1
|
He M, Chen L, Liu Y, Teng F, Li Y. Effect of ultrasonic pretreatment on physicochemical, thermal, and rheological properties of chemically modified corn starch. Food Chem 2025; 463:141061. [PMID: 39236390 DOI: 10.1016/j.foodchem.2024.141061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
This study investigated the effects of ultrasonic and three chemical individual and dual modification treatments on corn starch's physicochemical, thermal, and rheological properties. Ultrasonication and the three chemical treatments disrupted the starch granules with a decrease in particle size and a significant increase in the ζ-potential. The hydrophilicity of ultrasonic-oxidized dual-modified starch (U-O-CS) was the highest, at 0.854 g/g. The lipophilicity of ultrasonic-esterified dual-modified starch (U-E-CS) was the highest, at 1.485 g/g. The gelatinization temperature of ultrasonic, oxidation, and cross-linking modified starches increased significantly, with cross-linking starches being the largest. Oxidative treatment significantly decreased the starch's G' and G" and weakened the textural properties. The rheological properties of U-O-CS were further weakened. The G' of the starch decreased after the esterification treatment, while the G" increased, and the textural properties were cut. The maximum rheological and textural properties were obtained for crosslinked modification, with a hardness value of 284.70 g.
Collapse
Affiliation(s)
- Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
He M, Zhang M, Gao T, Chen L, Liu Y, Huang Y, Teng F, Li Y. Assembly of soy protein-corn starch composite gels by thermal induction: Structure, and properties. Food Chem 2024; 434:137433. [PMID: 37741241 DOI: 10.1016/j.foodchem.2023.137433] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
The effect of different corn starch (CS) concentrations on the gel formation of soybean isolate protein (SPI) was investigated. Moreover, the texture, rheological properties of the gel were determined, and the spatial structure and interactions of the composite gel system were analyzed. The composite system transitioned from liquid to solid-like with an increase in the CS concentration and did not backflow when inverted for 24 h. With the addition of CS, the gel strength, water holding capacity (WHC), G', and G'' increased significantly. The maximum was reached at 10 % starch concentration with gel strength of (228.96 ± 29.86) g and WHC of (98.93 ± 2.02) %. According to low-field 1H nuclear magnetic resonance (LF-NMR) results, CS has a high water absorption capacity, which improved the WHC. The scanning electron microscopy results revealed that composite gels with a high CS concentration had a more dense and small void network structure. According to the results of molecular force interaction, infrared spectroscopy, Raman spectroscopy, and free sulfhydryl group analysis, the added starch promoted the unfolding of SPI molecules, exposure of hydrophobic groups, transformation of free sulfhydryl groups into disulfide bonds, and hydrogen bond formation. Hydrophobic interactions, disulfide bonding, and hydrogen bonding function together to form the SPI-CS composite gel system. The study results provide the basis for applying soy protein and CS gels.
Collapse
Affiliation(s)
- Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Meng Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yue Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Shi H, Ding C, Yuan J. Effect and Mechanism of Soluble Starch on Bovine Serum Albumin Cold-Set Gel Induced by Microbial Transglutaminase: A Significantly Improved Carrier for Active Substances. Foods 2023; 12:4313. [PMID: 38231786 DOI: 10.3390/foods12234313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Soluble starch (SS) could significantly accelerate the process of bovine serum albumin (BSA) cold-set gelation by glucono-δ-lactone (GDL) and microbial transglutaminase (MTGase) coupling inducers, and enhance the mechanical properties. Hardness, WHC, loss modulus (G″) and storage modulus (G') of the gel increased significantly, along with the addition of SS, and gelation time was also shortened from 41 min (SS free) to 9 min (containing 4.0% SS); the microstructure also became more and more dense. The results from FTIR, fluorescence quenching and circular dichroism (CD) suggested that SS could bind to BSA to form their composites, and the hydrogen bond was probably the dominant force. Moreover, the ability of SS to bind the original free water in BSA gel was relatively strong, thereby indirectly increasing the concentration of BSA and improving the texture properties of the gel. The acceleration of gelling could also be attributed to the fact that SS reduced the negative charge of BSA aggregates and further promoted the rapid formation of the gel. The embedding efficiency (EE) of quercetin in BSA-SS cold-set gel increased from 68.3% (SS free) to 87.45% (containing 4.0% SS), and a controlled-released effect was detected by simulated gastrointestinal digestion tests. The work could put forward new insights into protein gelation accelerated by polysaccharide, and provide a candidate for the structural design of new products in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Haoting Shi
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Changsheng Ding
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jianglan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Oladebeye AO, Oladebeye AA, Arawande JO. Physicochemical Properties of Wild Yam ( Dioscorea villosa) Starch. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8868218. [PMID: 37810947 PMCID: PMC10558262 DOI: 10.1155/2023/8868218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Native starch extracted from wild yam (Dioscorea villosa) was evaluated for its intrinsic physicochemical properties. From the results, essential metals such as K, Ca, P, and Fe were detected along with some nonessential heavy metals below the WHO permissible limits. Bulk density was 0.13-0.63 g/mL. The water absorption capacity, oil absorption capacity, swelling power, and solubility of the starch were pH-responsive. Thermal profiles showed onset temperature, To (59.21 °C), peak temperature, Tp (60.22 °C), endset temperature, Tc (63.12 °C), gelatinization enthalpy, ΔHgel (0.54 J/g), temperature range of gelatinization, R (3.91 °C), and peak height index, PHI (1.87 J/g °C). Exhibiting a crystallite size of 0.03 nm, absorption peaks of 15.3119°, 24.4120°, and 18.4170°, corresponding to interplanar d-spacings of 3.7500 Ǻ, 5.14000 Ǻ, and 4.954610 Ǻ, were obtained. Evidence of C-H at 1338.1 cm-1, C-O at 640.0 cm-1, C-H stretch at 2829.7 cm-1, and a strong and broad O-H group at 3291.2 cm-1 were obtained. The starch granules had low particle sizes, were homogeneous, and were aggregates of irregular shapes. At a lower pH (2-4), the wild yam starch studied could be a potential absorbent material in the production of disposable diapers and female napkins and as biodegradable films due to its high hydrophobicity at a high pH (8-12).
Collapse
|
5
|
Min C, Zhang C, Pu H, Li H, Ma W, Kuang J, Huang J, Xiong YL. pH-shifting alters textural, thermal, and microstructural properties of mung bean starch-flaxseed protein composite gels. J Texture Stud 2023; 54:323-333. [PMID: 36790749 DOI: 10.1111/jtxs.12743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
The objective of this study was to investigate the effect of pH-shifting on the textural and microstructural properties of mung bean starch (MBS)-flaxseed protein (FP) composite gels. Results showed that different pH-shifting treatments caused changes in hydrogen bond interactions and secondary structures in composite gels, leading to the formation of loose or compact gel networks. The pH 2-shifting modified protein and starch molecules with shorter chains tended to form smaller intermolecular aggregates, resulting in the formation of a looser gel network. For pH 12-shifting treatment, conformational change of FP caused the unfolding of protein and the exposure of more hydrophobic groups, which enhanced the hydrogen bond and hydrophobic interactions between polymers, contributing to the formation of a compact gel network. Furthermore, pH 12-shifting improved the water-holding capacity (WHC), storage modulus, and strength of gels, while pH 2-treated gels exhibited lower WHC, hardness, and gumminess due to the degradation of MBS and denaturation of FP caused by extreme acid condition. These findings suggest that pH-shifting can alter the gel properties of bi-polymeric starch-protein composite systems by affecting the secondary structures of proteins and the hydrogen bonding between the polymers, and provide a promising way for a wide application of FP in soft gel-type food production.
Collapse
Affiliation(s)
- Cong Min
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Chong Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Huayin Pu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Hongliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Wenhui Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Jiwei Kuang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Junrong Huang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
6
|
Aldana Porras AE, Montoya Yepes DF, Murillo Arango W, Méndez Arteaga JJ, Jiménez Rodríguez ÁA. Physicochemical, functional, and digestibility properties of rice starches esterified with gulupa seed oil ( Passiflora edulis Sims. f. edulis). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2148167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Walter Murillo Arango
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | - John Jairo Méndez Arteaga
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | | |
Collapse
|
7
|
Structural, Thermal and Pasting Properties of Heat-Treated Lotus Seed Starch–Protein Mixtures. Foods 2022; 11:foods11192933. [PMID: 36230010 PMCID: PMC9563054 DOI: 10.3390/foods11192933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
The interactions between starch and protein, the essential components of lotus seed, strongly influence the quality of lotus seed processing by-products. This study investigated the effects of lotus seed starch–protein (LS-LP) interactions on the structural, thermal and gelatinization properties of LS-LP mixtures, using LS/LP ratios of 6:1, 6:2, 6:3, 6:4, 6:5, or 1:1, after heat treatment (95 °C, 30 min). Fourier transform infrared peaks at 1540 cm−1 and 3000–3600 cm−1 revealed the major interactions (electrostatic and hydrogen bonding) between LS and LP. The UV–visible absorption intensities (200–240 nm) of LS-LP mixtures increased with increased protein content. X-ray diffraction and electron microscopy revealed that LS-LP consists of crystalline starch granules encapsulated by protein aggregates. Increasing the addition of protein to the mixtures restricted the swelling of the starch granules, based on their solubility, swelling properties and thermal properties. Viscometric analysis indicated that the formation of LS-LP mixtures improved structural and storage stability. These findings provide a practicable way to control the thermal and gelatinization properties of lotus seed starch–protein mixtures, by changing the proportions of the two components, and provide a theoretical basis for developing novel and functional lotus-seed-based foods.
Collapse
|
8
|
Wang Z, Mhaske P, Farahnaky A, Kasapis S, Majzoobi M. Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Preparation of alginate-whey protein isolate and alginate-pectin-whey protein isolate composites for protection and delivery of Lactobacillus plantarum. Food Res Int 2022; 161:111794. [DOI: 10.1016/j.foodres.2022.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/09/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
|
10
|
Ang CL, Goh KKT, Lim K, Matia-Merino L. High-Protein Foods for Dysphagia: Manipulation of Mechanical and Microstructural Properties of Whey Protein Gels Using De-Structured Starch and Salts. Gels 2022; 8:gels8070399. [PMID: 35877484 PMCID: PMC9318909 DOI: 10.3390/gels8070399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
This study focuses on understanding the effect of ionic strength on the mechanical and microstructural properties of novel composite gels containing 13% whey protein isolate (WPI) and 4% de-structured waxy potato starch (DWPS). The DWPS is a physically modified waxy potato starch treated at 140 °C for 30 min under constant shear. Thermodynamic incompatibility between WPI and DWPS was observed upon the addition of NaCl (~75 mM) or CaCl2 (10–75 mM). The combined effects of such thermodynamic incompatibility with the changes in protein connectivity induced by varied ionic strength led to the formation of distinctive gel structures (inhomogeneous self-supporting gels with a liquid centre and weak gels with paste-like consistency) that were different from thermodynamic compatible homogeneous self-supporting gels (pure WPI and WPI + maltodextrin gels). At ≥ 250 mM NaCl, instead of a paste-like texture, a recovered soft and creamy self-supporting gel structure was observed when using DWPS. The ability to generate a range of textures in WPI gelation-based foods by using DWPS under different ionic conditions, is a feasible strategy for formulating high-protein foods for dysphagia—aimed to be either thickened fluids or soft solids. Additionally, this acquired knowledge is also relevant when formulating food gels for 3-D printing.
Collapse
Affiliation(s)
- Cai Ling Ang
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (C.L.A.); (K.K.T.G.)
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Kelvin Kim Tha Goh
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (C.L.A.); (K.K.T.G.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., 21 Jalan Mesin, Singapore 368819, Singapore;
| | - Lara Matia-Merino
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (C.L.A.); (K.K.T.G.)
- Correspondence:
| |
Collapse
|
11
|
Wang P, Li Y, Qu Y, Wang B, Sun J, Miao C, Huang M, Huang H, Zhang C. Improving gelling properties of myofibrillar proteins incorporating with cellulose micro/nanofibres. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Peng Wang
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Yan Li
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Yujiao Qu
- College of Chemical & Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 China
| | - Baowei Wang
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Jingxin Sun
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
- Qingdao Special Food Research Institute Qingdao 266109 China
| | - Chunwei Miao
- College of Food Science & Engineering Shandong Research Center for Meat Food Quality Control Qingdao Agricultural University Qingdao 266109 China
| | - Ming Huang
- National R&D Branch Center for Poultry Meat Processing Technology Huangjiaoshou Food Sci. & Tech. Co., Ltd. Nanjing 211226 China
| | - He Huang
- Newhope Liuhe Group Co., Ltd. Qingdao 266000 China
| | | |
Collapse
|
12
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
13
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
He Z, Ma T, Zhang W, Su E, Cao F, Huang M, Wang Y. Heat-induced gel formation by whey protein isolate-Lycium barbarum polysaccharides at varying pHs. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Zhu P, Wang M, Du X, Chen Z, Liu C, Zhao H. Morphological and physicochemical properties of rice starch dry heated with whey protein isolate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Zhang M, Luo T, Zhao X, Hao X, Yang Z. Interaction of exopolysaccharide produced by Lactobacillus plantarum YW11 with whey proteins and functionalities of the polymer complex. J Food Sci 2020; 85:4141-4151. [PMID: 33245578 DOI: 10.1111/1750-3841.15522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 06/04/2020] [Accepted: 10/10/2020] [Indexed: 01/06/2023]
Abstract
Exopolysaccharide (EPS)-producing lactic acid bacteria have been widely used in fermented milk, but interaction between the EPS and milk proteins has not been well studied. In this study, interaction between the EPS from Lactobacillus plantarum YW11 (EPS-YW11) and whey proteins (WP), and functional properties of the EPS-YW11/WP were investigated. The results showed that EPS-YW11 tended to encase WP by ζ-potential analysis with a decrease in the surface charge of the protein fraction (from -26.00 mV to 15.30 mV), and an increase in the melting temperature of the protein fraction (from 76.31 °C to 84.48 °C) as shown by differential scanning calorimetry. Circular dichroism spectrometry showed that the EPS could induce structural change of WP, that is, increment in the content of α-helixes and random coils, There was stronger interaction between EPS-YW11 and WP at higher temperatures (60 °C, 90 °C) due to formation of intermolecular H-bonds and OH stretching vibration as indicated by infrared spectral analysis. A significant improvement in the texture (hardness, springiness, gumminess, resilience, cohesiveness, and chewiness) of the EPS-YW11/WP complex was also observed when compared to that of the EPS or WP alone. This was confirmed by microstructural observation of the EPS-YW11/WP complex that formed branched and porous structures, and it became more complex and stable with increased temperature treatment. Due to the strong interaction the EPS-YW11/WP exhibited improved functionality. This study identifies the potential of the EPS-YW11 to serve as a functional agent in the processing of fermented dairy products with enhanced textural stability and bioactivities such as cholesterol-lowering, antioxidant, and antibiofilm.
Collapse
Affiliation(s)
- Min Zhang
- All authors are with Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, P.R. China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Tianqi Luo
- All authors are with Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, P.R. China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Xiao Zhao
- All authors are with Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, P.R. China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Xiaona Hao
- All authors are with Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, P.R. China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| | - Zhennai Yang
- All authors are with Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, P.R. China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, P.R. China
| |
Collapse
|
18
|
Rheology, microstructure and phase behavior of potato starch-protein fibril mixed gel. Carbohydr Polym 2020; 239:116247. [DOI: 10.1016/j.carbpol.2020.116247] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 11/19/2022]
|
19
|
Xiao Y, Liu Y, Wang Y, Jin Y, Guo X, Liu Y, Qi X, Lei H, Xu H. Heat-induced whey protein isolate gels improved by cellulose nanocrystals: Gelling properties and microstructure. Carbohydr Polym 2020; 231:115749. [DOI: 10.1016/j.carbpol.2019.115749] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 11/28/2022]
|
20
|
Maniglia BC, Lima DC, Matta Junior MD, Le-Bail P, Le-Bail A, Augusto PE. Hydrogels based on ozonated cassava starch: Effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications. Int J Biol Macromol 2019; 138:1087-1097. [DOI: 10.1016/j.ijbiomac.2019.07.124] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 01/27/2023]
|
21
|
Huang S, Vasquez Mejía SM, Murch SJ, Bohrer BM. Cooking loss, texture properties, and color of comminuted beef prepared with breadfruit (Artocarpus altilis) flour. MEAT AND MUSCLE BIOLOGY 2019. [DOI: 10.22175/mmb2018.11.0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cooking loss, texture properties, and color of comminuted beef when prepared with breadfruit (Artocarpus altilis) flour or other flour sources was evaluated using 2 separate studies. Flour sources tested in these studies (against a negative control with no added flour) were breadfruit flour, soy flour, corn flour, wheat flour, and tapioca flour. Study 1: Finely minced, comminuted beef batters (extra lean beef targeted to 97% lean and 3% fat, salt, and ice/water) prepared with inclusion levels of 0, 1, 2, 3, 4, and 5% flour were evaluated for cooking loss and texture. Cooking loss was reduced (P < 0.05) in comminuted beef prepared with breadfruit flour compared with those not prepared with flour and cooking loss decreased as breadfruit flour inclusion level increased (Linear P < 0.01). Hardness was not different (P = 0.49) in comminuted beef prepared with breadfruit flour compared with soy flour, and was much less (P < 0.01) compared with the 3 other flour sources at each inclusion level. Study 2: Comminuted beef (lean beef targeted to 90% lean and 10% fat, salt, and ice/water) with inclusion levels of 0, 2.5, and 5% flour were formed into patties and were evaluated for color over a simulated retail display period. Redness values (a*) of comminuted beef prepared with breadfruit flour were the greatest (P < 0.05) during the 7-d simulated retail display compared with all other treatments, including control samples with no flour. Overall, the results indicated that breadfruit flour could be effectively used as an ingredient in comminuted beef to produce similar texture as observed with soy flour, while actually improving redness values beyond that of other flour sources.
Collapse
Affiliation(s)
- Shiqi Huang
- University of Guelph Department of Food Science
| | | | - Susan J. Murch
- University of British Columbia Okanagan Department of Chemistry
| | | |
Collapse
|