad de Ciencias Exactas UNLP‐CIC‐ CCT La Plata ‐CONICET 47 y 116 1900 La Plata Argentina
- Facultad de Ciencias Agrarias y Forestales UNLP 60 y 116 1900 La Plata Argentina
| |
Collapse
|
29
|
Oh SM, Lee BH, Seo DH, Choi HW, Kim BY, Baik MY. Starch nanoparticles prepared by enzymatic hydrolysis and self-assembly of short-chain glucans. Food Sci Biotechnol 2020; 29:585-598. [PMID: 32419957 PMCID: PMC7221041 DOI: 10.1007/s10068-020-00768-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Enzymatic hydrolysis and self-assembly are considered promising methods for preparation of starch nanoparticles (SNPs) because they are environmentally friendly, and time- and cost-effective. These methods are based on the self-assembly of short-chain glucans released from the α-1,6 bonds in amylopectin. Since their discovery, many studies have described the structural and physicochemical properties of self-assembled SNPs. Self-assembled SNPs can be prepared by two methods: using only the soluble portion containing the short-chain glucans, or using the whole hydrolyzate including both insoluble and soluble fractions. Although the structural and physical properties of self-assembled SNPs can be attributed to the composition of the hydrolyzates that participate in self-assembly, this aspect has not yet been discussed. This review focuses on SNPs self-assembled with only soluble short-chain glucans and addresses their characteristics, including formation mechanisms as well as structural and physicochemical properties, compared with SNPs prepared with total hydrolyzates.
Collapse
Affiliation(s)
- Seon-Min Oh
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyun-Wook Choi
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, Republic of Korea
| | - Byung-Yong Kim
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Moo-Yeol Baik
- Department of Food Science and Biotechnology, Institute of Life Science and Resources, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
30
|
Xiong GY, Chen X, Zhang XX, Miao Y, Zou Y, Wang DY, Xu WM. Process optimization and the relationship between the reaction degree and the antioxidant activity of Maillard reaction products of chicken liver protein hydrolysates. Poult Sci 2020; 99:3733-3741. [PMID: 32616269 PMCID: PMC7597858 DOI: 10.1016/j.psj.2020.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 03/20/2020] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to optimize the protein hydrolysates from chicken liver with xylose under Maillard reaction (MR) conditions using response surface methodology. The correlation between the browning degree, grafting degree, and the antioxidant activities of the Maillard reaction products (MRPs) was investigated. The optimal reaction conditions were achieved with a reaction temperature of 138.78°C, an initial pH of 7.99, and a reaction time of 93.14 min. The grafting degree (41.98%) and browning degree (2.582) of chicken liver protein hydrolysate MRPs (CLPHM) were notably higher (P < 0.05) than those of protein MRPs (CLPM) and were significantly lower (P < 0.05) than those of sonicated hydrolysate MRPs (SCLPHM). The reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and hydroxyl radical scavenging of CLPM, CLPHM, and SCLPHM were significantly higher (P < 0.01) than those of the protein or hydrolysate substrates. The grafting degree and browning degree of CLPM, CLPHM, and SCLPHM had positive correlations with DPPH and hydroxyl radical scavenging activity. Hence, this study could enhance the added value of chicken liver by exhibiting the enhancements from ultrasound pretreatment and the MR. MRPs could have an effective and potential application in the food industry.
Collapse
Affiliation(s)
- G Y Xiong
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, 230036, PR China
| | - X Chen
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, 230036, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - X X Zhang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Y Miao
- Jiangsu PICE Service Co., Ltd, Nanjing 210046, PR China
| | - Y Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - D Y Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - W M Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| |
Collapse
|
31
|
Liu HM, Han YF, Wang NN, Zheng YZ, Wang XD. Formation and Antioxidant Activity of Maillard Reaction Products Derived from Different Sugar-amino Acid Aqueous Model Systems of Sesame Roasting. J Oleo Sci 2020; 69:391-401. [PMID: 32132349 DOI: 10.5650/jos.ess19336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This investigation was carried out to offer insight into the formation and antioxidant activity of Maillard reaction products (MRPs) derived from various sugar-amino acid model systems active in the roasting of sesame seeds. Reducing sugars (glucose, fructose, and xylose) and amino acids (serine, cystine, arginine, and lysine) present in sesame seeds were used to prepare the MRPs at various reaction times, and then the effect of reaction time on the MRPs derived from the various model systems was investigated. Within the first 15 min, the amounts of free amino groups decreased around 40% remaining amino groups of Lys-sugar model and around 75% remaining amino groups of Arg-sugar model. Results indicated that reducing sugar and free amino groups decreased obviously in Lys- and Arg-model systems. Based on correlation coefficient of antioxidant activities assessment and MRP formation in the Lys- and Arg-model systems above 0.978 and an extremely significant correlation in Pearson test exists, a conclusion could be made that these model systems are critical contributing factors in MRP formation during the roasting of sesame seeds. These findings offer insight into the formation and antioxidation of MRPs during the sesame seeds roasting.
Collapse
Affiliation(s)
- Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology
| | - Ya-Fei Han
- College of Food Science and Technology, Henan University of Technology.,College of Food Science and Technology, Zhengzhou University of Science and Technology
| | - Nan-Nan Wang
- College of Food Science and Technology, Henan University of Technology.,Sinograin Oil & Fats Industrial Dongguan Co., LTD
| | - Yong-Zhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology
| |
Collapse
|
32
|
Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release 2019; 313:1-13. [PMID: 31622690 DOI: 10.1016/j.jconrel.2019.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
Non-invasive means of insulin administration circumvent some of the inconveniences of injections. Oral administration in particular is convenient, pain-free, and allows favorable glucose homeostasis, but is subject to chemical instability, enzymatic degradation, and poor gastrointestinal absorption. Natural polymeric nanoparticles have emerged as a promising oral delivery system for peptide therapeutics due their safety, biocompatibility, and stability. In this study, self-assembled nanocomposites from chitosan (CS) and insulin-loaded, zein-carboxymethylated short-chain amylose (IN-Z-CSA) nanocomposites were synthesized to improve oral bioavailability of insulin. The optimized IN-Z-CSA/CS0.2% nanocomposites exhibited an average size of 311.32±6.98 nm, a low polydispersity index (0.227±0.01), a negative zeta potential (43.77±1.36 mV), an encapsulation efficiency of 89.6±0.9%, and a loading capacity of 6.8±0.4%. The IN-Z-CSA/CS0.2% nanocomposites were stable in storage conditions. The transepithelial permeability of the N-Z-CSA/CS0.2% nanocomposites was 12-fold higher than that of insulin. Cellular uptake studies revealed that the IN-Z-CSA/CS0.2% nanocomposites were internalized into Caco-2 cells by both endocytosis and a paracellular route. Additionally, in pharmacological studies, orally administered IN-Z-CSA/CS0.2% nanocomposites had a stronger hypoglycemic effect with a relative bioavailability of 15.19% compared with that of IN-Z-CSA1.0% nanocomposites. Furthermore, cell toxicity and in vivo tests revealed that the IN-Z-CSA/CS0.2% nanocomposites were biocompatible. Overall, these results indicate that the IN-Z-CSA/CS0.2% nanocomposites can improve oral bioavailability of insulin and are a promising delivery system for insulin or other peptide/protein drugs.
Collapse
|
33
|
Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ. Self-Assembled Carbohydrate Polymers for Food Applications: A Review. Compr Rev Food Sci Food Saf 2019; 18:2009-2024. [PMID: 33336964 DOI: 10.1111/1541-4337.12499] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022]
Abstract
The self-assembled natural and synthetic polymers are booming. However, natural polymers obtained from native or modified carbohydrate polymers (CPs), such as celluloses, chitosan, glucans, gums, pectins, and starches, have had special attention as raw material in the manufacture of self-assembled polymer composite materials having several forms: films, hydrogels, micelles, and particles. The easy manipulation of the architecture of the CPs, as well as their high availability in nature, low cost, and being sustainable and green polymers have been the main positive points in the use of them for different applications. CPs have been used as building blocks for composite structures, and their easy orientation and ordering has given rise to self-assembled CPs (SCPs). These macromolecules have been little studied for food applications. Nonetheless, their research has grown mainly in the last 5 years as encapsulated food additive wall materials, food coatings, and edible films. The multifaceted properties (systems sensitive to pH, temperature, ionic strength, types of ions, mechanical force, and enzymes) of these devices are leading to the development of advanced food materials. This review article focused on the analysis of SCPs for food applications in order to encourage other research groups for their preparation and implementation.
Collapse
Affiliation(s)
- Germán Ayala Valencia
- Dept. of Chemical and Food Engineering, Federal Univ. of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | | | - Pooyan Makvandi
- Inst. for Polymers, Composites and Biomaterials (IPCB), Natl. Research Council (CNR), Naples, Italy.,Dept. of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran Univ. of Medical Sciences, Tehran, Iran
| | - Tomy J Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, B7608FLC, Mar del Plata, Argentina
| |
Collapse
|