1
|
Dikmetas DN, Yenipazar H, Can Karaca A. Recent advances in encapsulation of resveratrol for enhanced delivery. Food Chem 2024; 460:140475. [PMID: 39047495 DOI: 10.1016/j.foodchem.2024.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| |
Collapse
|
2
|
Zhu C, Zhang M, Yang A, Zhong Y, Guo D. Thermal stability and in vitro digestive behavior of Pickering emulsion stabilized by high-amylose starch nanocrystals. Int J Biol Macromol 2024; 280:136110. [PMID: 39343277 DOI: 10.1016/j.ijbiomac.2024.136110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
In this study, high-amylose starch (HAS) was processed using sulfuric acid-ultrasonic cross-linking to produce high-amylose starch nanocrystals (HASNC). These nanocrystals were used to stabilize Pickering emulsions and assess their effectiveness in encapsulating β-carotene. Normal starch nanocrystals (NSNC) were prepared similarly for comparison. The HASNC retained key HAS properties, such as heat and enzyme resistance, providing several advantages to HASNC-stabilized emulsions. First, after exposure to 100 °C heat and in vitro tests simulating the mouth and stomach, the HASNC-stabilized emulsions demonstrated significantly greater stability and higher β-carotene retention compared to the NSNC-stabilized emulsions. This enhanced stability is attributed to the lower gelatinization degree and increased resistance to α-amylase hydrolysis of HASNC, which provides stronger steric stabilization of the oil droplets. Second, during in vitro small intestine tests, the greater enzyme resistance of HASNC allowed for the formation of a denser barrier around the oil droplets, effectively preventing lipase and bile salts from contacting the oil droplets. This led to a reduced rate and extent of lipid digestion and facilitated a sustained-release effect. Consequently, HASNC, as a starch-based emulsifier, show great potential as an effective delivery system for the sustained release of bioactive compounds.
Collapse
Affiliation(s)
- Chuanhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maoxi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aojun Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyue Zhong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Tao J, Bi Y, Luo S, Quan S, He J, Dong P, Tian W, Fang X. Chitosan nanoparticles loaded with royal jelly: Characterization, antioxidant, antibacterial activities and in vitro digestion. Int J Biol Macromol 2024; 280:136155. [PMID: 39357729 DOI: 10.1016/j.ijbiomac.2024.136155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Nano-embedding has appeared as a feasible technology to improve the high-quality utilization of royal jelly (RJ). Therefore, the ionic gelation method was proposed to prepared chitosan nanoparticles loaded with royal jelly (RJNPs) and the characterization and biological activity of RJNPs were evaluated in this study. Fourier-transform infrared spectroscopy, differential scanning calorimetry and X-ray diffraction results showed that the methyl and methylene groups of royal jelly combine with the amino groups of chitosan (CS) to become an amorphous polymer. In addition, the 48.68 % encapsulation efficiency and 31.90 % loading capacity were obtained under the optimal ratio of 1:1 RJ to CS, and the average particle size was <500 nm. The antioxidant activity of RJNPs gradually increased with the increase of the RJ proportion. Interestingly, the antibacterial activity on gram-positive bacteria was better than gram-negative bacteria. Most important, RJNPs exhibited better stability and digestibility rather than single RJ. Overall, these findings indicated that RJ can be embedded in chitosan, and RJNPs exhibited good thermal stability, antioxidant activity, antibacterial activities and bioavailability, which was important for the development and application of the high-quality utilization of RJ.
Collapse
Affiliation(s)
- Jiali Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Yanxiang Bi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Shiye Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Shenyuan Quan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Jiaxin He
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China; Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science & Technology, 29 13th Street, Tianjin 300450, China
| | - Pingping Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| |
Collapse
|
4
|
Wang K, Sun H, Wang J, Cui Z, Hou J, Lu F, Liu Y. Mechanism on microbial transglutaminase and Tremella fuciformis polysaccharide-mediated modification of lactoferrin: Development of functional food. Food Chem 2024; 454:139835. [PMID: 38815323 DOI: 10.1016/j.foodchem.2024.139835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Lactoferrin (LF) with various biological functions demonstrates great application potential. However, its application was restricted by its poor gelation and instability. The aim of this work was to explore the effect of microbial transglutaminase (MTGase) and Tremella fuciformis polysaccharide (TP) on the functional properties of LF. The formation of a self-supporting LF gel could be induced by MTGase through generating covalent crosslinks between the LF protein molecules. Meanwhile, TP was introduced into the gel system to improve the strength of LF-TP composite gels by enhancing non-covalent interactions such as hydrogen bond and electrostatic interactions during gel formation. Additionally, the LF-TP composite gel exhibited outstanding functional characteristics such as gastrointestinal digestive stability and antioxidant property. This work clarified the mechanism on MTGase and TP-mediated modification of lactoferrin, offered a novel strategy to increase the functional characteristics of LF, and enlarged the application range of LF and TP.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
5
|
Yang Z, Chen Q, Wei L. Active and smart biomass film with curcumin Pickering emulsion stabilized by chitosan-adsorbed laurate esterified starch for meat freshness monitoring. Int J Biol Macromol 2024; 275:133331. [PMID: 38945706 DOI: 10.1016/j.ijbiomac.2024.133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
The multifunctional active smart biomass film was prepared by incorporating chitosan-adsorbed laurate esterified starch curcumin Pickering emulsion into the starch film matrix, with nano-cellulose serving as reinforcing agents. The mechanical and functional properties of the film were studied, and the film was used to monitor the freshness of pork. The results demonstrated a relatively uniform distribution of curcumin and Pickering emulsion droplets within the film matrix. Furthermore, the thermal stability was minimally impacted by the introduction of curcumin Pickering emulsion, while the tensile strength and tensile strain of the film were increased, and both its hydrophobicity and antioxidant properties were improved. The free radical scavenging rate reached 56.01 %, with sustained high antioxidant capacity even after 8 days. Additionally, the presence of curcumin provided the film with pH indicating ability and delayed pork spoilage. Therefore, this work provides an attractive strategy for constructing green, active, and smart biomass packaging films for meat packaging applications.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qifeng Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Shenzhen Xinyichang Technology Co., Ltd, Shenzhen 518000, China.
| | - Liting Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Yan Z, Wang X, Zhao P, He Y, Meng X, Liu B. The effect of octenyl succinic anhydride-modified chitosan coating on DHA-loaded nanoemulsions: Physichemical stability and in vitro digestibility. Food Chem 2024; 441:138289. [PMID: 38176141 DOI: 10.1016/j.foodchem.2023.138289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/02/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
Octenyl succinic anhydride-modified chitosan (OSA-CS) was synthesized and applied as a coating material to enhance the stability of docosahexaenoic acid (DHA)-loaded nanoemulsion. Due to the presence of the positively charged OSA-CS coating, the nanoemulsion exhibited a high positive zeta potential and two different layers. Compared with natural CS-coated nanoemulsion, OSA-CS-coated nanoemulsion showed improved storage stability (physical and chemical stability) and stability against environmental stresses (ionic strengths, temperatures and pH). Besides, OSA-CS-coated nanoemulsion protected encapsulated DHA from simulated gastric fluid damage better than that of natural CS-coated nanoemulsion, suggesting that OSA-CS-coated nanoemulsion had the potential to deliver more DHA into the small intestine. In conclusion, based on the comparison of two coating materials, natural chitosan and OSA-CS, it was found that the encapsulated nutrient was better protected by the OSA-CS coating. Such a finding will provide insights to broaden the application of modified chitosan in food delivery systems.
Collapse
Affiliation(s)
- Zhaoju Yan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xin Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Pengcheng Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yangeng He
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xianghong Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Bingjie Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
7
|
Hu Y, Wang L, Julian McClements D. Design, characterization and digestibility of β-carotene-loaded emulsion system stabilized by whey protein with chitosan and potato starch addition. Food Chem 2024; 440:138131. [PMID: 38103502 DOI: 10.1016/j.foodchem.2023.138131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The physicochemical properties and gastrointestinal fate of β-carotene-loaded emulsions and emulsion gels were examined. The emulsion was emulsified by whey protein isolate and incorporated with chitosan, then the emulsion gels were produced by gelatinizing potato starch in the aqueous phase. The rheology properties, water distribution, and microstructure of emulsions and emulsion gels were modulated by chitosan combination. A standardized INFOGEST method was employed to track the gastrointestinal fate of emulsion systems. Significant changes in droplet size, zeta-potential, and aggregation state were detected during in vitro digestion, including simulated oral, stomach, and small intestine phases. The presence of chitosan led to a significantly reduced free fatty acids release in emulsion, whereas a slightly increasing released amount in the emulsion gel. β-carotene bioaccessibility was significantly improved by hydrogel formation and chitosan addition. These results could be used to formulate advanced emulsion systems to improve the gastrointestinal fate of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Yuying Hu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | |
Collapse
|
8
|
Zhu Y, Du C, Jiang F, Hu W, Yu X, Du SK. Pickering emulsions stabilized by starch nanocrystals prepared from various crystalline starches by ultrasonic assisted acetic acid: Stability and delivery of curcumin. Int J Biol Macromol 2024; 267:131217. [PMID: 38552683 DOI: 10.1016/j.ijbiomac.2024.131217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Ultrasonic assisted acetic acid hydrolysis was applied to prepare starch nanocrystals (SNCs) from native starches with different crystalline structures (A, B, and C types). The structure properties, morphology, Pickering emulsion stability and curcumin deliver capacity of both SNCs and native starches were investigated and compared. Compared with native starches, SNCs showed smaller size and higher crystallinity. The size of SNCs varied with different crystalline types, with C-type starch exhibiting the smallest SNCs (107.4 nm), followed by A-type (113.8 nm), and B-type displaying the largest particle size (149.0 nm). SNCs-Pickering emulsion showed enhanced stability with smaller emulsion droplets, higher static stability, and denser oil/water interface. SNCs-Pickering emulsions displayed higher curcumin loading efficiency (53.53 %-61.41 %) compared with native starch-Pickering emulsions (13.93 %-19.73 %). During in vitro digestion, SNCs-Pickering emulsions proved to be more proficient in protecting and prolonging the biological activity of curcumin due to their smaller size and better interfacial properties. These findings demonstrated the potential of SNCs for application in Pickering emulsion and delivery of bioactive components.
Collapse
Affiliation(s)
- Yulian Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Chunwei Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fan Jiang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wenxuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Wang L, Kang Y, Zhang W, Yang J, Li H, Niu M, Guo Y, Wang Z. Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion. Polymers (Basel) 2023; 15:4643. [PMID: 38139895 PMCID: PMC10747945 DOI: 10.3390/polym15244643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, novel lignin-based nanoparticles (LβNPs) with high acidic tolerance were successfully prepared via electrostatic interaction between β-alanine and lignin nanoparticles. The effects of the mass ratio of lignin nanoparticles to β-alanine and pH value on the morphology and particle sizes of LβNPs were investigated with the aim of obtaining the ideal nanoparticles. The optimized LβNPs were spherical in shape with an average particle size of 41.1 ± 14.5 nm and exhibited outstanding structure stability under high acidic conditions (pH < 4). Subsequently, Pickering emulsions stabilized by LβNPs were prepared using olive oil as the oil phase. Additionally, the effects of pH value, droplet size, morphology, and storage stability on Pickering emulsions were also analyzed. The emulsions displayed excellent stability, and were stable against strongly acidic conditions (pH < 4) after 30 days of storage. The study presented a promising approach to preparing lignin-based nanoparticles with high acidic tolerance (an ideal type of stabilizer to prepare emulsions), and exhibited extremely high potential application values in the fields of drug delivery, food additives, and oily wastewater treatment.
Collapse
Affiliation(s)
- Lina Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Yue Kang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Weilu Zhang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Jiahao Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Haiming Li
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Meihong Niu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
| | - Yanzhu Guo
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.W.); (Y.K.); (W.Z.); (J.Y.); (H.L.); (M.N.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Shandong Huatai Paper Co., Ltd., Dongying 275335, China
| | - Zhiwei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
10
|
Qian J, Wang X, Chen Y, Mo C, Liang C, Guo H. The correlation of molecule weight of chitosan oligomers with the corresponding viscosity and antibacterial activity. Carbohydr Res 2023; 530:108860. [PMID: 37300903 DOI: 10.1016/j.carres.2023.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
In order to explore the correlation between the viscosity of chitosan oligomers-acetic solution and its viscosity average molecular weight (Mv), and determine the Mv range with a strong bactericidal effect. A series of chitosan oligomers were obtained by degraded chitosan (728.5 kDa) with dilute acid and chitosan oligomer (101.5 kDa) was characterized by FT-IR, XRD, H NMR and C NMR. The bactericidal effect of chitosan oligomers with different Mv on E. coli, S. aureus and C. albicans was measured by plate counting method. And the bactericidal rate was taken as the evaluation indicator, the optimum conditions were determined by single-factor experiments. The result showed that the molecular structure of chitosan oligomers and original chitosan (728.5 kDa) were similar. The viscosity of the chitosan oligomers in acetic acid solution was positively correlated with the Mv, and the chitosan oligomers with the Mv of 52.5-145.0 kDa had a strong bactericidal performance. In addition, the bactericidal rate of chitosan oligomers on experimental strains was more than 90% when the concentration of 0.5 g/L (bacteria) and 1.0 g/L (fungi), pH6.0, incubation time of 30 min. Thus, chitosan oligomers had a potential application value when the Mv was in the range of 52.5-145.0 kDa.
Collapse
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xi Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenghong Mo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changhai Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
11
|
Liu R, Li Y, Zhou C, Tan M. Pickering emulsions stabilized with a spirulina protein-chitosan complex for astaxanthin delivery. Food Funct 2023; 14:4254-4266. [PMID: 37067860 DOI: 10.1039/d3fo00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Astaxanthin (AXT) is a lipid-soluble carotenoid with good anti-oxidation, hepatic steatosis reduction, anti-inflammation, and intestinal microbiota regulation ability, whose poor stability and pH vulnerability limit its bioavailability. Spirulina protein (SP) derived from spirulina has good emulsifying ability with potential application in nutraceuticals, medicines, and cosmetics. In this study, Pickering emulsions were prepared using a SP-chitosan (CS) complex as an emulsifier. The particle size, zeta potential, and three-phase contact angle of the SP-CS complex with different SP to CS ratios were investigated. A mass ratio of 1 : 2.5 SP-CS complex showed a good emulsifying ability in preparing Pickering emulsion. A higher storage modulus and viscoelasticity were observed with higher SP-CS complex concentrations and oil fractions. The SP-CS Pickering emulsion significantly improved the stability of AXT in different environments. The lipid release rate and AXT bioavailability after digestion of 3 wt% SP-CS complex-stabilized Pickering emulsion reached 70.54 ± 1.59% and 36.60 ± 3.44%, respectively. The results indicated that the SP-CS complex could act as a Pickering emulsion stabilizer and had the potential to deliver protective hydrophobic AXT.
Collapse
Affiliation(s)
- Ronggang Liu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Yu Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Chengfu Zhou
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian 116034, Liaoning, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, Liaoning, China.
| |
Collapse
|
12
|
Apostolidis E, Stoforos GN, Mandala I. Starch physical treatment, emulsion formation, stability, and their applications. Carbohydr Polym 2023; 305:120554. [PMID: 36737219 DOI: 10.1016/j.carbpol.2023.120554] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Pickering emulsions are increasingly preferred over typical surfactant-based emulsions due to several advantages, such as lower emulsifier usage, simplicity, biocompatibility, and safety. These types of emulsions are stabilized using solid particles, which produce a thick layer at the oil-water interface preventing droplets from aggregating. Starch nano-particles (SNPs) have received considerable attention as natural alternatives to synthetic stabilizers due to their unique properties. Physical formulation processes are currently preferred for SNP production since they are environmentally friendly procedures that do not require the use of chemical reagents. This review provides a thorough overview in a critical perspective of the physical processes to produce starch nano-particles used as Pickering emulsion stabilizers, fabricated by a 2-step process. Specifically, the reviewed physical approaches for nano-starch preparation include high hydrostatic pressure, high pressure homogenization, ultrasonication, milling and antisolvent precipitation. All the essential parameters used to evaluate the effectiveness of particles in stabilizing these systems are also presented in detail, including the hydrophobicity, size, and content of starch particles. Finally, this review provides the basis for future research focusing on physical nano-starch production, to ensure the widespread use of these natural stabilizers in the ever-evolving field of food technology.
Collapse
Affiliation(s)
- Eftychios Apostolidis
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - George N Stoforos
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - Ioanna Mandala
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| |
Collapse
|
13
|
Preparation, characterization and digestive mechanism of plant-derived oil bodies-based oleogels structured by chitosan and vanillin. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Effects of coating layers chitosan/pectin on lipid stability and in vitro digestion of astaxanthin-loaded multilayer emulsions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Anal AK, Boonlao N, Ruktanonchai UR. Emulsion Systems Stabilized with Biopolymers to Enhance Oral Bioaccessibility and Bioavailability of Lipophilic Bioactive Compounds. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Formation, stability and the application of Pickering emulsions stabilized with OSA starch/chitosan complexes. Carbohydr Polym 2023; 299:120149. [PMID: 36876777 DOI: 10.1016/j.carbpol.2022.120149] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
We demonstrated the formation, structure and stability of Pickering emulsions stabilized by octenyl succinic anhydride starch (OSA-S)/chitosan (CS) complexes and explored their potential as templates for porous materials. Sufficient oil fraction (Φ > 50 %) was decisive for stable emulsions, whereas the complex concentration (c) significantly affected the gel network of emulsions. An increase in Φ or c led to tighter droplet arrangement and enhanced network, which improved the self-supporting characteristics and the stability of emulsions. The stacking of OSA-S/CS complexes at the oil-water interface influenced the emulsion properties, forming typical microstructure with small droplets embedded in interstices of large droplets, and bridging flocculation occurred. Porous materials prepared using emulsions (Φ > 75 %) as templates exhibited semi-open structures with pore size and network varying with different Φ or c. There was no structure collapse due to the interconnectivity of complexes. Our work provides comprehensive information on OSA-S/CS complex-stabilized Pickering emulsions.
Collapse
|
17
|
Enhancement of the intestinal permeability of curcumin using Pickering emulsions stabilized by starch crystals and chitosan. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Chen X, Chen Y, Liu Y, Zou L, McClements DJ, Liu W. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Compr Rev Food Sci Food Saf 2022; 21:3963-4001. [PMID: 35912644 DOI: 10.1111/1541-4337.13017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Increasing awareness of the health benefits of specific constituents in fruits, vegetables, cereals, and other whole foods has sparked a broader interest in the potential health benefits of nutraceuticals. Many nutraceuticals are hydrophobic substances, which means they must be encapsulated in colloidal delivery systems. Oil-in-water emulsions are one of the most widely used delivery systems for improving the bioavailability and bioactivity of these nutraceuticals. The composition and structure of emulsions can be designed to improve the water dispersibility, physicochemical stability, and bioavailability of the encapsulated nutraceuticals. The nature of the emulsion used influences the interfacial area and properties of the nutraceutical-loaded oil droplets in the gastrointestinal tract, which influences their digestion, as well as the bioaccessibility, metabolism, and absorption of the nutraceuticals. In this article, we review recent in vitro and in vivo studies on the utilization of emulsions to improve the bioavailability of nutraceuticals. The findings from this review should facilitate the design of more efficacious nutraceutical-loaded emulsions with increased bioactivity.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Yan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yikun Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Gastrointestinal Fate and Fatty Acid Release of Pickering Emulsions Stabilized by Mixtures of Plant Protein Microgels + Cellulose Particles: an In Vitro Static Digestion Study. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe present study aims to investigate the in vitro intestinal digestion fate of Pickering emulsions with complex dual particle interfaces. Pickering oil-in-water emulsions (PPM-E) stabilized by plant (pea) protein-based microgels (PPM), as well as PPM-E where the interface was additionally covered by cellulose nanocrystals (CNC), were designed at acidic pH (pH 3.0). The gastrointestinal fate of the PPM-E and free fatty acid (FFA) release, was tested via the INFOGEST static in vitro digestion model and data was fitted using theoretical models. Lipid digestion was also monitored using lipase alone bypassing the gastric phase to understand the impact of proteolysis on FFA release. Coalescence was observed in the PPM-stabilized emulsions in the gastric phase, but not in those co-stabilized by CNC. However, coalescence occurred during the intestinal digestion stage, irrespective of the CNC concentration added (1–3 wt % CNC). The presence of CNC lowered the lipolysis kinetics but raised the extent of FFA release as compared to in its absence (p < 0.05), due to lower levels of gastric coalescence, i.e., a higher interfacial area. The trends were similar when just lipase was added with no prior gastric phase, although the extent and rate of FFA release was reduced in all emulsions, highlighting the importance of prior proteolysis in lipolysis of such systems. In summary, an electrostatically self-assembled interfacial structure of two types of oppositely-charged particles (at gastric pH) might be a useful strategy to enable enhanced delivery of lipophilic compounds that require protection in the stomach but release in the intestines.
Collapse
|
20
|
The multilayered emulsion-filled gel microparticles: Regulated the release behavior of β-carotene. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Stimuli-responsive polymer-complexed liposome nanocarrier provides controlled release of biomolecules. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Tavasoli S, Liu Q, Jafari SM. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Liu G, Hu M, Du X, Yan S, Liao Y, Zhang S, Qi B, Li Y. Effects of succinylation and chitosan assembly at the interface layer on the stability and digestion characteristics of soy protein isolate-stabilized quercetin emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Yang E, Lee JW, Chang PS, Park IK. Development of chitosan-coated nanoemulsions of two sulfides present in onion (Allium cepa) essential oil and their nematicidal activities against the pine wood nematode, Bursaphelenchus xylophilus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69200-69209. [PMID: 34291413 DOI: 10.1007/s11356-021-15451-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/11/2021] [Indexed: 05/02/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, is a plant parasitic nematode which causes severe damage to several Pinus species. Two natural compounds, dipropyl trisulfide (DPTS) and methyl propyl trisulfide (MPTS), showed strong nematicidal activity against the pine wood nematode, presenting 4.24 and 17.81 μg/mL LC50 values, respectively. However, hydrophobicity and low stability have limited their practical use in the field as nematicides. To overcome these problems, chitosan-coated nanoemulsions of DPTS and MPTS were developed. The optimum chitosan concentration for the delivery system of the two sulfides was 0.5%. Optimized chitosan-coated nanoemulsions of sulfides have a uniform size distribution (mean diameter = 203.7 and 207.7 nm, mean polydispersity index = 0.176 and 0.178) with sufficient colloidal stability (mean zeta potential = +40 and +45 mV). The LC50 values of DPTS and MPTS nanoemulsions coated with 0.5% chitosan against the pine wood nematode were 5.01 and 16.60 μg/mL, respectively. In addition, chitosan coating improved the long-term storage stability and persistence of nematicidal activity of the nanoemulsions. This study indicates that the chitosan-coated nanoemulsion is a suitable formulation for sulfides as novel nematicides against the pine wood nematode for field application.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Woo Lee
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Il-Kwon Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
25
|
Azeredo HM, Tonon RV, McClements DJ. Designing healthier foods: Reducing the content or digestibility of key nutrients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Boonlao N, Ruktanonchai UR, Anal AK. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf B Biointerfaces 2021; 209:112211. [PMID: 34800865 DOI: 10.1016/j.colsurfb.2021.112211] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in antioxidants, vitamins, minerals including carotenoids etc. can boost the immune system to help fight off various infections including SARS- CoV 2 and other viruses. Carotenoids have been gaining attention particularly in food and pharmaceutical industries owing to their diverse functions including their role as pro-vitamin A activity, potent antioxidant properties, and quenching of reactive oxygen (ROS), such as singlet oxygen and lipid peroxides within the lipid bilayer of the cell membrane. Nevertheless, carotenoids being lipophilic, have poor solubility in aqueous medium and are also chemically instable. They are susceptible to degrade under stimuli environmental conditions during food processing, storage and gastrointestinal passage. They also exhibit poor oral bioavailability, thus, their applications in aqueous-based foods are limited. As a consequent, suitable delivery systems including colloids-based are needed to enhance the solubility, stability and bioavailability of carotenoids. This review presents challenges of incorporation and delivery of carotenoids focusing on stability and factors affecting bioavailability. Furthermore, designed factors impacting bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems are explicitly explained. Each delivery system exhibits its own advantages and disadvantages; thus, the delivery systems should be designed based on their targets and their further applications.
Collapse
Affiliation(s)
- Nuntarat Boonlao
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
27
|
Ko EB, Kim JY. Application of starch nanoparticles as a stabilizer for Pickering emulsions: Effect of environmental factors and approach for enhancing its storage stability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Meng X, Liu H, Xia Y, Hu X. A family of chitosan-peptide conjugates provides broad HLB values, enhancing emulsion's stability, antioxidant and drug release capacity. Carbohydr Polym 2021; 258:117653. [PMID: 33593541 DOI: 10.1016/j.carbpol.2021.117653] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023]
Abstract
Strong hydrophilicity of polysaccharide and physicochemical instability of peptides limit application of polysaccharide-peptide mixtures in food industry. In this study, a natural resource platform of polysaccharide-peptide conjugates was constructed through Maillard reaction from chitosan and casein hydrophobic peptide. By choosing the molecular weight and deacetylation degree of chitosan and other reaction parameters, the conjugated chitosan-peptides possess extensive HLB values from 6 to 14 were obtained with grafting degree of 3.10%-15.08%. The conjugates have gained dramatically improved emulsifying ability, and endowed the emulsion higher antioxidant capacity than the peptide, chitosan and the mixture of peptide-chitosan has. Emulsions prepared with all conjugates exhibited long-term stability and strengthened tolerance towards temperature and electrolyte stimuli. This stable emulsion system also provided an effective encapsulation, protection and controlled release of curcumin, which may provide a method for transfer polysaccharides to stable emulsifiers with broader HLB values and application.
Collapse
Affiliation(s)
- Xinyu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueyi Hu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
29
|
Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization. Foods 2021; 10:foods10040837. [PMID: 33921331 PMCID: PMC8069085 DOI: 10.3390/foods10040837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
We prepared emulsion-filled gels stabilized using octenyl succinic anhydride-modified and pregelatinized maize starch (OSA-PGS). The effect of the oil volume fraction (Φ, 0.05–0.20) and OSA-PGS concentration (3–10% w/v) on the rheological and microstructural properties of the emulsion-filled gels was evaluated. Confocal fluorescence images showed that OSA-PGS stabilized the emulsion, indicated by the formation of a thick layer surrounding the oil droplets, and simultaneously gelled the aqueous phase. All of the emulsions exhibited shear-thinning flow behavior, but only those with 10% w/v OSA-PGS were categorized as Herschel–Bulkley fluids. The rheological behavior of the emulsion-filled gels was significantly affected by both the OSA-PGS concentration and Φ. The mean diameters (D1,0, D3,2, and D4,3) of oil droplets with 10% w/v OSA-PGS were stable during 30 days of storage under ambient conditions, indicating good stability. These results provide a basis for the design of systems with potential applications within the food industry.
Collapse
|
30
|
Khan MA, Chen L, Liang L. Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Jo M, Ban C, Goh KK, Choi YJ. Enhancement of the gut-retention time of resveratrol using waxy maize starch nanocrystal-stabilized and chitosan-coated Pickering emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Li F, Li X, Huang K, Luo Y, Mei X. Preparation and characterization of pickering emulsion stabilized by hordein-chitosan complex particles. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110275] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Mohammed L, Nourddine H, Saad EF, Abdelali D, Hamid R. Chitosan-covered liposomes as a promising drug transporter: nanoscale investigations. RSC Adv 2021; 11:1503-1516. [PMID: 35424127 PMCID: PMC8693526 DOI: 10.1039/d0ra08305d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 01/11/2023] Open
Abstract
Liposomes are small artificial vesicles spherical shaped of 50-1000 nm in diameter. They are created from natural non-toxic phospholipids membranes. Externally, they are decorated with biocompatible polymers. Chitosan, a natural polymer, demonstrates exceptional advantages in drug delivery, in particular, as liposome cover. In this paper, Molecular Dynamics simulations (MD) are performed in the coupled NPT-NPH and NVT-NVE statistical ensembles to study the static and dynamic properties of DPPC membrane-bilayer with grafted cationic chitosan chains, with added Cl- anions to neutralize the environment, using the Martini coarse-grained force-field. From the NPT-NPH MD simulations we found a chitosan layer L DM ranging from 3.2 to 6.6 nm for graft chains of a degree of polymerization n p = 45 and different grafting molar fractions X p = 0.005, X p = 0.014 and X p = 0.1. Also, the chitosan chains showed three essential grafting regimes: mushroom, critic, and brush depending on X p. The DPPC bilayer thickness D B and the area per lipid A l increased proportionally to X p. From the NVT-NVE MD simulations, the analysis of the radial distribution function showed that the increase of X p gives a more close-packed and rigid liposome. The analysis of the mean square displacement revealed that the diffusion of lipids is anomalous. In contrast, the diffusion of chitosan chains showed a normal diffusion, just after 100 ps. The diffusion regime of ions is found to be normal and independent of time. For the three identified regimes, the chitosan showed a tendency to adhere to the membrane surface and therefore affect the properties of the liposomal membrane.
Collapse
Affiliation(s)
- Lemaalem Mohammed
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Hadrioui Nourddine
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - El Fassi Saad
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Derouiche Abdelali
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Ridouane Hamid
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| |
Collapse
|
34
|
Lotus seedpod-like molecularly imprinted polymers fabricated by MOF-808 stabilized Pickering emulsion and their specific recognition of hemoglobin. Colloids Surf B Biointerfaces 2021; 197:111446. [DOI: 10.1016/j.colsurfb.2020.111446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
|
35
|
Sharkawy A, Barreiro MF, Rodrigues AE. Chitosan-based Pickering emulsions and their applications: A review. Carbohydr Polym 2020; 250:116885. [DOI: 10.1016/j.carbpol.2020.116885] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 08/01/2020] [Indexed: 01/06/2023]
|
36
|
Characteristics of starch-based Pickering emulsions from the interface perspective. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Tai Z, Huang Y, Zhu Q, Wu W, Yi T, Chen Z, Lu Y. Utility of Pickering emulsions in improved oral drug delivery. Drug Discov Today 2020; 25:S1359-6446(20)30370-6. [PMID: 32949702 DOI: 10.1016/j.drudis.2020.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Pickering emulsions are surfactant-free emulsions stabilized by solid particles. Their unique structure endows them with good stability, excellent biocompatibility, and environmental friendliness. Pickering emulsions have displayed great potential in oral drug delivery. Several-fold increases in the oral bioavailability or bioaccessibility of poorly soluble drugs, such as curcumin, silybin, puerarin, and rutin, were achieved by using Pickering emulsions, whereas controlled release was found for indomethacin and caffeine. The shell of the interfacial particle stabilizers provides enhanced gastrointestinal stability to the cargos in the oil core. Here, we also discuss general considerations concerning particle stabilizers and design strategies to control lipid digestion.
Collapse
Affiliation(s)
- Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yanping Huang
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Tao Yi
- School of Health Sciences and Sports, Macao Polytechnic Institute, 00853, Macao
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Yi Lu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China.
| |
Collapse
|
38
|
Reduction of focal sweating by lipid nanoparticle-delivered myricetin. Sci Rep 2020; 10:13132. [PMID: 32753614 PMCID: PMC7403431 DOI: 10.1038/s41598-020-69985-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Myricetin—a flavonoid capable of inhibiting the SNARE complex formation in neurons—reduces focal sweating after skin-application when delivers as encapsulated in lipid nanoparticles (M-LNPs). The stability of M-LNP enables efficient delivery of myricetin to sudomotor nerves located underneath sweat glands through transappendageal pathways while free myricetin just remained on the skin. Furthermore, release of myricetin from M-LNP is accelerated through lipase-/esterase-induced lipolysis in the skin-appendages, enabling uptake of myricetin by the surrounding cells. The amount of sweat is reduced by 55% after application of M-LNP (0.8 mg kg−1) on the mouse footpad. This is comparable to that of subcutaneously injected anticholinergic agents [0.25 mg kg−1 glycopyrrolate; 0.8 U kg−1 botulinum neurotoxin-A-type (BoNT/A)]. M-LNP neither shows a distal effect after skin-application nor induced cellular/ocular toxicity. In conclusion, M-LNP is an efficient skin-applicable antiperspirant. SNARE-inhibitory small molecules with suitable delivery systems have the potential to replace many BoNT/A interventions for which self-applications are preferred.
Collapse
|
39
|
Cai X, Du X, Zhu G, Cao C. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Kan X, Yan Y, Ran L, Lu L, Mi J, Zhang Z, Li X, Zeng X, Cao Y. Evaluation of bioaccessibility of zeaxanthin dipalmitate from the fruits of Lycium barbarum in oil-in-water emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Redox response, antibacterial and drug package capacities of chitosan-α-lipoic acid conjugates. Int J Biol Macromol 2020; 154:1166-1174. [DOI: 10.1016/j.ijbiomac.2019.10.271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
|
42
|
Water-insoluble dietary fibers from bamboo shoot used as plant food particles for the stabilization of O/W Pickering emulsion. Food Chem 2020; 310:125925. [DOI: 10.1016/j.foodchem.2019.125925] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
|